JPH03104180A - Piezoelectric ceramic composition for actuator - Google Patents

Piezoelectric ceramic composition for actuator

Info

Publication number
JPH03104180A
JPH03104180A JP1241150A JP24115089A JPH03104180A JP H03104180 A JPH03104180 A JP H03104180A JP 1241150 A JP1241150 A JP 1241150A JP 24115089 A JP24115089 A JP 24115089A JP H03104180 A JPH03104180 A JP H03104180A
Authority
JP
Japan
Prior art keywords
piezoelectric
ceramic composition
actuator
manganese
piezoelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1241150A
Other languages
Japanese (ja)
Other versions
JP2811801B2 (en
Inventor
Tetsuhiko Nishimura
哲彦 西村
Yukio Senda
千田 幸雄
Yasuo Oguri
康生 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1241150A priority Critical patent/JP2811801B2/en
Publication of JPH03104180A publication Critical patent/JPH03104180A/en
Application granted granted Critical
Publication of JP2811801B2 publication Critical patent/JP2811801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize high electromechanical coupling coefficient, high piezoelectric striction constant, low dielectric, high dielectric loss, high mechanical quality factor, and high Curie temperature by employing a specific ceramic composition as a piezoelectric material. CONSTITUTION:There is employed as an actuator piezoelectric material a material containing in a ceramic composition expressed by a formula I manganese of 1.5% by weight or less expressed in terms of manganese oxide. In the formula, x, y, and z satisfy: 0<x<0.08, 0.45<y<0.65, 0<a<1.0, 0<z<0.40.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアクチュエー夕用圧電セラミック組成物に関す
るものである。ここでアクチュエー夕とは、圧電逆効果
、すなわち電気的エネルギーから機械的エネルギーへの
変換作用を用いたものであり、電圧の印加によってミク
ロンあるいはミクロンアンダーの微小変位を発生させる
ものであって、ブザーやボンブ、バルブ等の音響、ある
いは流量の精密コントロール、半導体製造装置、ステッ
パーなどの精密位置決め、さらには数k〜数十kHzの
高周波振動変位を利用した、例えばドットタイププリン
ターへッドアクチュエータ、次世代の小型モータとして
注目を浴びている超音波モータなどの応用開発が近年急
速に進められている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a piezoelectric ceramic composition for an actuator. The actuator here is one that uses the piezoelectric reverse effect, that is, the conversion action from electrical energy to mechanical energy, and generates minute displacement of microns or microns or less by applying voltage, and is used as a buzzer. Precise control of acoustics or flow rate of gas, bombs, valves, etc., precision positioning of semiconductor manufacturing equipment, steppers, etc., and even dot type printer head actuators that utilize high frequency vibration displacement of several kilohertz to tens of kilohertz, etc. Application development of ultrasonic motors, which are attracting attention as the next generation of small motors, has been progressing rapidly in recent years.

本発明は、上述したような圧電アクチュエー夕の幅広い
応用の中で、特に数k〜百kHzの高周波駆動に適した
圧電アクチュエー夕用材料を提供するものである。
The present invention provides a material for a piezoelectric actuator that is particularly suitable for high frequency drive of several kilohertz to one hundred kilohertz among the wide range of applications of the piezoelectric actuator as described above.

[従来技術及びその課題] 従来よりアクチュエー夕用圧電材料としては、ジルコン
酸チタン酸鉛セラミック組或物(PZT)が優れた圧電
特性を有していることが知られており、使用される用途
に応じて種々の改良がなされている。
[Prior art and its problems] As a piezoelectric material for actuators, lead zirconate titanate ceramic composites (PZT) have been known to have excellent piezoelectric properties, and are used for various purposes. Various improvements have been made in response to this.

