JPH0310484B2 - - Google Patents

Info

Publication number
JPH0310484B2
JPH0310484B2 JP62197749A JP19774987A JPH0310484B2 JP H0310484 B2 JPH0310484 B2 JP H0310484B2 JP 62197749 A JP62197749 A JP 62197749A JP 19774987 A JP19774987 A JP 19774987A JP H0310484 B2 JPH0310484 B2 JP H0310484B2
Authority
JP
Japan
Prior art keywords
resin
pipe
resin concrete
inner layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62197749A
Other languages
Japanese (ja)
Other versions
JPS6442207A (en
Inventor
Satoshi Kamiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62197749A priority Critical patent/JPS6442207A/en
Publication of JPS6442207A publication Critical patent/JPS6442207A/en
Publication of JPH0310484B2 publication Critical patent/JPH0310484B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明はレジンとして不飽和ポリエステル樹
脂を用いた、レジンコンクリート管の遠心製法に
関するものである。 <従来技術> レジンコンクリート管は管の機械的、物理的性
能が優れるため、過去に遠心成形してきた歴史が
あるが、このレジンコンクリート管は通常レジン
として不飽和ポリエステル樹脂を使用し、また硬
化剤としては常温硬化剤を使用していたものであ
る。 常温硬化剤を用いる常温硬化方式は一般に用い
られる遠心機と回転型枠の組み合わせによるだけ
で遠心成形作業が可能となり、従来のセメント系
の遠心力コンクリート管の製造設備と大差のな
い、簡易な設備で製造が可能であつた。このレジ
ンコンクリート管は投入するレジンコンクリート
が硬化するまで型枠を回転し続けるので、その製
造にかなりの長時間を要して能率面で不満が生
じ、また作業にはレジンコンクリートを混練する
ミキサ、これを型枠内に供給するレジンコンクリ
ートの投入機が必要となるが、これらの諸機械に
は作業時当然のこととしてレジンコンクリートが
付着し、操業第1回目の作業では問題がないが、
第2回第3回と作業が進むにつれ、付着コンクリ
ートが硬化し始め、その除去を各作業毎に行わな
ければならなくなり、そのための作業量が次第に
大きくなつて遠心成形作業とおよび諸機械の清掃
のための労働量と時間の増加が生産能率を著しく
阻害して、製品としては良好なレジンコンクリー
ト管が得られるにもかかわらず、次第に生産は縮
小され近年は殆んど製造されなくなつている。 <発明が解決しようとする課題> このようにして、レジンコンクリート管の製造
において遠心成形の時間を短縮し作業効率を高め
ようとすれば、作業用諸機械に付着するレジンコ
ンクリートの硬化も早くなつて、従つて清掃の回
数や労力も多くなり生産効率を逆に低下させると
いう課題があつた。 この解決方法として熱硬化剤の利用が考えられ
る。この硬化方式は熱を加えない限り作業用諸機
械に付着するレジンコンクリートの硬化が緩慢で
機械類の清掃等の維持管理も著しく容易となる
が、反面この熱硬化剤配合のレジンコンクリート
管の成形においては加熱による硬化が必要となる
ために回転する型枠だけでなく遠心機を囲む大き
な加熱室が必要になるほか、温風発生用の燃焼機
や遠赤外線発生機などが新たに必要となつて、設
備および費用を大型で且つ多大とするという課題
がある。 <問題点を解決するための手段> 本発明は剛性の大きい金属にて構成する中空円
筒形の型枠を遠心機上にて回転させながら該型枠
内に熱硬化剤を添加混練したレジンコンクリート
を投入して管本体部を成形し、次いで前記の管本
体部の内面に常温硬化剤を添加したレジンまたは
レジンモルタルを投入して管の内層部を形成し、
該内層部を常温または加熱によつて硬化させて前
記の管本体部が未硬化のまま型枠の回転を止めて
遠心機上より前記型枠を外して移動し、移動後加
熱手段により前記の管本体部を硬化させた後、型
枠より管を取出すことを特徴とするレジンコンク
リート管の遠心製法にある。 <作用> 使用する型枠は変形などの生じ難い、剛性の大
きい金属にて構成する中空円筒形の型枠とし、こ
れを遠心機上で回転させながら、先ず熱硬化剤を
添加した不飽和ポリエステル樹脂に砂利、砂、炭
酸カルシウム等の骨材を加えて混練したレジンコ
ンクリートを投入して管本体部を成形し、続いて
この管本体部の内周に、常温硬化剤を添加したレ
ジンまたはレジンモルタルを投入して管の内層部
を形成する。次に常温または加熱風を内側から吹
付けて内層部のレジンまたはレジンモルタルを硬
化させる。該内層部は管本体部に較べて薄いので
短時間に硬化が進行して一種の硬化壁となり、こ
の段階では管本体部のレジンコンクリートは遠心
力によつて円形を保つてはいるが、硬化反応が殆
んどはじまつておらず、従つて回転を停止すると
本来ならば当然のこととして変形するか、型枠か
ら脱落して円形を保つことが不可能な時期である
にかかわらずこの時点で一種の硬化壁となつてい
る内層部を剛性の大きな型枠との間で未硬化の管
本体部を挟み込む形となるので、遠心機および型
枠の回転を停止して遠心機上より型枠を取りはず
して該型枠を移動して別の加熱室内に搬入し、搬
入する加熱室内で管本体部のレジンコンクリート
を加熱硬化し、硬化が完了した点で管を型枠より
取り出すことにより所要のレジンコンクリート管
を得るようにしたのである。 以上のように本発明によるレジンコンクリート
管の製法は、まず内層部のレジンまたはレジンモ
ルタル層を硬化し、次に管本体部のレジンコンク
リートを硬化する2段階硬化方式に最も大きな特
徴がある。 なお管径が大となる、従つて肉厚の大きいレジ
ンコンクリート管を製造する場合は、内層部だけ
のレジンまたはレジンモルタル層の硬化では管体
の形状保持力が不足して、管本体部のレジンコン
クリートの変形や脱落の生じる恐れがあるとき
は、管本体部のレジンコンクリート層の中間部に
1層或は複数層において常温硬化剤を添加したレ
ジンまたはレジンモルタルの投入層を形成して内
層部と共に中間の投入層を硬化させて、共同して
管本体部のレジンコンクリートの変形や脱落を防
止するようにして全体として型枠の回転を停止し
たときの管の形状保持を図るようにすることもで
きる。 さらに、管本体部のレジンコンクリートにオル
ソ系の不飽和ポリエステル樹脂を用い、内層部に
イソフタル酸系やビスフエノール酸系の樹脂を用
いたレジンまたはレジンモルタル層とする等材料
を選択することによつて、管の耐薬品性の向上を
経済的に実施することができる。また同じ目的で
内層部にエポキシ樹脂等の異種の樹脂を使用して
もよい。 次に本発明のレジンコンクリート管の本体部の
レジンコンクリートに使用される、不飽和ポリエ
ステル樹脂の中温度(60〜100℃程度で硬化する
もの)、高温度(100℃以上で硬化するもの)用の
熱硬化剤の例として第1表に、また内層部に用い
る流動性レジンやレジンモルタルに添加する、常
温硬化剤の例を第2表に示す。(促進剤を併用す
るものは促進剤の欄に記入)
