JPH03104802A - Method for manufacturing sintered product - Google Patents

Method for manufacturing sintered product

Info

Publication number
JPH03104802A
JPH03104802A JP1244031A JP24403189A JPH03104802A JP H03104802 A JPH03104802 A JP H03104802A JP 1244031 A JP1244031 A JP 1244031A JP 24403189 A JP24403189 A JP 24403189A JP H03104802 A JPH03104802 A JP H03104802A
Authority
JP
Japan
Prior art keywords
molded product
binder
powder
injection molded
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1244031A
Other languages
Japanese (ja)
Inventor
Masato Miyake
正人 三宅
Kazuo Okamura
和夫 岡村
Takemori Takayama
武盛 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1244031A priority Critical patent/JPH03104802A/en
Publication of JPH03104802A publication Critical patent/JPH03104802A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a sintered product improved in shaped-maintainability by magnetizing powder material at the time of removing binder in an injected green compact composed of the powdery material containing ferromagnetism material and organic binder. CONSTITUTION:The injected green compact 1 is formed with the powdery material containing at least one kind of alloy powder among iron, nickel, cobalt or these ferromagnetism material and at least one kind of ferromagnetism oxide powder having Fe2O3 as essential component and amorphous of magnetic material, and the organic binder. At the time of removing the binder in this green compact 1, the green compact 1 is laid on an alnico magnet plate 2 (about 1200-13500 gauss residual magnetic density, about 600-700 oersted coercive force, about 8mm thickness) and raised to about 500 deg.C under N2 atmosphere at about 10 deg.C/hr temp. raising speed and held for about 2hr. By this method, the sintered product improved in the shape-maintainability is obtd. from the injection green compact.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粉末状材料と有機質バインダよりなる射出成形
品の脱バインダ工程で、射出成形品の保形性を向上させ
た焼結品の製造方法に関する.(従来の技術) 従来、粉末状材料を焼結する場合、粉末状材料にバイン
ダを加え、所定の形状に或形した後焼結するが、その戒
形を射出威形にて行う方法が試みられ、一部実用化され
ている。この場合、粉末状材料と、樹脂を主或分とする
有機物を含むパインダを混合し、前記有機物の流動性を
利用することによって所定の形状に射出成形品した成形
品は、その後比較的低温で脱バインダ処理を施すが、そ
の昇温過程で成形品が変形することを防止するため、ア
ルミナ等の粉の中に埋めたり、形状を保持するための治
具が用いられている.バインダの大部分はこの脱バイン
ダエ程で流出あるいは分解除去され、その後、脱バイン
ダされた成形品は高温で焼結される.[従来例1] 平均粒径4 p m .炭素量0.Ol%,M素量0.
 2%の球状鉄粉4290gにボリアミドを主成分とす
るバインダ424.3g(9重量%)を添加し、加圧二
−ダにより140℃で2時間混練した後粉砕し、射出威
形機に投入し、射出温度150℃,射出圧1ton/c
m”の威形圧にて威形した成形品を、第6図(a)に示
すようにSUS304L!!治具(1l)に取付けたも
の、第6図(b)に示すように(a)と同じ材質で成形
品の内部全体を保持する治具(12)を使用し成形品下
部にアルミナ粉(13)を敷設したものを、N2雰囲気
中で500℃まで10℃/ hrの速度で昇温し、2時
間保持した後、炉冷した.その結果は第7図<a)に示
すように治具(1))を用いた脱バインダ品は、その形
状をほとんど止めず、治具(12)によるものは第7図
(b)に示すようにかなり原形を保っているものの多大
の変形ならびに割れが生じており、治具によるサポート
では保形が十分に行えなかった. [従来例2〕 金属粉として平均粒径10μmのSUS410Lの粉末
を用い、治具(1l)にもアルナミ粉を使用し、その他
の条件を従来例1と同様にしてテストを実施した.使用
粉末形状がカーボニル鉄粉と比較して少し角ばった塊状
となるため、粉末形状自体の効果で脱バインダ時の変形
は少ないが、やはり治具によるものは変形と割れがみら
れた. (発明が解決しようとするrsB) しかし、粉末射出成形品は威形性を考慮して、通常,成
形品の体積の35〜55%はバインダで占められている
.成形品を焼結する前に、比較的低温で脱バインダ処理
を施し、初期バインダ投入量の80〜98%を分解除去
する。しかし、その昇温過程でバインダが熱可塑性であ
るため、成形品が非常に変形しやすい弱い状態を経過し
なければならない.中でもバインダの軟化点をはさんで
−2O℃から+100℃の温度領域では、バインダ分解
除去が十分に行なわれないため、特に変形しやすい。変
形の主な原因は成形品が自重を支えきれないことによる
。変形のしやすさを列挙すると次のようになる。
Detailed Description of the Invention (Industrial Application Field) The present invention is a process for removing the binder from an injection molded product made of a powdered material and an organic binder, and is used to produce a sintered product that improves the shape retention of the injection molded product. Regarding the method. (Prior art) Conventionally, when sintering powdered materials, a binder is added to the powdered materials, the material is shaped into a predetermined shape, and then sintered, but attempts have been made to form the material by injection molding. and some of them have been put into practical use. In this case, the molded product is injection molded into a predetermined shape by mixing a powdered material and a binder containing an organic substance, mainly resin, and utilizing the fluidity of the organic substance. The binder is removed, but in order to prevent the molded product from deforming during the temperature rising process, it is buried in powder such as alumina, or a jig is used to hold the shape. Most of the binder flows out or is decomposed and removed during this binder removal process, and then the binder-free molded product is sintered at a high temperature. [Conventional Example 1] Average particle size: 4 pm. Carbon content 0. Ol%, M elementary amount 0.
424.3g (9% by weight) of a binder whose main component is polyamide was added to 4290g of 2% spherical iron powder, kneaded in a pressurized kneader at 140°C for 2 hours, pulverized, and put into an injection molding machine. Injection temperature: 150℃, injection pressure: 1ton/c
The molded product shaped with a shaping pressure of 1.5 m'' was attached to the SUS304L!! jig (1l) as shown in Fig. 6(a), ) using a jig (12) that holds the entire interior of the molded product, with alumina powder (13) placed at the bottom of the molded product, was heated to 500°C at a rate of 10°C/hr in a N2 atmosphere. The temperature was raised, held for 2 hours, and then cooled in a furnace.As shown in Figure 7 <a), the binder-removed product using jig (1)) hardly retained its shape; (12), as shown in Figure 7(b), retained its original shape to a great extent, but suffered from significant deformation and cracking, and the shape could not be maintained sufficiently with support from a jig. [Conventional example] 2] A test was conducted using SUS410L powder with an average particle size of 10 μm as the metal powder, using alumina powder for the jig (1L), and using other conditions as in Conventional Example 1.The powder shape used was carbonyl. Compared to iron powder, it has a slightly angular block shape, so there is less deformation during binder removal due to the powder shape itself, but deformation and cracking were still observed when using a jig. (This is what the invention seeks to solve) rsB) However, in consideration of the appearance of powder injection molded products, 35-55% of the volume of the molded product is usually occupied by binder.Before sintering the molded product, it is desorbed at a relatively low temperature. A binder treatment is performed to decompose and remove 80 to 98% of the initial amount of binder input.However, during the heating process, the molded product must go through a weak state where it is highly susceptible to deformation because the binder is thermoplastic. .In particular, in the temperature range from -2O℃ to +100℃ beyond the softening point of the binder, the binder is not fully decomposed and removed, making it particularly susceptible to deformation.The main cause of deformation is that the molded product cannot support its own weight. The ease of deformation is listed as follows.