例えばジルコン酸チタン酸鉛の一部をBa” ,Sr”
 , Ca2千などで置換する方法、”b(Ni1/3
 Nb2/3 )03+ Pb ( COI/3 Ta
2/3 ) 03などの複合ヘロブスカイト化合物と、
固溶体を形戒する方法、WO3 , Fe203 ,C
r203などの酸化物を添加する方法などにより、アク
チュエータ用圧電材料の特性の改善がなされている。
For example, a part of lead zirconate titanate is Ba", Sr"
, "b(Ni1/3
Nb2/3 ) 03+ Pb ( COI/3 Ta
2/3) A composite herovskite compound such as 03,
Method for defining solid solutions, WO3, Fe203, C
The characteristics of piezoelectric materials for actuators have been improved by adding oxides such as r203.

近年、開発が行われた超音波モータなどのように、圧電
アクチュエータ素子を数k〜100 kHz程度の共振
周波数で駆動する場合には、共振状態での振幅を大きく
し、発熱を抑制する為に高い機械的品質係数(Qm≧1
000 )を持つことが要求される。
When driving a piezoelectric actuator element at a resonant frequency of several kilohertz to 100 kHz, such as in ultrasonic motors that have been developed in recent years, it is necessary to increase the amplitude in the resonant state and suppress heat generation. High mechanical quality factor (Qm≧1
000) is required.

従来のアクチュエータ用高d定数材料(いわゆるSof
t系材料)を用いた場合、機械的品質係数(Qm)が低
く(数十〜百)、共振点において損失が大きい為、入力
エネルギーが有効に機械的エネルギーに変換されず、変
位が小さくなってしまったり、発熱が激しくなる。So
ft系高d定数材料は、一般にキューり温度(Tc)が
100’C 〜150’Cと低いので、発熱がキューり
点近傍までに達し、ついには脱分極?、変位を生じなく
なる。
Conventional high-d constant materials for actuators (so-called Sof
When using t-based materials, the mechanical quality factor (Qm) is low (several tens to hundreds) and the loss is large at the resonance point, so input energy is not effectively converted to mechanical energy, resulting in small displacement. or get a severe fever. So
Since ft-based high d constant materials generally have a low cue temperature (Tc) of 100'C to 150'C, heat generation reaches near the cue point and eventually depolarizes. , no longer causes displacement.

また、圧電アクチュエータ素子を非共振状態で数k〜数
十kHzの高い周波数で駆動する場合にも、上述のSo
ft系材料は、誘電率(ε3’l/ε。)、誘電損失(
 tanδ)がともに大きい(ε品lε。〜5000,
 tamδ#2〜4%)ので発熱が激しく、上述の理由
により脱分極、所望の変位が得られない欠点がある。
Furthermore, when driving a piezoelectric actuator element at a high frequency of several kilohertz to several tens of kilohertz in a non-resonant state, the above-mentioned So
ft-based materials have a dielectric constant (ε3'l/ε.) and a dielectric loss (
tan δ) are both large (ε product lε. ~ 5000,
tam δ #2 to 4%), it generates a lot of heat and has the disadvantage that depolarization and desired displacement cannot be obtained for the reasons mentioned above.

一方、キューり温度が高い(Tc > 300’C )
いわゆるhard系材料を用いた場合、誘電率(ε’l
rI/ε。)、誘電損失( tanδ)は小さくなるが
(ε3rllε。#500〜1000, tanδ陶0
.1〜1%)、圧電歪定数が大きく低下し、例えば横方
向の圧電歪定数(a3■)が50 X 10 −12m
/V程度に低下してしまい、所望の変位を得るには、高
い駆動電圧を必要とし、高価な高電圧、高周波駆動用ア
ンプが必要となるといった欠点がある。
On the other hand, the heating temperature is high (Tc >300'C)
When so-called hard materials are used, the dielectric constant (ε'l
rI/ε. ), the dielectric loss (tanδ) becomes smaller (ε3rllε.#500~1000, tanδ ceramic 0
.. 1 to 1%), the piezoelectric strain constant decreases significantly, for example, the piezoelectric strain constant in the lateral direction (a3■) is 50 × 10 −12 m
/V, and in order to obtain the desired displacement, a high drive voltage is required and an expensive high voltage, high frequency drive amplifier is required.