<Industrial Application Field> This invention relates to a centrifugal manufacturing method for resin concrete pipes using unsaturated polyester resin as the resin. <Prior art> Resin concrete pipes have a history of being centrifugally formed due to their excellent mechanical and physical performance.However, resin concrete pipes usually use unsaturated polyester resin as the resin and hardening agents. In this case, a room temperature curing agent was used. The room-temperature curing method that uses a room-temperature curing agent enables centrifugal forming by simply combining a commonly used centrifuge and rotating formwork, and is simple equipment that is not much different from conventional cement-based centrifugal concrete pipe manufacturing equipment. It was possible to manufacture it with This resin concrete pipe has a formwork that continues to rotate until the resin concrete that is poured into it hardens, so it takes a considerable amount of time to manufacture it, causing dissatisfaction in terms of efficiency. A resin concrete dosing machine is required to feed this into the formwork, but resin concrete naturally adheres to these machines during work, and there was no problem during the first operation, but
As the second and third work progresses, the adhering concrete begins to harden, and it has to be removed after each work. The increase in the amount of labor and time required for this process has significantly hindered production efficiency, and despite the fact that good resin concrete pipes can be obtained, production has gradually been reduced and in recent years almost no production has been done. . <Problem to be solved by the invention> In this way, if we try to shorten the centrifugal forming time and increase work efficiency in the production of resin concrete pipes, the resin concrete that adheres to work machines will harden faster. Therefore, there was a problem in that the number of times and labor for cleaning increased, which conversely reduced production efficiency. A possible solution to this problem is to use a thermosetting agent. With this curing method, the resin concrete that adheres to work machines will harden slowly unless heat is applied, making maintenance such as cleaning the machines extremely easy. Because curing requires heating, not only a rotating formwork but also a large heating chamber surrounding the centrifuge is required, as well as a combustion machine to generate hot air and a far-infrared generator. However, there is a problem in that the equipment and costs are large and expensive. <Means for Solving the Problems> The present invention provides resin concrete in which a thermosetting agent is added and kneaded into a hollow cylindrical form made of a highly rigid metal while rotating it on a centrifuge. to form a pipe body, and then a resin or resin mortar added with a room-temperature curing agent to the inner surface of the pipe body to form the inner layer of the pipe,
The inner layer is cured at room temperature or by heating, the mold is stopped rotating while the tube main body remains uncured, the mold is removed from a centrifuge, and the mold is moved. This centrifugal manufacturing method for resin concrete pipes is characterized in that the pipe is removed from the formwork after the main body of the pipe is cured. <Function> The mold used is a hollow cylindrical mold made of highly rigid metal that does not easily undergo deformation, and while rotating this on a centrifuge, the unsaturated polyester