(1)パインダ自体の性状。(1) Properties of the pinda itself.

(2)バインダ添加量(多いものほど変形しやすい). (3)使用粉末材料の形状(球状に近いものほど変形し
やすい). (4)成形品の形状。
(2) Amount of binder added (the larger the amount, the easier it is to deform). (3) Shape of the powder material used (the more spherical it is, the easier it is to deform). (4) Shape of molded product.

(5)脱バインダ時の荷姿. などによりかなりの影響を受ける.焼結品の製造におい
て、多重に添加されたバインダを成形品に欠陥を発生す
ることなく、いかに速く除去するかが大きな課題で、脱
バインダ時の保形性のため、種々の方法が試みられてい
る.(a)アルミナ等の粉の中に、一部あるいは全部を
埋め込む. (b)バインダ添加量を少くする. (c)金属粉を球状でなく、粒子同志が動きにくい塊状
あるいは片状にする。
(5) Packing appearance when removing the binder. It is significantly affected by etc. In the production of sintered products, a major challenge is how to quickly remove multiple binders without causing defects in the molded product, and various methods have been tried to improve shape retention during binder removal. ing. (a) Part or all is embedded in powder such as alumina. (b) Reduce the amount of binder added. (c) Making the metal powder not spherical but lumpy or flaky in which the particles are difficult to move among themselves.

(d)成形品を支える金属製あるいはセラミックス製の
サポート治具を使用する. (e)バインダそのものの性状を改善して、保形性を向
上させる. しかし、(a)については成形品のアルミナ粉への埋め
込みや、特に脱バインダ後のアルミナ粉の除去に多大の
工数を要するため、コスト高になると共に第9図に示す
ように脱バインダ品の表面にアルミナ粉が陥没した跡が
残るため、焼結品の面粗さが悪くなる,b)およびC)
についてはコンバウンド(粉末材料とバインダを混練し
たもの)そのものの流れ性を阻害するため、射出成形性
に著しい悪影響を及ぼす。d)については、成形品の形
状に制約があり、また、脱バインダ処理数に相当する個
数の治具を必要とするため、コストが高くなるee)に
ついてはかなりの威果が見られるが、成形品形状,荷姿
に大きく制約を受け十分なものと言えないなどの欠点が
ある。
(d) Use a metal or ceramic support jig to support the molded product. (e) Improve shape retention by improving the properties of the binder itself. However, regarding (a), it requires a lot of man-hours to embed the molded product in alumina powder and especially to remove the alumina powder after debinding, which increases the cost and also increases the cost of removing the binder as shown in Figure 9. The surface roughness of the sintered product deteriorates because the alumina powder remains on the surface, b) and c)
Since this inhibits the flowability of the compound itself (a mixture of powder material and binder), it has a significant negative effect on injection moldability. Regarding d), there are restrictions on the shape of the molded product, and the number of jigs equivalent to the number of debinding processes is required, so the cost is high. Regarding ee), a considerable effect can be seen. There are drawbacks such as the fact that there are significant restrictions on the shape of the molded product and the packaging, making it difficult to say it is sufficient.