以上のように、圧電アクチュエー夕を数k〜百数kHz
の高い周波数で駆動する場合、圧電歪定数が大きく、例
えば横モードの圧電歪定数(d3■)が100 X10
・”m/V以上、誘電率(ε.lIl/ε。)及び誘電
損失(tanδ)が小さい、例えばε1lε, 41 
1000 〜2000 ,tanδ#0.1〜1%程度
であり、高い機械的品質係数(Qm)、例えばQmが1
000以上、の特性を有した材料の開発が望まれている
As mentioned above, piezoelectric actuators can be
When driving at a high frequency of
・"m/V or more, dielectric constant (ε.lIl/ε.) and dielectric loss (tan δ) are small, for example ε1lε, 41
1000 to 2000, tan δ# is about 0.1 to 1%, and has a high mechanical quality factor (Qm), for example, when Qm is 1
It is desired to develop a material having properties of 0.000 or more.

[課題を解決する為の手段】 本発明者らは上記目的を達戒する為に詳細に検討した結
果、特定の組戒を有する組成物が、高い圧電歪定数、低
誘電率、低誘電損失、高い機械的品質係数を併せ持つこ
とを見い出し、本発明を完威した。
[Means for Solving the Problems] As a result of detailed study by the present inventors to achieve the above object, it was found that a composition having a specific composition has a high piezoelectric strain constant, a low dielectric constant, and a low dielectric loss. It was discovered that this material also has a high mechanical quality factor, and the present invention was perfected.

即ち、本発明の要旨は、鉛、ランタン、ジルコニウム、
チタン、マグネシウム、亜鉛、ニオブ、マンガン及び酸
素原子よりなるセラミック組威物であって、一般式(1
) Pb(t−x) Lax[(t−z) (ZryTi(
1−y) )十z {(MgaZn(t−a))1/3
 Nb2/3}] (1−X/4) 03   ゜−(
1)(但し、0<x<0.08、0.45<y<0.6
5、0<a<1、0<z<0.40)で示される主戒分
組或に、副戒分としてマンガンを二酸化マンガンに( 
MnO , )換算して主或分に対して1.5重量%未
満含有してなることを特徴とするアクチュエー夕用圧電
セラミック組或物に存する。
That is, the gist of the present invention is that lead, lanthanum, zirconium,
It is a ceramic composition consisting of titanium, magnesium, zinc, niobium, manganese and oxygen atoms, and has the general formula (1
) Pb(t-x) Lax[(t-z) (ZryTi(
1-y) ) 10z {(MgaZn(t-a))1/3
Nb2/3}] (1-X/4) 03 ゜-(
1) (However, 0<x<0.08, 0.45<y<0.6
5, 0 < a < 1, 0 < z < 0.40), or as a sub command, convert manganese to manganese dioxide (
A piezoelectric ceramic assembly for an actuator, characterized in that it contains less than 1.5% by weight of MnO, calculated as MnO.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の圧電セラミック組或物は高いキューり温度(T
c)、高い圧電歪定数及び高い機械的品質係数を持ち、
特に上記一般式(I)においてx = 0.02、y=
:0.50、z = 0.10、a = 0.7、Mn
02量0.5重量%(実施例1)、x = 0.03、
y= 0.50、z=0.10、ct=0.5、Mn0
2量0.5重量%(実施例3)、x = 0.03、y
=0.51、z = 0.16、a = 0.5、Mn
02量0.4重量%(実施例5)、x = 0.04、
y:0.52、z = 0.10,a=0.7、MnO
 2量0.5重量%(実施例6)の組或のものは、キュ
ーり温度(Tc)が250’C以上であり、横モードの
圧電歪定数(d31)が100 X 10−12m/V
を超え、且つ機械的品質係数Qmが1000以上と大き
く、超音波モータなどの共振を利用した高周波駆動用材
料として非常に好適である。
The piezoelectric ceramic assembly of the present invention has a high cue temperature (T
c) has a high piezoelectric strain constant and a high mechanical quality factor;
In particular, in the above general formula (I), x = 0.02, y =
:0.50, z = 0.10, a = 0.7, Mn
02 amount 0.5% by weight (Example 1), x = 0.03,
y=0.50, z=0.10, ct=0.5, Mn0
2 amount 0.5% by weight (Example 3), x = 0.03, y
=0.51, z = 0.16, a = 0.5, Mn
02 amount 0.4% by weight (Example 5), x = 0.04,
y: 0.52, z = 0.10, a = 0.7, MnO
A set containing 0.5% by weight of 2 (Example 6) has a cue temperature (Tc) of 250'C or more and a transverse mode piezoelectric strain constant (d31) of 100 x 10-12 m/V.
, and has a large mechanical quality factor Qm of 1000 or more, making it very suitable as a material for high-frequency drive using resonance, such as in ultrasonic motors.