to which a thermosetting agent has been added is first added. A resin concrete made by adding aggregates such as gravel, sand, and calcium carbonate to the resin and kneading is poured into the pipe body to form the pipe body, and then the inner periphery of the pipe body is filled with resin or resin to which a room-temperature curing agent has been added. Add mortar to form the inner layer of the pipe. Next, room temperature or heated air is blown from the inside to harden the resin or resin mortar in the inner layer. Since the inner layer is thinner than the pipe main body, it hardens in a short time and becomes a kind of hardened wall.At this stage, the resin concrete in the pipe main body maintains its circular shape due to centrifugal force, but it hardens. At this point, the reaction has barely begun, so when the rotation is stopped, it will naturally deform or it will fall out of the formwork and it will be impossible to maintain its circular shape. Since the uncured pipe body is sandwiched between the inner layer, which serves as a type of hardened wall, and a highly rigid formwork, the rotation of the centrifuge and formwork is stopped, and the formwork is removed from above the centrifuge. The resin concrete of the tube main body is heated and hardened in the heating chamber, and when hardening is completed, the tube is removed from the formwork and the required amount is removed. This led to the creation of resin concrete pipes. As described above, the method for manufacturing a resin concrete pipe according to the present invention is most characterized by the two-step curing method in which the resin or resin mortar layer of the inner layer is first hardened, and then the resin concrete of the pipe body is hardened. When manufacturing resin concrete pipes with large pipe diameters and therefore large wall thicknesses, curing of the resin or resin mortar layer only on the inner layer may result in insufficient shape retention of the pipe body, resulting in damage to the pipe body. If there is a risk of deformation or falling off of the resin concrete, form one or more layers of resin or resin mortar added with a room-temperature curing agent in the middle of the resin concrete layer of the pipe body, and replace the inner layer. The intermediate charging layer is hardened together with the resin concrete in the main body of the pipe to prevent it from deforming or falling off, and the shape of the pipe as a whole is maintained when the formwork stops rotating. You can also do that. Furthermore, by selecting materials such as using ortho-based unsaturated polyester resin for the resin concrete of the pipe body and using resin or resin mortar layer using isophthalic acid-based or bisphenolic acid-based resin for the inner layer, Therefore, the chemical resistance of the pipe can be improved economically. Further, different types of resins such as epoxy resins may be used for the inner layer portion for the same purpose. Next, unsaturated polyester resin used for the resin concrete of the main body of the resin concrete pipe of the present invention is for medium temperature (hardening at about 60 to 100℃) and high temperature (hardening at 100℃ or higher) Table 1 shows examples of thermosetting agents, and Table 2 shows examples of room temperature curing agents to be added to the fluid resin and resin mortar used for the inner layer. (If an accelerator is used together, enter in the accelerator column)