(!l題を解決するための手段) 本発明は前記従来の技術における課題を解決するために
なされたもので、第lの発明は、強磁性材料を含む粉末
状材料と有機質バインダよりなる射出成形品の脱バイン
ダ工程において、前記強磁性材料を含む粉末状材料を磁
化させることにより、射出成形品を保形するようにした
ことを特徴とする焼結品の製造方法により、第2の発明
は、前記第1の発明における強磁性材料が、鉄,ニフケ
ル,コバルト、あるいはこれら強磁性材料の少なくとも
一種の合金粉.FetO,を主成分とするフェリ磁性酸
化物の粉末、あるいは磁性材アモルファスのうち、少な
くとも一種を含むことを特徴とする焼結品の製造方法に
より、第3の発明は、前記第1または第2の発明におけ
る射出成形品が、強磁性材料を含む粉末状材料を40〜
65体積%含み、残りが有機質バインダよりなり、該射
出成形品に磁場を作用させて、磁化された粉末間のブロ
ッキングカによって、脱バインダ工程における前記射出
成形品を保形するようにしたことを特徴とするとする焼
結品の製造方法により、第4の発明は、前記第3の発明
において、射出成形品の上方より磁場を作用させ、強磁
性材料を上方へ引き上げることによって、脱バインダ工
程における自重による変形を防止するようにしたことを
特徴とする焼結品の製造方法により、第5の発明は、前
記第1または第2の発明において、脱バインダ工程の前
に強磁性材料を含む粉末状材料に着磁させたことを特徴
とする焼結品の製造方広により、第6の発明は、射出成
形品を磁性材料よりなる粉体中に埋め込み、脱バインダ
エ程中、または脱バインダ工程の前に前記磁性材料より
なる粉体を磁化させることによって、磁化された粉対間
のプロフキング力によって、脱バインダ工程における前
記射出成形品を保形するようにしたことを特徴とすると
する焼結品の製造方法により目的を達威するようにした
(Means for Solving the Problem) The present invention has been made in order to solve the problems in the prior art, and the first invention is an injection molding material made of a powdery material containing a ferromagnetic material and an organic binder. A method for manufacturing a sintered product, characterized in that the shape of the injection molded product is maintained by magnetizing the powdered material containing the ferromagnetic material in the binder removal process of the molded product, the second invention The ferromagnetic material in the first invention is iron, nifkel, cobalt, or an alloy powder of at least one of these ferromagnetic materials. A third invention provides a method for producing a sintered product characterized by containing at least one of a ferrimagnetic oxide powder containing FetO as a main component or an amorphous magnetic material. In the invention, the injection molded product is made of a powdery material containing a ferromagnetic material.
65% by volume, with the remainder being an organic binder, and by applying a magnetic field to the injection molded product, the shape of the injection molded product is retained in the binder removal process by the blocking force between the magnetized powders. According to the method for producing a sintered product characterized by the above-mentioned third invention, a magnetic field is applied from above the injection molded product to pull the ferromagnetic material upward, so that the binder removal process is performed. A fifth invention provides a method for manufacturing a sintered product, characterized in that deformation due to its own weight is prevented. According to a sixth aspect of the present invention, an injection molded product is embedded in a powder made of a magnetic material, and the injection molded product is embedded in a powder made of a magnetic material, and the injection molded product is embedded in a powder made of a magnetic material, and the injection molded product is embedded in a powder made of a magnetic material, and the injection molded product is embedded in a powder made of a magnetic material. By magnetizing the powder made of the magnetic material before the step, the shape of the injection molded product is maintained in the binder removal step by the profking force between the magnetized powder pairs. The purpose was achieved by changing the method of manufacturing the product.