また一般式(I)においてx = 0.04、y= 0
.48、z = 0.28、a = 0.7、Mn02
量0.15重量%(実施例2) 、x=0.03 、y
=0.50 , z=0.16 、a=0.5、?n0
2量0.15重量%(実施例4)、x = 0.04、
y=0.52、z = 0.16、a = 0.5、M
n02量0.15重量%(実施例7)の組或のものは、
キューり温度(Tc)が200°C以上であり、且つ横
モードの圧電歪定数(d3■)が200 X 1042
m/ Vを超える。さらに、横モードの圧電歪定数(d
31)が200 X 10” m/ Vを超えるような
組或物の場合は通常誘電損失( tanδ)は2〜3%
と大きいが(比較例1〜3)、本発明実施例2,4及び
7のものは誘電損失( tanδ)は0.3〜0.5%
と1/4〜1/10に低減されており、高周波駆動アク
チュエー夕材料として好適である。
Also, in general formula (I), x = 0.04, y = 0
.. 48, z = 0.28, a = 0.7, Mn02
Amount 0.15% by weight (Example 2), x=0.03, y
=0.50, z=0.16, a=0.5,? n0
2 amount 0.15% by weight (Example 4), x = 0.04,
y=0.52, z=0.16, a=0.5, M
A set with n02 amount of 0.15% by weight (Example 7) was
Curing temperature (Tc) is 200°C or higher, and transverse mode piezoelectric strain constant (d3■) is 200 x 1042
exceeding m/V. Furthermore, the piezoelectric strain constant (d
31) In the case of a structure in which the dielectric loss exceeds 200 x 10” m/V, the dielectric loss (tan δ) is usually 2 to 3%.
(Comparative Examples 1 to 3), but the dielectric loss (tan δ) of Examples 2, 4, and 7 of the present invention was 0.3 to 0.5%.
It has been reduced to 1/4 to 1/10, making it suitable as a material for high-frequency drive actuators.

特に、一般式(I)においてx = 0.06、y= 
0.57、z=0.10、a = 0.7、Mn02量
0.10重量%(実施例8)の組或のものは、横モード
の圧電歪定数(d,,)が300 X 10” m/ 
V以上、誘電率が約4000程度であり、比較例と同程
度であるにもかかわらず、誘電損失( tanδ)は0
.6%と比較例2と比べて174に低減されており、高
周波駆動アクチュエー夕材料として極めて好適である。
In particular, in general formula (I), x = 0.06, y =
0.57, z = 0.10, a = 0.7, Mn02 amount 0.10% by weight (Example 8), the transverse mode piezoelectric strain constant (d,,) is 300 x 10 ”m/
V or more, the dielectric constant is about 4000, and although it is about the same as the comparative example, the dielectric loss (tan δ) is 0.
.. It is reduced to 174% compared to 6% and Comparative Example 2, and is extremely suitable as a high-frequency drive actuator material.