【表】【table】

【表】 <実施例> 以下図面を参照しながら実施例を説明する。 第1図は本発明方法の第1実施例を示すもの
で、1は剛性の大きい金属製の型枠で、2は熱硬
化剤を添加したレジンコンクリートにてなる管本
体部、3は常温硬化剤を添加したレジンまたはレ
ジンモルタルにてなる内層部である。4は必要に
応じて配置される管体補強用の鉄筋籠を示し、5
も必要に応じて挿入される内層部3を補強するた
めのガラス繊維層で、通常は管本体部2と内層部
3との間に挿入される。 まず所要の鉄筋籠4を回転型枠1内に装入して
該型枠1を遠心機上で回転し、その両端開口部よ
り熱硬化剤を添加した不飽和ポリエステル樹脂と
硅砂等を混練したレジンコンクリートを投入す
る。このレジンコンクリートは必要管厚よりわず
かに少なく投入して管本体部2を成形し、次にガ
ラス繊維5を投入し、続いて不飽和ポリエステル
樹脂に常温硬化剤を添加したレジルモルタルを投
入して内層部3を成形する。管本体部2のレジン
コンクリートに用いる熱硬化剤としてはベンゾイ
ルペオキシド(BPO)を、また内層部3に添加
の常温硬化剤としてはメチルエチルケトンペルオ
キシド(MEKPO)をジメチルフタレート
(DMP)に希釈した55%溶液と促進剤としてコバ
ルト石けんの6%ナフテン酸コバルトを使用し
た。また内層部3の硬化の別の方法として、ガラ
ス繊維層5を含む内層部3にも硬化剤として、ベ
ンゾイルペルオキシド(BPO)を用い、促進剤
として第3級アミンを添加するようにすれば、管
本体部2と内層部3に同一の硬化剤を使用しなが
ら、熱硬化からガラス繊維層5を介して第3級ア
ミンの添加のみで容易に常温硬化に転じ得るもの
で作業上の大きな利便性が得られる。いずれの方
法においても、ガラス繊維層5を含めて内層部3
を管本体部2に先立つて硬化せしめるのである。 内層部3を形成するレジンモルタルは流動性が
よいので、回転遠心力によつて容易に平滑とな
り、続いて約100℃前後の温風を内側から数分間
あてて内層部3を硬化させて遠心機の回転を止
め、直ちに型枠1ごと過熱室に搬送し室内を100
〜200℃で約1時間保持した後脱型した。 第2図は本発明方法の第2実施例であつて、管
本体部の成形に当つて、熱硬化剤を添加したレジ
ンコンクリートの型枠内投入を2回に分けて、そ
の間に常温硬化剤を添加したレジンコンクリート
またはレジンモルタルを投入して管本体部2内に
内層部3aと同種のレジンまたはレジンモルタル
による中間層3bを形成するものである。 この方法は大口径管で肉厚の大きいレジンコン
クリート管を製造する場合、中間層3bと内層部
3aを早く硬化させて共同して肉厚の管本体部2
の変形や脱落を防止するようにして、管本体部2
が未硬化のまま型枠の回転を停止して加熱室内に
移動させることができるようするのである。 なお、上記の中間層3bは図面では1層である
が、2層以上に形成して、肉厚の大きい未硬化の
管本体部2を支えるようにすることもできる。 強度試験用に成形したレジンコンクリート管の
寸法は内径500ミリ肉厚42ミリで管の肉厚のほぼ
中央部に鉄筋籠4を配置し螺線方向筋の全断面の
合計を管断面の1.1%とし、また内面のガラス繊
維5を重量比で管重量の1%を配置した。この強
度試験管の外圧強さをJIS05350強化プラスチツク
複合管の規格値並びに全国ヒイユーム管協会の小
口径推進管の規格値とを夫々比較したものを第3
表に示す。
[Table] <Example> Examples will be described below with reference to the drawings. Fig. 1 shows the first embodiment of the method of the present invention, in which 1 is a highly rigid metal formwork, 2 is a tube body made of resin concrete added with a thermosetting agent, and 3 is a room-temperature hardening part. The inner layer is made of resin or resin mortar containing additives. 4 indicates a reinforcing bar cage for reinforcing the pipe body, which is placed as necessary, and 5
The glass fiber layer is also inserted as needed to reinforce the inner layer 3, and is usually inserted between the tube body 2 and the inner layer 3. First, the required reinforcing bar cage 4 was charged into the rotary formwork 1, and the formwork 1 was rotated on a centrifuge, and unsaturated polyester resin to which a thermosetting agent had been added and silica sand etc. were kneaded through the openings at both ends. Add resin concrete. This resin concrete is poured into the tube body part 2 by adding slightly less than the required thickness of the pipe, then glass fiber 5 is added, and then resin mortar, which is an unsaturated polyester resin with a room temperature curing agent added, is added to form the inner layer. Mold part 3. The thermosetting agent used in the resin concrete of the pipe body part 2 is benzoylpeoxide (BPO), and the room temperature curing agent added to the inner layer part 3 is 55% methyl ethyl ketone peroxide (MEKPO) diluted with dimethyl phthalate (DMP). Cobalt soap 6% cobalt naphthenate was used as the solution and accelerator. Another method for curing the inner layer 3 is to use benzoyl peroxide (BPO) as a curing agent and add tertiary amine as an accelerator to the inner layer 3 including the glass fiber layer 5. While using the same curing agent for the tube body part 2 and the inner layer part 3, it is possible to easily change from heat curing to room temperature curing by just adding tertiary amine through the glass fiber layer 5, which is very convenient for work. You can get sex. In either method, the inner layer 3 including the glass fiber layer 5
The material is hardened prior to forming the tube body 2. The resin mortar that forms the inner layer 3 has good fluidity, so it is easily smoothed by rotational centrifugal force, and then warm air at about 100°C is applied from the inside for several minutes to harden the inner layer 3 and then centrifuged. Stop the rotation of the machine, immediately transport each formwork to the heating room, and heat the room to 100%.
After holding at ~200°C for about 1 hour, the mold was demolded. Figure 2 shows a second embodiment of the method of the present invention, in which resin concrete to which a thermosetting agent is added is charged into the formwork in two steps when forming the main body of the pipe. The intermediate layer 3b made of the same type of resin or resin mortar as the inner layer 3a is formed in the tube main body 2 by adding resin concrete or resin mortar to which the inner layer 3a is added. When manufacturing a resin concrete pipe with a large diameter and a large wall thickness, this method quickly hardens the intermediate layer 3b and the inner layer 3a and jointly works together to form a thick pipe main body part 2.
The tube main body part 2 is
This makes it possible to stop the rotation of the mold and move the mold into the heating chamber while it remains uncured. Although the above-mentioned intermediate layer 3b is one layer in the drawing, it can be formed into two or more layers to support the thick uncured tube main body portion 2. The resin concrete pipe formed for the strength test has an inner diameter of 500 mm, a wall thickness of 42 mm, and a reinforcing bar cage 4 is placed approximately in the center of the wall thickness of the pipe, so that the total cross section of the spiral reinforcement is 1.1% of the pipe cross section. In addition, the glass fibers 5 on the inner surface were arranged in an amount of 1% of the weight of the tube. The external pressure strength of this strength test tube was compared with the JIS05350 standard value for reinforced plastic composite pipes and the standard value for small diameter propulsion pipes of the National Huium Pipe Association.
Shown in the table.