(作 用) 前記構威によるときは、純鉄,炭素講,磁性鋼珪素il
l,FeNi合金.AI−Fe合金.Si  AI  
Fe合金.フエライト,RCOs(Rはイットリエウム
および希土類金属etc )等を材料とする、鉄.ニッ
ケル.コバルト、あるいはこれら強磁性材料の少なくと
も一種類の合金粉、Fe2O,を主成分とするフェリ磁
性酸化物の粉末、あるいは磁性材アモルファスのうち、
少なくとも一種を含有する強磁性材料を含む射出成形品
に脱バインダ工程で磁場を作用させるか、または脱バイ
ンダ工程の摩詞に強磁性材料を含む粉末状材料に着磁さ
せておけば、磁化された粉末間のプロフキングカによっ
て、脱パインダ工程における前記射出成形品の保形性を
向上することができる。また、射出成形品の上方より磁
場を作用させ、前記強磁性材料を上方に引き上げるよう
にすれば、脱パインダエ程における自重による変形が防
止されて保形性を向上することができる.また、射出成
形品を磁性材料よりなる粉体中に埋め込み、該磁性材料
よりなる粉体を磁化させれば、磁化された粉対間のブロ
ッキング力によって、脱バインダエ程における射出成形
品を保形することも可能である. (実施例) 以下、発明の実施例につき添付図面を参照して詳述する
. (実施例l) 前記、従来例と同じ条件で威形した成形品 (1)を、
第1図に示すように残留磁気密度12O00〜1350
0ガウス,保持力600〜700エルステノド1厚さ8
mmのアルニコ磁石板(2)の上にのせ、従来例Iと同
様N2雰囲気で500℃まで10℃/ h rの速度で
昇温し、2時間保持した後炉冷した.その結果、第2図
に示すように全く自重による変化は受けなかった.なお
、アルニコ磁石は500℃まで加熱されても磁力は損な
われず再利用が可能である.言うまでもなく、磁力が損
なわれても、再磁化処理すれば半永久的に使用可能であ
る.強磁性材料である鉄,ニッケル,コバルトの金属粉
あるいは合金粉の少なくとも一種を含む射出成形品は第
5図に示すように金属粉(5)とバインダ(4)により
構威される。この成形品を磁場の中に置くと独立した金
属粉(5〉が容易に磁化され、互に近くにある金属粉(
5)を引きつけ合う力が作用するため、全体として成形
品が持っている形状をそのまま保持しようとするプロフ
キング力が働く、従って脱バインダ時に或形品が可塑化
する温度Iii囲であるバインダ軟化点(TM℃とする
)TM−2O℃〜TM+ 1 0 0℃の温度、特にT
M− 2 0℃〜TM+50℃の温度範囲で成形品に磁
場を作用させれば、成形品を構成する粉末が磁化され、
前述のブロッキング力が働くため、弱いながらもバイン
ダ自体が持っている保持力,と相俟って脱パインダ前の
形状がそのまま保持される.磁場の与え方は成形品を永
久磁石と直接接触させたり、あるいは少し離して設置し
てもよい、電磁場として与えても効果は変らない.また
磁場を与える温度範囲はTM−2O℃〜TM+ 1 0
 0℃で、確実に作用させれば他の温度では磁場を作用
させなくてもその効果は変らない。
(Function) When using the above structure, pure iron, carbon steel, magnetic steel, silicon il
l, FeNi alloy. AI-Fe alloy. Si AI
Fe alloy. Iron. nickel. Among cobalt or at least one kind of alloy powder of these ferromagnetic materials, powder of ferrimagnetic oxide whose main component is Fe2O, or amorphous magnetic material,
If a magnetic field is applied to an injection molded product containing at least one type of ferromagnetic material during the binder removal process, or if a powdered material containing a ferromagnetic material is magnetized during the binder removal process, it will not be magnetized. The shape retention of the injection molded product during the de-pindering process can be improved by the profusing force between the powders. Furthermore, if a magnetic field is applied from above the injection molded product to pull the ferromagnetic material upward, deformation due to its own weight during the debinding process can be prevented and shape retention can be improved. In addition, if an injection molded product is embedded in powder made of a magnetic material and the powder made of magnetic material is magnetized, the injection molded product will retain its shape during the binder removal process due to the blocking force between the magnetized powder pairs. It is also possible to do so. (Examples) Examples of the invention will be described in detail below with reference to the attached drawings. (Example 1) The molded product (1) that was shaped under the same conditions as the conventional example was
As shown in Figure 1, the residual magnetic density is 12O00~1350.
0 Gauss, holding power 600-700 Elstenod 1 Thickness 8
It was placed on a 1.0 mm alnico magnet plate (2), heated to 500 °C at a rate of 10 °C/hr in a N2 atmosphere as in Conventional Example I, held for 2 hours, and then cooled in the furnace. As a result, as shown in Figure 2, there was no change due to its own weight. Note that alnico magnets do not lose their magnetic force even when heated to 500°C and can be reused. Needless to say, even if the magnetic force is lost, it can be used semi-permanently if remagnetized. An injection molded product containing at least one type of metal powder or alloy powder of ferromagnetic materials such as iron, nickel, and cobalt is composed of metal powder (5) and a binder (4) as shown in FIG. When this molded product is placed in a magnetic field, the independent metal powders (5) are easily magnetized, and the metal powders (5) that are close to each other are easily magnetized.
5) As a result of the force that attracts the two, a profking force acts to try to maintain the shape of the molded product as a whole.Therefore, when the binder is removed, the binder softens, which is the temperature at which the molded product becomes plastic. Temperatures from TM-20°C to TM+100°C (defined as TM°C), especially T
When a magnetic field is applied to a molded product in the temperature range of M-20℃ to TM+50℃, the powder that makes up the molded product becomes magnetized.
Because of the blocking force mentioned above, combined with the holding force of the binder itself, although weak, the shape before de-binding is maintained. The magnetic field can be applied by placing the molded product in direct contact with the permanent magnet, or by placing it a little apart, and the effect remains the same even if it is applied as an electromagnetic field. The temperature range for applying the magnetic field is from TM-20℃ to TM+10
If the magnetic field is applied reliably at 0°C, the effect will remain the same at other temperatures even if no magnetic field is applied.

(実施例2) 実施例1と同様に製作した射出成形品の下方に、アルニ
コ磁石と同一サイズのフエライト磁石を用いた。フエラ
イト磁石は残留磁気密度3300〜3700ガウス.保
持力2700〜32O0エルステッドの板材を用いた.
脱パインダを実施例1と同条件で実施し、アルニコ磁石
と同様に全く健全な形状のバインダ品が得られた.ただ
し、フエライト磁石の場合は500℃までの加熱により
磁力を残存しなくなるため、再利用を図る場合には一般
にフエライト材料に変化の生じる温度とされている40
0℃を越えないW1囲で使用するか、再硫化処理をすれ
ばよい。
(Example 2) A ferrite magnet of the same size as the alnico magnet was used below an injection molded product manufactured in the same manner as in Example 1. Ferrite magnets have a residual magnetic density of 3300 to 3700 Gauss. A plate material with a holding force of 2700 to 3200 Oersted was used.
De-binding was carried out under the same conditions as in Example 1, and a binder product with a completely sound shape was obtained, similar to the alnico magnet. However, in the case of ferrite magnets, heating up to 500°C will cause them to lose their magnetic force, so when reusing them, the temperature is generally considered to be 40°C, which causes changes in the ferrite material.
It may be used in the W1 range that does not exceed 0°C, or it may be subjected to resulfurization treatment.

(実施例3) 実施例1と戒形した射出成形品の上方に、第3図に示す
ように先端より5 m m jHしてアルニコ磁石板(
3)をセットした。前実験として或形品を秤の上にのせ
、上方よりアルニコ磁石を近づけた場合、近づけるにつ
れて見かけ上の成形品の重量が軽くなり% 5mmの距
離でもとの成形品重量の30〜40%の見かけ重量とな
った。
(Example 3) Above the injection molded product shaped like Example 1, an alnico magnet plate (
3) was set. As a preliminary experiment, when a molded product was placed on a scale and an alnico magnet was brought closer from above, the apparent weight of the molded product became lighter as the magnet was brought closer. This is the apparent weight.

実施例lと同様に脱バインダを実施したどころ、磁石に
より見かけ上の重量が軽くなった効果と、粉末が磁化さ
れるために生ずるプロ7キング力により、実施例1およ
び実施例2と同様に01全な形状の脱バインダ品が得ら
れた。
Although the binder was removed in the same manner as in Example 1, due to the effect of reducing the apparent weight due to the magnet and the pulling force generated due to the magnetization of the powder, the binder was removed in the same manner as in Example 1 and Example 2. 01 A binder-free product with a perfect shape was obtained.

(実施例4) 従来例2と同様に製作した射出成形品の下方から磁力を
作用ざせ、従来例2と同条件で脱バインダを実施し、第
4図にしめすように変形は見られなかった. (実施例5〉 市販鋳造アルニコ磁石を脱磁した後、ボールジルにて4
0μm以下に粉砕したアルニコ粉にボリアミドを主成分
とするパインダを13重量%添加し、加圧二−ダにて1
40℃で2時間維持して射出威形した。その後、着磁装
置にて3000エルステッドの磁界を作用させて着磁さ
せた成形品を、N2雰囲気で500℃までlO℃/ h
 rの速度で昇温し、2時間保持した後炉冷した.以上
のようにして脱バインダ処理された成形品は完全に保形
さていた。前記のように磁気が残留する材料に対しては
、脱バインダ工程前に成形品に着磁しておけば、脱バイ
ンダ工程中に磁場を作用させるのと同様の保形効果が得
られた。
(Example 4) A magnetic force was applied from below to an injection molded product manufactured in the same manner as in Conventional Example 2, and the binder was removed under the same conditions as in Conventional Example 2. As shown in Fig. 4, no deformation was observed. .. (Example 5) After demagnetizing a commercially available cast alnico magnet, it was
13% by weight of binder whose main component is boryamide was added to alnico powder crushed to 0 μm or less, and the powder was mixed in a pressure kneader for 1
It was maintained at 40°C for 2 hours to perform injection molding. After that, the molded product was magnetized by applying a magnetic field of 3000 oersteds in a magnetizing device and heated to 500°C at 10°C/h in an N2 atmosphere.
The temperature was raised at a rate of r and then maintained for 2 hours, followed by cooling in the furnace. The molded product subjected to the binder removal treatment as described above retained its shape completely. For materials in which magnetism remains as described above, by magnetizing the molded article before the binder removal process, the same shape-retaining effect as applying a magnetic field during the binder removal process could be obtained.