なお、一般式(I)においてXが0.08以上のもの?
、キューり温度(Tc)が1508C以下になってしま
い、素子の使用温度の上限が706C程度となり、実用
材料として適さず、横モードの圧電歪定数(d3■)も
共振一反共振法では検出できない程度に小さく、アクチ
ュエー夕用材料としては適さない(比較例6)。
In addition, in general formula (I), X is 0.08 or more?
, the cue temperature (Tc) is below 1508C, and the upper limit of the operating temperature of the element is about 706C, making it unsuitable as a practical material, and the transverse mode piezoelectric strain constant (d3■) cannot be detected using the resonance anti-resonance method. It is too small to be used as an actuator material (Comparative Example 6).

また、一般式(I)においてyが0.45以下のもの及
び0.65以上のものは、ペロブスカイト結晶の相境界
より太き< Zr/Ti組戒比がずれる為、横モードの
圧電歪定数(d31)が低下してしまう。
In addition, in general formula (I), when y is 0.45 or less and 0.65 or more, the piezoelectric strain constant of the transverse mode is thicker than the phase boundary of the perovskite crystal. (d31) will decrease.

一般式(I)において2が0.40以上のもの(比較例
4)は、ペロブス力イト相の他にパイロクロア相が焼結
体中に混在するようになり、横モードの圧電歪定数(d
,t)が低下してしまい好ましくない。
In the general formula (I), when 2 is 0.40 or more (Comparative Example 4), a pyrochlore phase is mixed in the sintered body in addition to the perovskite phase, and the transverse mode piezoelectric strain constant (d
, t) decreases, which is not preferable.

また、Mn量がMnO2に換算して1.5重景%以上の
(比較例5)場合には、焼結時に異常粒戒長が発生し、
焼結密度が低下し、分極時絶縁破壊が生じる為好ましく
ない。
In addition, when the Mn amount is 1.5% or more in terms of MnO2 (Comparative Example 5), abnormal grain length occurs during sintering,
This is not preferable because the sintered density decreases and dielectric breakdown occurs during polarization.

本発明の圧電セラミック組成物は、例えば、粉末の酸化
物原料を所定の配合組戒になるように秤量し、ボールミ
ル等で湿式混合、仮焼した後、粉砕、11000C〜1
300’Cで焼結することによって得られる。
The piezoelectric ceramic composition of the present invention can be prepared by, for example, weighing powdered oxide raw materials to a predetermined composition, wet mixing in a ball mill, etc., calcining, and then pulverizing at 11,000 C to 1
Obtained by sintering at 300'C.

[実施例] 以下に実施例を挙げて本発明を具体的に説明するが、本
発明はその要旨を越えない限り、実施例により限定され
るのもではない。
[Examples] The present invention will be specifically explained below with reference to Examples, but the present invention is not limited by the Examples unless the gist of the invention is exceeded.

実施例1〜13及び比較例1〜6 純度99.9%以上の高純度酸化物原料であるpbo 
,La203 , Zr02 , Ti02 , Mg
O , ZnO , Nb205を第1表に示した所定
の量比に秤量し、さらに該主戒分に対してMnO2を第
l表に示した量秤量した。
Examples 1 to 13 and Comparative Examples 1 to 6 pbo, a high purity oxide raw material with a purity of 99.9% or more
, La203, Zr02, Ti02, Mg
O, ZnO, and Nb205 were weighed in the predetermined ratio shown in Table 1, and MnO2 was weighed in the amount shown in Table 1 relative to the main components.