【表】 但し、管種のうちAはJIS5350強化プラスチツ
ク複合管を示し、Bは全国ヒユーム管協会のもの
を示す。又※印は基準たわみ量26ミリに於ける荷
重値でひびわれ荷重値ではない。 第3表より判明する如く、本発明になるレジン
コンクリート管は他のプラスチツク管やセメント
系のヒユーム管に較べ極めて強度が大きく、レジ
ンの硬化を2段階としたことにより強度上の欠点
はなく、より生産性を高める優れた製法と言える
のである。 <発明の効果> (イ) 管本体部のレジンコンクリートの硬化に熱硬
化剤を用いることにより、レジンコンクリート
の作業用諸機械への付着に伴う硬化を緩慢にし
て、作業用諸機械の清掃を容易にして且つ省力
化することができる。 (ロ) 内層部を成形し、該内層部のレジンまたはレ
ジンモルタル層を常温硬化剤の添加にて硬化を
早めることにより、剛性の大なる外側の回転型
枠とともに未硬化の管本体部を保持して移動可
能とすることにより、成形のための型枠の回転
時間を大巾に縮小して製管能率を飛躍的に向上
することができる。 (ハ) 管本体部のレジンコンクリートの硬化を別の
加熱室で行う2段階硬化方式がとれて、設備の
過大となることがさけられる。 (ニ) 管本体部のレジンコンクリート層の中間に、
常温硬化剤を用いたレジンまたはレジンモルタ
ル層を1乃至複数層設けることにより未硬化段
階での管本体部の保形を強化することができ
る。 (ホ) 管本体部のレジンコンクリートと内層部のレ
ジンまたはレジンモルタル層のそれぞれの特徴
を有効に利用することにより管の耐酸、耐薬品
性等を向上させることができるという、多くの
効果を生ずる。
[Table] However, among the pipe types, A indicates JIS5350 reinforced plastic composite pipes, and B indicates those from the National Huyum Pipe Association. Also, the * mark is the load value at a standard deflection of 26 mm, not the cracking load value. As is clear from Table 3, the resin concrete pipe of the present invention has extremely high strength compared to other plastic pipes and cement-based humid pipes, and because the resin is cured in two stages, there are no defects in strength. This can be said to be an excellent manufacturing method that further increases productivity. <Effects of the Invention> (a) By using a thermosetting agent to harden the resin concrete of the pipe body, the hardening caused by the adhesion of the resin concrete to the work machines is slowed down, making it easier to clean the work machines. This can be done easily and saves labor. (b) By molding the inner layer and accelerating the curing of the inner layer's resin or resin mortar layer by adding a room-temperature curing agent, the uncured pipe body is held together with the highly rigid outer rotating formwork. By making it movable, the rotation time of the mold for molding can be greatly reduced, and the pipe manufacturing efficiency can be dramatically improved. (c) A two-stage curing method is adopted in which the resin concrete for the pipe body is cured in a separate heating chamber, which avoids overloading the equipment. (d) In the middle of the resin concrete layer of the pipe body,
By providing one or more layers of resin or resin mortar using a room-temperature curing agent, the shape retention of the pipe main body can be strengthened in the uncured stage. (e) By effectively utilizing the characteristics of the resin concrete in the pipe body and the resin or resin mortar layer in the inner layer, many effects can be produced, such as improving the acid resistance and chemical resistance of the pipe. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本願発明の夫々異なる実施
例の側面断面図を示す。 1……回転型枠、2……レジンコンクリートに
よる管本体部、3,3A……内層部、3B……中
間層、4……鉄筋籠、5……ガラス繊維層。
1 and 2 show side sectional views of different embodiments of the present invention. 1...Rotating formwork, 2...Pipe body made of resin concrete, 3, 3A...Inner layer part, 3B...Middle layer, 4...Reinforcement cage, 5...Glass fiber layer.