(実施例6) (実施例1〉における成形品を電磁マグネット上に載置
し、前記電磁マグネットに通電させながら大気中で25
0℃まで10℃/ h rの速度昇温し、2時間保持し
た後炉冷した。以上のようにして脱パインダ処理された
衣形品は完全に保形されており、永久磁石の場合と同様
の保形効果が得られた。
(Example 6) The molded product in (Example 1) was placed on an electromagnetic magnet, and the electromagnetic magnet was energized for 25 minutes in the atmosphere.
The temperature was raised to 0°C at a rate of 10°C/hr, maintained for 2 hours, and then cooled in the furnace. The shape of the garment that had been de-pindered as described above was completely retained, and the same shape-retaining effect as with permanent magnets was obtained.

(実施例7) (実施例1)における混練物を用い、円形断面の引張拭
験片を射出戒形により二本成形した。
(Example 7) Using the kneaded material in (Example 1), two tensile test specimens each having a circular cross section were molded by injection molding.

該引張拭験片の一本の両端に、第10図に示すようにア
ルニコ磁石15を接触させた状態で、また他の一本の引
張拭験片は磁場を作用させない状態で、(実施例l)と
同じ条件で脱バインダ処理したところ、前記磁場を゛作
用させなかっこ引張拭験片14は第1)図のように変形
したのに対し、両端にアルニコ磁石l5を接触させたも
のは、第10図に示されるような良好な保形効果が得ら
れた。
With Alnico magnets 15 in contact with both ends of one of the tensile test pieces as shown in FIG. 10, and with no magnetic field applied to the other tensile test piece (as shown in Example When the binder was removed under the same conditions as in Figure 1), the tensile wiping specimen 14 without the magnetic field applied was deformed as shown in Figure 1), whereas the specimen with alnico magnets 15 in contact with both ends was deformed as shown in Figure 1). , a good shape-retaining effect as shown in FIG. 10 was obtained.

(実施例8〉 (実施例1)における混練物を用い、内径φ7外形φ1
2,長さ100mmの円筒状に射出威形した.第12図
に示すように、円筒成形体16の中に磁場を均等に作用
させるために、φ6×1)0の普通鋼(SS41)の丸
1417を挿入し、下方からアルニコ磁石18により磁
場をかけた.このようにすると円筒成形体16の隅々に
まで磁場によるブロッキング効果を行き渡らせることが
できる.この状態において、脱バインダ処理したところ
、前記のように薄肉長尺物の脱バインダ処理においても
良好な保形効果が得られた。
(Example 8) Using the kneaded material in (Example 1), the inner diameter φ7 and the outer diameter φ1
2. It was injected into a cylindrical shape with a length of 100 mm. As shown in FIG. 12, in order to apply a magnetic field uniformly inside the cylindrical molded body 16, a round 1417 made of ordinary steel (SS41) with a diameter of 6×1)0 is inserted, and the magnetic field is applied from below by an alnico magnet 18. I put it on. In this way, the blocking effect of the magnetic field can be spread to every corner of the cylindrical molded body 16. In this state, when the binder was removed, a good shape-retaining effect was obtained even in the binder removal process of a thin and long object as described above.

(実施例9) 第13図に示されるように、(実施例8)の成形品l6
をSS41)の箱型容器19の中に入れ、更に平均粒径
75μmのアトマイズ鉄粉2Oを充填し、フエライト磁
石板21の上で脱バインダ処理を行った。従来の技術に
おけるように成形体をアルミナ粉等で生める方法では、
どうしてもアルミナ粉の移動が生じるため威形体には若
干の変形が残るが、本実施例によれば極めて強固なバン
キング力が働くため良好な保形効果が得られた。
(Example 9) As shown in FIG. 13, the molded product l6 of (Example 8)
was placed in a SS41) box-shaped container 19, further filled with atomized iron powder 2O having an average particle size of 75 μm, and subjected to binder removal treatment on a ferrite magnet plate 21. In the conventional method of producing a molded body from alumina powder, etc.,
Although the alumina powder inevitably moves, the shaped body remains slightly deformed, but according to this example, an extremely strong banking force was exerted, so that a good shape-retaining effect was obtained.

(実施例10) 非磁性体であるオーステナイト系ステンレスSOS30
4L粉(平均粒径9 μm)に、強磁性材料であるカー
ボルニN1粉を10重量%添加し、混粉後(実施例1)
と同様に脱バインダ処理を実施したところ、添加した強
磁性材料であルカーボニルNi粉間に働くプロフキング
カにより良好な保形効果が得られた。前記のように主と
なる粉体が非磁性体であっても強磁性材料を配合するこ
とにより、磁力を働かせて保形性を向上させることがで
きる。ただし、強磁性材料の添加量としては5〜40重
量%が通当であり、5重量%未満では保形効果は少なく
、また、40重量%を越えると、元の材料の性質から大
きくかけ離れてしまったり、あるいは経済的に不利とな
ってくる. (発明の効果) 本発明は以上説明したように構威されているので、成形
品のアルミナ粉への埋め込みや、脱バインダ後のアルミ
ナ粉除去の必要がなく、またサポート治具が不要になり
、さらに金属粒子形状の制約がなくなり原価低減が図れ
る。また、面粗さが向上し、成形品の形状に制約がなく
なり通用部品の@囲を広げることもできる。
(Example 10) Austenitic stainless steel SOS30, which is a non-magnetic material
10% by weight of Carboni N1 powder, which is a ferromagnetic material, was added to 4L powder (average particle size 9 μm), and after mixing (Example 1)
When the binder removal process was carried out in the same manner as above, a good shape-retaining effect was obtained due to the ferromagnetic material added that acts between the carbonyl Ni powders. As mentioned above, even if the main powder is non-magnetic, by blending a ferromagnetic material, magnetic force can be exerted to improve shape retention. However, the usual amount of ferromagnetic material added is 5 to 40% by weight; less than 5% by weight will have little shape-retaining effect, and if it exceeds 40% by weight, the properties will deviate greatly from the original material. Otherwise, it may become economically disadvantageous. (Effects of the Invention) Since the present invention is structured as described above, there is no need to embed the molded product in alumina powder, remove the alumina powder after debinding, and no need for a support jig. Furthermore, there are no restrictions on the shape of the metal particles, resulting in cost reduction. In addition, the surface roughness is improved, and there are no restrictions on the shape of the molded product, making it possible to expand the range of common parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の成形品の下方にアルニコ磁石板
を敷いた脱バインダ前の縦断側面図、第2図は第1図の
脱バインダ後の斜上方からの斜視図、第3図は第1図の
アルニコ磁石板を成形品上方に設置した縦断側面図、第
4図は金属粉として平均粒径10μmのSUS401L
を用いた脱バインダ後の斜め上方からの斜視図、第5図
は金属粉とバインダとの関係をあらわした説明図、第6
図(a)は従来の治具を用い、(b)は従来の治具とア
ルミナ粉を用いた脱バインダ前の断面側面図、第7図(
 a )(b )は第6図(aHb)の脱バインダ後の
斜め上方からの斜視図、第8図は金属粉として10μm
のSUS410L粉を用い、(a)(b)ともアルミナ
粉を使用した脱バインダ後の斜め上方からの斜視図、第
9図はアルミナ粉を使用した場合、脱バインダ品の表面
に残るアルミナ粉陥没跡を示す図、第10図は本発明の
第7実施例を示す図、第1)図は咳第7実施例の比較例
を示す図、第12図は本発明の第8実施例を示す図、第
13図は本発明の第9実施例を示す図である.■・・・
・・・・成形品 2 , 3 ・ 4 ・ 5 ・ 1) l 3 ・ 1 4 ・ 15.18 1 6 ・ l 7 ・ 1 9 ・ ・ 2 0 ・ ・ 21 12 磁石板 ・バインダ ・・・金属粉 ・治具 ・アルミナ粉 ・・・引張試験型 ・・・アルニコ磁石 ・・・円筒威形体 ・・・九 棒 ・箱型容器 ・アトマイズ鉄粉 ・フエライト磁石板
Fig. 1 is a longitudinal cross-sectional side view of a molded product according to an embodiment of the present invention before removing the binder with an alnico magnet plate placed below the molded product, Fig. 2 is a perspective view from diagonally above after removing the binder of Fig. 1, and Fig. 3 Figure 1 is a vertical cross-sectional side view of the alnico magnet plate shown above the molded product, and Figure 4 shows SUS401L metal powder with an average particle size of 10 μm.
Figure 5 is an explanatory diagram showing the relationship between metal powder and binder, Figure 6 is a perspective view from diagonally above after binder removal using
Figure (a) is a cross-sectional side view using a conventional jig, (b) is a cross-sectional side view before debinding using a conventional jig and alumina powder, and Figure 7 (
a) and (b) are perspective views from diagonally above after removing the binder in Fig. 6 (aHb), and Fig. 8 is a 10 μm metal powder as a metal powder.
Both (a) and (b) are perspective views from above after debinding using alumina powder, and Figure 9 shows the alumina powder depression remaining on the surface of the debinding product when alumina powder is used. Figure 10 shows the seventh embodiment of the present invention; Figure 1) shows a comparative example of the seventh embodiment of the cough; Figure 12 shows the eighth embodiment of the present invention. 13 are diagrams showing a ninth embodiment of the present invention. ■・・・
... Molded product 2 , 3 , 4 , 5 , 1) l 3 , 1 4 , 15.18 1 6 , l 7 , 1 9 , 2 0 , 21 12 Magnetic plate/binder...metal powder・Jig・Alumina powder・Tensile test type・Alnico magnet・Cylindrical body・9 Rod・Box type container・Atomized iron powder・Ferrite magnet plate

Claims (6)

【特許請求の範囲】[Claims] (1)強磁性材料を含む粉末状材料と有機質バインダよ
りなる射出成形品の脱バインダ工程において、前記強磁
性材料を含む粉末状材料を磁化させることにより、射出
成形品を保形するようにしたことを特徴とする焼結品の
製造方法。
(1) In the binder removal process of an injection molded product made of a powdery material containing a ferromagnetic material and an organic binder, the shape of the injection molded product is maintained by magnetizing the powdery material containing the ferromagnetic material. A method for producing a sintered product characterized by:
(2)前記第(1)の請求項における強磁性材料が、鉄
,ニッケル,コバルト、あるいはこれら強磁性材料の少
なくとも一種類の合金粉,Fe_2O_3を主成分とす
るフェリ磁性酸化物の粉末、あるいは磁性材アモルファ
スのうち、少なくとも一種を含むことを特徴とする焼結
品の製造方法。
(2) The ferromagnetic material in claim (1) is iron, nickel, cobalt, or an alloy powder of at least one of these ferromagnetic materials, a ferrimagnetic oxide powder containing Fe_2O_3 as a main component, or A method for producing a sintered product, the method comprising at least one type of amorphous magnetic material.
(3)前記第(1)または第(2)の請求項における射
出成形品が、強磁性材料を含む粉末状材料を40〜65
体積%含み、残りが有機質バインダよりなり、該射出成
形品に磁場を作用させて、磁化された粉末間のブロッキ
ング力によって、脱バインダ工程における前記射出成形
品を保形するようにしたことを特徴とする焼結品の製造
方法。
(3) The injection molded product according to claim (1) or (2) contains 40 to 65% of the powdered material containing the ferromagnetic material.
% by volume, with the remainder being an organic binder, and a magnetic field is applied to the injection molded product so that the shape of the injection molded product is retained in the binder removal process by the blocking force between the magnetized powders. A method for manufacturing a sintered product.
(4)前記第(3)の請求項において、射出成形品の上
方より磁場を作用させ、強磁性材料を上方へ引き上げる
ことによって、脱バインダ工程における自重による変形
を防止するようにしたことを特徴とする焼結品の製造方
法。
(4) In claim (3), a magnetic field is applied from above the injection molded product to pull the ferromagnetic material upward to prevent deformation due to its own weight during the binder removal process. A method for manufacturing a sintered product.
(5)前記第(1)または第(2)の請求項において、
脱バインダ工程の前に強磁性材料を含む粉末状材料に着
磁させたことを特徴とする焼結品の製造方法。
(5) In claim (1) or (2),
A method for manufacturing a sintered product, characterized in that a powdered material containing a ferromagnetic material is magnetized before a binder removal step.
(6)射出成形品を磁性材料よりなる粉体中に埋め込み
、脱バインダ工程中、または脱バインダ工程の前に前記
磁性材料よりなる粉体を磁化させることによって、磁化
された粉対間のブロッキング力によって、脱バインダ工
程における前記射出成形品を保形するようにしたことを
特徴とするとする焼結品の製造方法。
(6) Blocking between magnetized powder pairs by embedding the injection molded product in powder made of a magnetic material and magnetizing the powder made of the magnetic material during or before the binder removal process A method for manufacturing a sintered product, characterized in that the shape of the injection molded product is maintained in the binder removal step by force.
JP1244031A 1989-09-19 1989-09-19 Method for manufacturing sintered product Pending JPH03104802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1244031A JPH03104802A (en) 1989-09-19 1989-09-19 Method for manufacturing sintered product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1244031A JPH03104802A (en) 1989-09-19 1989-09-19 Method for manufacturing sintered product

Publications (1)

Publication Number Publication Date
JPH03104802A true JPH03104802A (en) 1991-05-01

Family

ID=17112680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1244031A Pending JPH03104802A (en) 1989-09-19 1989-09-19 Method for manufacturing sintered product

Country Status (1)

Country Link
JP (1) JPH03104802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122902A (en) * 1992-06-02 1994-05-06 Advanced Materials Technol Pte Ltd Injection-moldable metallic material, and production of injection-molded metallic article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122902A (en) * 1992-06-02 1994-05-06 Advanced Materials Technol Pte Ltd Injection-moldable metallic material, and production of injection-molded metallic article

Similar Documents

Publication Publication Date Title
JPH07307211A (en) Hot press magnet formed of anisotropic powder
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH01257308A (en) Magnet for voice coil motor
Schultz et al. Preparation and properties of mechanically alloyed rare earth permanent magnets
EP0029071A1 (en) Process for producing permanent magnet alloy
JPH03104802A (en) Method for manufacturing sintered product
JPS62198103A (en) Rare earth-iron permanent magnet
JPS63262805A (en) Manufacture of iron base permanent magnet
Popov et al. Pressless process in route of obtaining sintered Nd–Fe–B magnets
JP2000182867A (en) Anisotropically bonded magnet, manufacture thereof, and press apparatus
JPS63219548A (en) Production of permanent magnet
WO2003056583A1 (en) Production method for permanent magnet and press device
JPS62256411A (en) Permanent magnet with outstanding resistance to oxidation
JPH11195548A (en) Production of nd-fe-b magnet
JPH067525B2 (en) Method for manufacturing resin-bonded permanent magnet
JPH0471205A (en) Manufacture of bond magnet
JPH02153507A (en) Manufacture of resin-bonded type permanent magnet
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS5932107A (en) Composite soft magnetic material
JPH01238109A (en) Manufacture of composite magnetic substance
JPH03151612A (en) Manufacture of resin-bonded type permanent magnet molded object
JPS589805B2 (en) KIDOLI COBALTO
JPH02225322A (en) Magnetic material and production thereof
Bernal Montoya Manufacture of NdFeB-PMMA bonded permanent magnets