ここで一般式(I)における、x,y,z,αの値を第
1表に示す。これらの原料をボールミルを用いて24時
間湿式混合を行った。乾燥、戒型処理後、900°Cで
2時間仮焼し、その後乳鉢粉砕した後、ボールミルで再
度24時間湿式粉砕した。得られた粉体をラバープレス
法により静水圧戒型した後、鉛雰囲気中で1200°C
で焼威した。その後得られた焼結体をスライシングマシ
ン用いて、円板状及び?状に加工した後、銀ペーストを
スクリーン印刷し、550°Cで電極焼付けを行った。
Here, the values of x, y, z, and α in general formula (I) are shown in Table 1. These raw materials were wet mixed for 24 hours using a ball mill. After drying and molding, it was calcined at 900°C for 2 hours, then crushed in a mortar, and then wet-milled again in a ball mill for 24 hours. The obtained powder was subjected to isostatic molding using a rubber press method, and then heated at 1200°C in a lead atmosphere.
It was incinerated. Thereafter, the obtained sintered body is processed into a disk shape and a slicing machine. After processing into a shape, silver paste was screen printed and electrode baking was performed at 550°C.

分極処理は、温度80〜110°Cのシリコンオイル中
で、電界強度2.0〜4.0 kV / mm、時間5
〜20分で行い、1日経過後、ベクトルインピーダンス
アナライザーを用いて、共振一反共振法により、1 k
Hzでの誘電率(ε3■lε0)、1 kHzでの誘電
損失( tanδ)、機械的品質係数(Qm)、横モー
ドの電気機械結合係数(K3■)、弾性コンブライアン
ス(計)及び横モードの圧電歪定数(d3■)の圧電諸
物性を測定した。また、キューノ温度(Tc)は比誘電
率の温度特性を測定し、比誘電率の極大より求めた。測
定結果を第1表に示す。
The polarization treatment was carried out in silicone oil at a temperature of 80 to 110 °C, with an electric field strength of 2.0 to 4.0 kV/mm, for 5 hours.
After ~20 minutes, 1 k was measured using a vector impedance analyzer using the resonance-antiresonance method.
Dielectric constant at Hz (ε3■lε0), dielectric loss at 1 kHz (tanδ), mechanical quality factor (Qm), electromechanical coupling coefficient of transverse mode (K3■), elastic conformance (total) and transverse mode The piezoelectric physical properties of the piezoelectric strain constant (d3■) were measured. Further, the Cuno temperature (Tc) was determined by measuring the temperature characteristics of the relative permittivity and from the maximum of the relative permittivity. The measurement results are shown in Table 1.

[発明の効果1 本発明で得られる圧電セラミック組成物は、高い電気機
械結合係数、高い圧電歪定数、低誘電率、低誘電損失、
高い機械的品質係数及び高いキューり温度を併せ持って
おり、数k〜100kHzの高周波用圧電アクチュエー
夕用材料として特に優れており、本発明の産業利用上へ
の寄与は極めて太きい。
[Effect of the invention 1 The piezoelectric ceramic composition obtained by the present invention has a high electromechanical coupling coefficient, a high piezoelectric strain constant, a low dielectric constant, a low dielectric loss,
It has both a high mechanical quality factor and a high cure temperature, and is particularly excellent as a material for piezoelectric actuators for high frequencies of several kHz to 100 kHz, and the contribution of the present invention to industrial applications is extremely large.

Claims (1)