Claims (1)

【特許請求の範囲】 1 剛性の大きい金属にて構成する中空円筒形の
型枠を遠心機上にて回転させながら該型枠内に熱
硬化剤を添加混練したレジンコンクリートを投入
して管本体部を成形し、次いで前記の管本体部の
内面に常温硬化剤を添加したレジンまたはレジン
モルタルを投入して管の内層部を形成し、該内層
部を常温または加熱によつて硬化させて前記の管
本体部が未硬化のまま型枠の回転を止めて遠心機
上より前記型枠を外して移動し、移動後加熱手段
により前記の管本体部を硬化させた後、型枠より
管を取出すことを特徴とするレジンコンクリート
管の遠心製法。 2 管本体部を構成するレジンコンクリート層の
中間に1層若くは複数層において常温硬化剤添加
のレジンまたはレジンモルタルの投入による層を
形成する特許請求の範囲第1項記載のレジンコン
クリート管の遠心製法。
[Scope of Claims] 1. A hollow cylindrical form made of highly rigid metal is rotated on a centrifuge, and resin concrete mixed with a thermosetting agent is poured into the form to form the tube body. Then, a resin or resin mortar containing a room temperature curing agent is poured into the inner surface of the pipe body to form the inner layer of the pipe, and the inner layer is hardened at room temperature or by heating to form the pipe body. The rotation of the mold is stopped and the mold is removed from the centrifuge while the tube main body remains uncured. After the movement, the tube main body is cured by heating means, and then the tube is removed from the mold. A centrifugal manufacturing method for resin concrete pipes, which is characterized by the fact that they can be taken out. 2. Centrifugation of a resin concrete pipe according to claim 1, wherein one layer or multiple layers of resin or resin mortar added with a room temperature curing agent are formed in the middle of the resin concrete layer constituting the pipe main body. Manufacturing method.
JP62197749A 1987-08-07 1987-08-07 Centrifugal process of resin concrete pipe Granted JPS6442207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62197749A JPS6442207A (en) 1987-08-07 1987-08-07 Centrifugal process of resin concrete pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62197749A JPS6442207A (en) 1987-08-07 1987-08-07 Centrifugal process of resin concrete pipe

Publications (2)

Publication Number Publication Date
JPS6442207A JPS6442207A (en) 1989-02-14
JPH0310484B2 true JPH0310484B2 (en) 1991-02-13

Family

ID=16379703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62197749A Granted JPS6442207A (en) 1987-08-07 1987-08-07 Centrifugal process of resin concrete pipe

Country Status (1)

Country Link
JP (1) JPS6442207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356987B1 (en) * 2009-11-26 2014-01-29 가부시키가이샤 시마세이키 세이사쿠쇼 Knit design device, design method, and design program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125908A (en) * 1999-10-26 2001-05-11 Sony Corp Input device and method
JP4502478B2 (en) * 2000-08-09 2010-07-14 日之出水道機器株式会社 Block body for underground structure and centrifugal forming method thereof
KR20030023982A (en) * 2001-09-14 2003-03-26 전형진 Concrete pipe and making method thereof
CN103481363A (en) * 2013-09-07 2014-01-01 安徽富强混凝土有限公司管桩分公司 Production process of concrete pipe pile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356987B1 (en) * 2009-11-26 2014-01-29 가부시키가이샤 시마세이키 세이사쿠쇼 Knit design device, design method, and design program

Also Published As

Publication number Publication date
JPS6442207A (en) 1989-02-14

Similar Documents

Publication Publication Date Title
US3923937A (en) Method of centrifugally casting plural layered cylinders and forming longitudinally spaced annular reinforcements and helical reinforcements therein
US1633219A (en) Method of forming pipe
JPH0310484B2 (en)
JPS60223640A (en) Production of pipe bend
DK163284B (en) PROCEDURE FOR MANUFACTURING A PIPE PIECE
SE429418B (en) SET TO MAKE A THICK, ARMED PLASTIC FORM
EP0217841B1 (en) Fiber reinforced plastic pipe and centrifugal casting method for manufacturing same
KR100441424B1 (en) Three-layer centrifugal pipe using polymer concrete and it&#39;s manufacturing method
JPH01280505A (en) Manufacture of acid-resistant hume pipe
JPS6049731B2 (en) Manufacturing method of steel pipe concrete pile
KR100408699B1 (en) A manufacturing method of centrifugal pipe using polymer concrete
KR100444114B1 (en) A manufacturing of perforated reinforced concrete pipes by vibration method
JPS5937204B2 (en) Manufacturing method for glass fiber reinforced cement products
US20060236649A1 (en) Architectural capital having an astragal formed thereon
US3027290A (en) Composite building unit and method for making same
JPS5814719A (en) Structure member
JPH02206506A (en) Centrifugal manufacture of resin concrete pipe
JPH0410406B2 (en)
JPS5855105B2 (en) Manufacturing method for reinforcing baskets using long glass fibers
JPH08150613A (en) Fiber reinforced resin concrete hume pipe and its production
JP2741941B2 (en) Method for producing concrete body with surface finish
JPH02136206A (en) Production of long fiber reinforced acid-resistant pipe
JPH06170818A (en) Production of form made of concrete
WO2024023392A1 (en) Method for manufacturing building elements
JPH0449002A (en) Manufacture of concrete panel