【特許請求の範囲】[Claims] (1) 鉛、ランタン、ジルコニウム、チタン、マグネ
シウム、亜鉛、ニオブ、マンガン及び酸素原子よりなる
セラミック組成物であって、一般式 Pb_(_1_−
_x_)La_x[_(_1_−_z_)(Zr_yT
i_(_1_−_y_))+z{(Mg_aZn_(_
1_−_a_)_1_/_3Nb_2_/_3}]_(
_1_−_x_/_4)O_3但し、0<x<0.08
、0.45<y<0.65、0<a<1、0<z<0.
40)で示される主成分組成に、副成分としてマンガン
を二酸化マンガンに換算して主成分に対して1.5重量
%未満含有してなることを特徴とするアクチュエータ用
圧電セラミック組成物。
(1) A ceramic composition consisting of lead, lanthanum, zirconium, titanium, magnesium, zinc, niobium, manganese and oxygen atoms, having the general formula Pb_(_1_-
_x_)La_x[_(_1_−_z_)(Zr_yT
i_(_1_−_y_))+z{(Mg_aZn_(_
1_-_a_)_1_/_3Nb_2_/_3}]_(
_1_-_x_/_4)O_3 However, 0<x<0.08
, 0.45<y<0.65, 0<a<1, 0<z<0.
40) A piezoelectric ceramic composition for an actuator, which contains manganese as a subcomponent in an amount of less than 1.5% by weight based on the main component in terms of manganese dioxide.
JP1241150A 1989-09-18 1989-09-18 Piezoelectric ceramic composition for actuator Expired - Fee Related JP2811801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1241150A JP2811801B2 (en) 1989-09-18 1989-09-18 Piezoelectric ceramic composition for actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1241150A JP2811801B2 (en) 1989-09-18 1989-09-18 Piezoelectric ceramic composition for actuator

Publications (2)

Publication Number Publication Date
JPH03104180A true JPH03104180A (en) 1991-05-01
JP2811801B2 JP2811801B2 (en) 1998-10-15

Family

ID=17070010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1241150A Expired - Fee Related JP2811801B2 (en) 1989-09-18 1989-09-18 Piezoelectric ceramic composition for actuator

Country Status (1)

Country Link
JP (1) JP2811801B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298272A (en) * 1993-03-25 1994-10-25 Pohl Gmbh & Co Kg Ring-shaped seal
US5378382A (en) * 1993-12-09 1995-01-03 Mitsubishi Kasei Corporation Piezoelectric ceramic composition for actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298272A (en) * 1993-03-25 1994-10-25 Pohl Gmbh & Co Kg Ring-shaped seal
US5378382A (en) * 1993-12-09 1995-01-03 Mitsubishi Kasei Corporation Piezoelectric ceramic composition for actuator

Also Published As

Publication number Publication date
JP2811801B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
JP5217997B2 (en) Piezoelectric ceramic, vibrator and ultrasonic motor
JP4795748B2 (en) Piezoelectric actuator
JP4878133B2 (en) Piezoelectric actuator
KR0161988B1 (en) Piezoelectric ceramic composition for actuators
JP2000169223A (en) Piezoelectric ceramic composition and its production
US5788876A (en) Complex substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator
JP2000128632A (en) Piezoelectric ceramics
JP2811800B2 (en) Piezoelectric ceramic composition for actuator
JPH1160334A (en) Piezoelectric porcelain composition for actuator
JP3214055B2 (en) Piezoelectric ceramic composition for actuator
JPH03104180A (en) Piezoelectric ceramic composition for actuator
JPH0516380B2 (en)
US5171484A (en) Piezoelectric ceramic composition for actuator
JP2839253B2 (en) Piezoelectric ceramic composition for actuator
JP3384048B2 (en) Piezoelectric ceramic composition
WO2006093002A1 (en) Piezoelectric porcelain composition
JPH0624841A (en) Piezo-electric ceramic composition for actuator
JPH08728B2 (en) Piezoelectric ceramic composition for actuator
JPH08217541A (en) Piezoelectric ceramic composition
JP3259321B2 (en) Piezoelectric ceramic composition for actuator
JPH08198673A (en) Piezoelectric ceramic composition
KR100586952B1 (en) High Power Piezoelectric Ceramic Composition and Device
JPH08319159A (en) Piezoelectric ceramic composition
JP2001089232A (en) Porcelain composition
JPH107458A (en) Piezoelectric porcelain material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070807

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees