JPH03104038A - Formation of protective layer for optical disk - Google Patents

Formation of protective layer for optical disk

Info

Publication number
JPH03104038A
JPH03104038A JP1240149A JP24014989A JPH03104038A JP H03104038 A JPH03104038 A JP H03104038A JP 1240149 A JP1240149 A JP 1240149A JP 24014989 A JP24014989 A JP 24014989A JP H03104038 A JPH03104038 A JP H03104038A
Authority
JP
Japan
Prior art keywords
protective layer
sputtering
pressure
silicon oxynitride
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1240149A
Other languages
Japanese (ja)
Inventor
Ichiro Doi
一郎 土井
Sadaji Miyazaki
宮崎 貞二
Masabumi Nakao
中尾 正文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1240149A priority Critical patent/JPH03104038A/en
Publication of JPH03104038A publication Critical patent/JPH03104038A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the protective layer which does not peel and crack in high- temp. and high-humidity environment by forming the protective layer to be provided between a substrate and a recording layer under a specific sputtering pressure by using silicon oxynitride having a specific compsn. CONSTITUTION:The protective layer 2 consisting of the silicon oxynitride having the refractive index at 830nm wavelength ranging 1.8 to 2.1 is provided between the plastic substrate 1 and the recording layer 3. The sputtering gaseous pressure P (mTorr) when the refractive index at 83-nm wavelength after oxygen is removed from the silicon oxynitride is destinated n0 is adjusted to the ranges of equation I and equation II at the time of forming the layer 2 by a sputtering method. The crack resistance degrades if the gaseous pressure P is higher than the range of the equation II and the peeling resistance degrades if the pressure is lower than this range. The barrier property to oxygen and water degrades if the pressure is higher than the range of the equation I and the formation of the stable sputtered film is difficult if the pressure is lower than this range. The protective layer having the excellent environmental resistance is obtd. in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光ディスク用保護層のスパツタ法による形或
方法の改良に関するものである。さらに詳しくいえば、
本発明は、耐環境性に優れ、高温、高湿の過酷な環境下
でも剥離やクラックなどが発生することのない、信頼性
の高い光ディスクを提供するための光ディスク用保護層
の形或方法に関−するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a method for forming a protective layer for an optical disk by sputtering. In more detail,
The present invention relates to the form and method of a protective layer for optical discs to provide highly reliable optical discs that have excellent environmental resistance and do not peel or crack even under harsh environments of high temperature and high humidity. It is related.

従来の技術 近年、光ディスクは、高度情報社会における記録媒体の
中心的役割の担い手として注目され、積極的に研究が進
められている。この光ディスクには、コンパクトディス
クに代表される再生専用型、情報の記録、再生が可能な
追記型及び情報の記録、消去、再生が可能な書き換え型
があり、それぞれ特徴ある記録材料が使用されている。
BACKGROUND OF THE INVENTION In recent years, optical disks have attracted attention as a recording medium that plays a central role in an advanced information society, and research is actively underway. These optical discs include read-only types such as compact discs, write-once types that allow information to be recorded and played back, and rewritable types that allow information to be recorded, erased, and played back, and each uses a unique recording material. There is.

ところで、各種光ディスクに使用される記録材料、特に
上記の追記型、書き換え型光ディスクに使用される記録
材料は一般に化学的に不安定であるため、保護層ととも
に用いられることが多い。
By the way, the recording materials used in various optical discs, especially the recording materials used in the above write-once and rewritable optical discs, are generally chemically unstable and are therefore often used together with a protective layer.

この保護層の機能は主に環境中の水分や酸素を遮断して
、記録層の劣化を防ぐことにあるので、保護層の構戊材
料としては水や酸素に対するバリア性に優れた誘電体、
例えばマグネシウム、アルミニウム、ケイ素、チタン、
亜鉛、ゲルマニウム、ジルコニウム、タンタル、希土類
元素などの酸化物、窒化物、フッ化物、硫化物あるいは
これらの複合物がよく用いられる。
The function of this protective layer is mainly to block out moisture and oxygen in the environment to prevent deterioration of the recording layer, so the protective layer's constituent materials include dielectrics with excellent barrier properties against water and oxygen,
For example, magnesium, aluminum, silicon, titanium,
Oxides, nitrides, fluorides, sulfides of zinc, germanium, zirconium, tantalum, rare earth elements, etc., or composites thereof are often used.

本発明者らは先に、保護層として望ましい酸窒化ケイ素
の組或として膜構造を提案した(特願平l−14549
3号)。このような組或と膜構造を有する保護層を形戒
するには、一般にスパッタが有利である。
The present inventors previously proposed a film structure as a silicon oxynitride composition desirable as a protective layer (Japanese Patent Application No. 1-14549).
No. 3). Sputtering is generally advantageous for forming a protective layer having such a structure and film structure.

該スパッタ法は、生産性の点においても優れていること
から、近年光ディスクの製造方法として普及されつつあ
る。しかしながら、このスパツタ法においては、形威さ
れる薄膜の構造は或膜条件に大きく依存し、ガス圧や役
入パワーなどの要因に支配されることが知られているが
、適切な構造をもった保護層を形成するための最適条件
は、般保護層の組或にも依存するため、前記のガス圧や
投入パワーなどの要因を独立に管理しただけでは、十分
に満足しうる保護層が得られにくいという問題がある。
Since the sputtering method is also excellent in terms of productivity, it has recently become popular as a method for manufacturing optical discs. However, in this sputtering method, it is known that the structure of the formed thin film greatly depends on certain film conditions and is controlled by factors such as gas pressure and input power. The optimal conditions for forming a protective layer depend on the general structure of the protective layer, so it is not possible to form a fully satisfactory protective layer by independently controlling factors such as the gas pressure and input power. The problem is that it is difficult to obtain.

すなわち、条件の設定を誤ると、形成される保護層はそ
の性能を十分に発揮することができず、信頼性の高い光
ディスクが得られないという好ましくない事態を招来し
、これが信頼性の高い光ディスクを安定して供給する際
の障害となっていた。
In other words, if the conditions are incorrectly set, the protective layer that is formed will not be able to fully demonstrate its performance, leading to the undesirable situation of not being able to obtain a highly reliable optical disc. This has been an obstacle to the stable supply of

発明が解決しようとする課題 本発明は、このような従来のスパッタ法による光ディス
ク用保護層の形成に伴う問題点を解決し、耐環境性に優
れ、高温、高湿の過酷な環境下でも剥離やクラックなど
が発生することのない、信頼性の高い光ディスクを提供
するための方法を提供することを目的としてなされtこ
ものである。
Problems to be Solved by the Invention The present invention solves the problems associated with forming a protective layer for an optical disk using the conventional sputtering method, and has excellent environmental resistance and can be peeled off even in harsh environments of high temperature and high humidity. The purpose of this work is to provide a method for providing highly reliable optical discs that are free from cracks and cracks.

課題を解決するための手段 一般に、ケイ素の窒化物は機械的強度に優れ、高温高湿
の過酷の環境下でもクラックが発生しにくいという長所
を有しているが、プラスチック基板との密着性が悪く、
剥離を生じやすいという欠点があるのに対し、ケイ素の
酸化物はプラスチック基板との密着性に優れ、剥離が生
じにくいものの、機械的強度の点では窒化物より劣り、
クラツクが発生しやすいという欠点がある。
Means to Solve the Problem In general, silicon nitride has excellent mechanical strength and is resistant to cracking even in harsh environments of high temperature and humidity, but its adhesion to plastic substrates is poor. Bad,
Silicon oxides have the disadvantage of being easily peeled off, whereas silicon oxides have excellent adhesion to plastic substrates and are less likely to peel off, but are inferior to nitrides in terms of mechanical strength.
The disadvantage is that cracks are likely to occur.

他方、保護層をスパッタ法で或膜する際、ガス圧が低い
と一般にち密な薄膜が形成し、クラックが発生しにくい
保護層が得られるが、この保護層は残留応力が増加する
ための基板から剥離しやすくなるし、逆にガス圧が高、
いと残留応力が低くなって、基板からの剥離は起こりに
くくなるものの、膜組織が粗くなるため、クラックを生
じやすくなる。
On the other hand, when a protective layer is deposited by sputtering, a low gas pressure generally forms a dense thin film and provides a protective layer that is less prone to cracking. It becomes easy to peel off from the surface, and conversely, the gas pressure is high,
Although this reduces the residual stress and makes peeling from the substrate less likely, the film structure becomes rougher and cracks are more likely to occur.

本発明者らは、スパッタ法による光ディスク用保護層の
形或について鋭意研究を重ねた結果、保護層として酸窒
化ケイ素を採用したとき、酸素が多い組成の場合は低ガ
ス圧で、窒素が多い組戊の場合は高ガス圧でスパツタす
るという、保護層の組成に応じたスパッタ条件を選択す
ることにより、ケイ素の酸化物及び窒化物の両方の長所
を併用した保護層を形威しうろことを見出し、この知見
に基づいて本発明を完戊するに至った。
As a result of intensive research into the shape of the protective layer for optical discs by sputtering, the present inventors found that when silicon oxynitride is used as the protective layer, in the case of a composition with a high oxygen content, it is possible to use a low gas pressure and a high nitrogen content. By selecting sputtering conditions according to the composition of the protective layer, such as sputtering at high gas pressure in the case of assembly, it is possible to form a protective layer that combines the advantages of both silicon oxide and nitride. Based on this finding, the present invention has been completed.

すなわち、本発明は、プラスチック基板と記録層との間
に設けられる波長830nmにおける屈折率が1.8〜
2.1の酸窒化ケイ素から或る光ディスク用保護層をス
パッタ法により形成させるに当り、スパッタ圧P (m
Torr)を、 l.O≦P≦5.0            ・・・(
I)及び 10.0 − 2.5no≦P≦12.0−2.5n−
   =(i[ )(ただし、n0は前記酸窒化ケイ素
から酸素を除いた窒化ケイ素の波長830nmにおける
屈折率である)の範囲に調節することを特徴とする光デ
ィスク用保護層の形成方法を提供するものである。
That is, in the present invention, the refractive index at a wavelength of 830 nm provided between the plastic substrate and the recording layer is 1.8 to 1.
When forming a protective layer for an optical disk from the silicon oxynitride of 2.1 by sputtering, the sputtering pressure P (m
Torr), l. O≦P≦5.0...(
I) and 10.0-2.5no≦P≦12.0-2.5n-
= (i[ ) (where n0 is the refractive index at a wavelength of 830 nm of silicon nitride obtained by removing oxygen from the silicon oxynitride). It is something.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明方法においては、プラスチック基板と記録層との
間に設けられる保護層として、波長830nmにおける
屈折率が1.8〜2.1の範囲にある酸窒化ケイ素が用
いられる。この酸窒化ケイ素の組或は、もちろん厚子比
で表わしてもよいが、赤外域の屈折率は組我と単調な関
係にあるので、屈折率で組戊を表わすと光学的な特性を
把握する上においても、測定を簡便に行う上においても
有利である。
In the method of the present invention, silicon oxynitride having a refractive index in the range of 1.8 to 2.1 at a wavelength of 830 nm is used as the protective layer provided between the plastic substrate and the recording layer. The group of silicon oxynitride can of course be expressed by the Atsuko ratio, but since the refractive index in the infrared region has a monotonous relationship with the group, optical characteristics can be understood by expressing the group by the refractive index. This is advantageous both in terms of ease of measurement and in terms of ease of measurement.

該酸窒化ケイ素の屈折率を一定にした場合、これから酸
素を除いたときの波長830nmにおける屈折率をn0
とすると、noが小さいほど窒素の比率が大きく、n0
が大きいほど酸素の比率が大きいことになる。本発明に
おいては、スパツタガス圧P(mTorr)を、 10.0−2.5n−≦P≦1.2.0−2.5n− 
  =(II)の範囲に調節することが必要である。こ
のPの値が前記式(If)の範囲より高いと耐クラツク
性が低下するし、Pの値が前記式(II)の範囲より低
いと耐剥離性が低下する。
When the refractive index of the silicon oxynitride is kept constant, the refractive index at a wavelength of 830 nm when oxygen is removed is n0
Then, the smaller no is, the larger the proportion of nitrogen is, and n0
The larger the value, the greater the proportion of oxygen. In the present invention, the sputter gas pressure P (mTorr) is 10.0-2.5n-≦P≦1.2.0-2.5n-
= (II). If the value of P is higher than the range of formula (If), the crack resistance will decrease, and if the value of P is lower than the range of formula (II), the peeling resistance will decrease.

さらに、該Pの値は、 1.0≦P≦5.0            ・・・(
1)の範囲にあることが必要である。このPが1.0m
’forr未満では放電が不規則となり、安定したスパ
ッタ皮膜ができにくいし、5.0を超えるとたとえ耐剥
離性や耐クラツク性が優れていても、膜の密度が小さく
なるため酸素や水に対するバリア性が低下し、記録層の
腐食を防止しにくくなる。なお、ケイ素の屈折率は約3
.8、窒化ケイ素Si3N.の屈折率は約1.8である
ので、n0の値は約1.8〜3.8にある。
Furthermore, the value of P is 1.0≦P≦5.0...(
It is necessary to be within the range of 1). This P is 1.0m
If the value is less than 5.0, the discharge will be irregular and it will be difficult to form a stable sputtered film. Barrier properties deteriorate, making it difficult to prevent corrosion of the recording layer. Furthermore, the refractive index of silicon is approximately 3.
.. 8. Silicon nitride Si3N. Since the refractive index of is about 1.8, the value of n0 lies between about 1.8 and 3.8.

この酸窒化ケイ素から或る保護層の膜厚は、通常lO〜
200nmの範囲で選ばれる。本発明方法を適用して得
られる光ディスクにおいては、所望に応じ、記録層の酸
化や腐食を防止するために、該記録層の上に保護層を設
けてもよい。この保護層を構戊する材料としては、例え
ば酸化ケイ素、窒化ケイ素、窒化アルミニウム、硫化亜
鉛、あるいはこれらの複合物などの誘電体が好ましく用
いられる。また、光ディスクの反射率やコントラストを
改善する目的で、干渉層や反射層を設けてもよい。
The film thickness of a certain protective layer made of silicon oxynitride is usually lO~
It is selected within a range of 200 nm. In the optical disc obtained by applying the method of the present invention, a protective layer may be provided on the recording layer, if desired, in order to prevent oxidation and corrosion of the recording layer. As the material constituting this protective layer, dielectric materials such as silicon oxide, silicon nitride, aluminum nitride, zinc sulfide, or composites thereof are preferably used. Furthermore, an interference layer or a reflective layer may be provided for the purpose of improving the reflectance and contrast of the optical disc.

第l図は、本発明方法を適用して得られた光ディスクの
l例の構成を示す断面図であって、プラスチック基板l
の上に、本発明方法で形成された酸窒化ケイ素保護層2
、記録層3、保護層4及び反射層5が順次設けられた構
造となっている。前記構成における記録層については特
に制限はなく、例えば追記型の場合は開孔方式や相変化
方式のものであってもよいし、有機色素を用いたもので
あってもよく、また書き換え型の場合は光磁気方式のも
のであってもよいし、相変化方式のものであってもよい
。また、プラスチック基板の材料としては、例えばアク
リル樹脂、エボキシ樹脂、ポリカーボネート樹脂、ポリ
オレフィン樹脂などを用いることができる。
FIG. 1 is a sectional view showing the structure of an example of an optical disk obtained by applying the method of the present invention, in which a plastic substrate l
On top of the silicon oxynitride protective layer 2 formed by the method of the present invention.
, a recording layer 3, a protective layer 4, and a reflective layer 5 are sequentially provided. There are no particular restrictions on the recording layer in the above configuration; for example, in the case of a write-once type, it may be of an aperture type or a phase change type, or it may be one using an organic dye, or it may be of a rewritable type. In this case, it may be a magneto-optical type or a phase change type. Further, as the material of the plastic substrate, for example, acrylic resin, epoxy resin, polycarbonate resin, polyolefin resin, etc. can be used.

本発明方法は、再生専用型、追記型、書き換え型光ディ
スクのいずれにも適用することができるし、また、同様
の構成をもつ光ディスク以外の光記録媒体、例えば光カ
ードなどをスパッタ法で製造する場合にも適用すること
ができる。
The method of the present invention can be applied to any of read-only type, write-once type, and rewritable type optical disks, and can also be applied to optical recording media other than optical disks having a similar configuration, such as optical cards, by the sputtering method. It can also be applied in cases.

発明の効果 本発明によると、プラスチック基板と記録層との間に、
高温、高湿の過酷な環境下でも剥離やクラックの発生し
ない保護層を設けることができ、これによって耐環境性
に優れた信頼性の高い光ディスクを提供することができ
る。
Effects of the Invention According to the present invention, between the plastic substrate and the recording layer,
It is possible to provide a protective layer that does not cause peeling or cracking even under harsh environments of high temperature and high humidity, thereby providing a highly reliable optical disc with excellent environmental resistance.

実施例 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Examples Next, the present invention will be explained in more detail with reference to examples.
The present invention is not limited in any way by these examples.

実施例l スパッタ法により、第l図に示すようなポリカーボネー
ト基板lの上に、厚さl10’nmの酸窒化ケイ素から
或る保護層2、厚さ20nmのTbzoFe7oCOt
oから或る記録層3、厚さ35nmの窒化ケイ素から或
る保護層4及び厚さ60nmのアルミニウムから成る反
射層5を順次設けて戊る光磁気ディスクを作戊した。
Example 1 A protective layer 2 made of silicon oxynitride with a thickness of 10'nm and a TbzoFe7oCOt with a thickness of 20nm were deposited on a polycarbonate substrate l as shown in FIG. 1 by sputtering.
A magneto-optical disk was fabricated by sequentially providing a recording layer 3 starting from a recording layer 3, a protection layer 4 made of silicon nitride with a thickness of 35 nm, and a reflective layer 5 made of aluminum with a thickness of 60 nm.

保護層2は、シリコンターゲットにアルゴンと酸素と窒
素との混合ガスを導入して、RFマグネトロンスパッタ
により形成し、酸素と窒素の分圧を変えることにまり組
或を、アルゴンの分圧を変えることにより、スパッタガ
ス圧を制御した。なお、ガス圧1.9mTorr未満で
は放電が不安定となり、0.8mTorrでは事実上ス
パッタは不可能であった。
The protective layer 2 is formed by RF magnetron sputtering by introducing a mixed gas of argon, oxygen, and nitrogen into a silicon target. This controlled the sputtering gas pressure. Note that when the gas pressure was less than 1.9 mTorr, the discharge became unstable, and when the gas pressure was 0.8 mTorr, sputtering was practically impossible.

組戊を決定するためディスクとは別に、顕微鏡用スライ
ドガラスに前記保護層2の形成条件から酸素のみを除い
た薄膜単層を形戒し、その屈折率n0を測定した。役入
パワーはいずれも3.0kWとした。記録層3は構或元
素の合金ターゲットを用いたDCマグネトロンスパッタ
で、ガス圧0.4Pa,パワー0.5kWで形或した。
In order to determine the composition, a thin monolayer obtained by removing only oxygen from the formation conditions of the protective layer 2 was formed on a microscope slide glass separately from the disk, and its refractive index n0 was measured. The useful power was 3.0kW in both cases. The recording layer 3 was formed by DC magnetron sputtering using an alloy target of the constituent elements at a gas pressure of 0.4 Pa and a power of 0.5 kW.

保護層4は、シリコンターゲットにアルゴンと窒素の混
合ガスを導入してRFマグネトロンスパッタにより形或
し、窒素分圧は0.06Pa.全圧は0.6Paとした
。反射層5はアルミニウムターゲットによるDCマグネ
トロンスパッタによりガス圧0.2Pa,バワー1kW
で形成し Iこ。
The protective layer 4 is formed by RF magnetron sputtering by introducing a mixed gas of argon and nitrogen into a silicon target, and the nitrogen partial pressure is 0.06 Pa. The total pressure was 0.6 Pa. The reflective layer 5 is formed by DC magnetron sputtering using an aluminum target at a gas pressure of 0.2 Pa and a power of 1 kW.
Form it with Iko.

このようにして得られた光磁気ディスクを2枚ずつホッ
トメルト系接着剤で貼り合わせ、80℃、90%RHの
加速寿命試験環境下に放置した。第2図に1000時間
試験後の光磁気ディスクについて、保護層2の形或時の
各スパッタ圧力におけるn0とディスク外周のピットエ
ラーレート(BER)との関係をグラフで示す。この図
においてAはスパツタ圧1.5mTorr, Bは2.
QmTQrr、Cは3.0mTorr、Dは4.OmT
orr, Eは5.OmTorr. Fは6.0mTo
rrである。
Two magneto-optical disks thus obtained were bonded together using a hot-melt adhesive and left in an accelerated life test environment of 80° C. and 90% RH. FIG. 2 is a graph showing the relationship between n0 and the pit error rate (BER) of the outer periphery of the disk at each sputtering pressure and the shape of the protective layer 2 for the magneto-optical disk after a 1000-hour test. In this figure, A is a sputter pressure of 1.5 mTorr, B is a sputter pressure of 2.
QmTQrr, C is 3.0mTorr, D is 4. OmT
orr, E is 5. OmTorr. F is 6.0mTo
It is rr.

第2図から、BERで評価した光磁気ディスクの信頼性
は、保護層2の組戒とガス圧に依存し、かつ信頼性の高
いガス圧領域は、noが高いほど、すなわち酸素が多い
ほど低ガス圧になっていくことが分かる。
From Figure 2, the reliability of the magneto-optical disk evaluated by BER depends on the composition of the protective layer 2 and the gas pressure, and the more reliable the gas pressure region is, the higher the no, that is, the more oxygen there is. It can be seen that the gas pressure is becoming low.

次に、前記の試験に供した光磁気ディスクに発生した欠
陥を光学顕微鏡で同定し、保護層2の形成条件を調べた
ところ、第3図に示す結果が得られた。図に訂いて○印
はそれぞれ欠陥が発生しなかった場合及び×印は欠陥が
発生した場合の保護層2形成条件(no、スパッタガス
圧)を示す。
Next, defects occurring in the magneto-optical disk subjected to the above test were identified using an optical microscope, and conditions for forming the protective layer 2 were investigated, and the results shown in FIG. 3 were obtained. In the figure, the ◯ marks indicate the conditions for forming the protective layer 2 (no, sputtering gas pressure) when no defects occur, and the x marks indicate the conditions for forming the protective layer 2 when defects occur.

第3図から、保護層2のスパッタガス圧をP(+nTo
rr)とすると、 10.0 − 2−Ono> P なる領域ではディスク外周を中心に保護層2に剥離が発
生し、また P > 12.0 − 2.5n. なる領域ではクラックが発生しており、前記と逆の領域
では剥離、クラックの発生が全くなかったが、Pが5.
0を超えるとディスク全面に数μm程度の記録層の腐食
が発生してエラーの原因になっていること、及びPが1
.0未満では放電が不規則で、安定したスパッタ或膜が
できないことが分かった。
From FIG. 3, the sputtering gas pressure of the protective layer 2 is set to P(+nTo
rr), peeling occurs in the protective layer 2 around the outer periphery of the disk in the region where 10.0 − 2-Ono> P, and when P > 12.0 − 2.5n. Cracks occurred in the area where P was 5.5, and no peeling or cracking occurred in the opposite area.
If P exceeds 0, corrosion of the recording layer of several micrometers will occur over the entire surface of the disk, causing errors, and if P exceeds 1.
.. It has been found that when the value is less than 0, the discharge becomes irregular and stable sputtering or films cannot be formed.

以上の結果から、保護層2のスパッタガス圧P(mTo
rr)が 10.0 − 2.5n.≦P≦12−0 − 2.5
n.の関係式を満たす領域では、剥離、クラックの発生
がない光磁気ディスクを製造することができ、さらに記
録層の腐食を防ぐには P≦5.0 また、安定してスパッタ或膜を行うには1.0≦P とすればよいことが明らかになった。
From the above results, the sputtering gas pressure P (mTo
rr) is 10.0-2.5n. ≦P≦12-0 − 2.5
n. In a region that satisfies the relational expression, it is possible to manufacture a magneto-optical disk without peeling or cracking, and to prevent corrosion of the recording layer, P≦5.0. Also, to perform sputtering or film stably, It has become clear that it is sufficient to satisfy 1.0≦P.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明方法を適用して得られた光磁気ディスク
のl例の溝或を示す断面図、第2図及び第3図は、それ
ぞれ本発明方法を適用して得られた光磁気ディスクの信
頼性を示す図である。 第1図において、図中符号lは基板、2及び4は保護層
、3は記録層、5は反射層である。 第1図 第2図 1.8  2.0  2.2  2.4  2.6  
2.8 3.0  3.2  エ4!L6 3.8 (N−rich) 第3図 no (0− rich )
FIG. 1 is a sectional view showing the grooves of an example of a magneto-optical disk obtained by applying the method of the present invention, and FIGS. 2 and 3 are magneto-optical disks obtained by applying the method of the present invention FIG. 3 is a diagram showing reliability of a disk. In FIG. 1, the reference numeral 1 is a substrate, 2 and 4 are protective layers, 3 is a recording layer, and 5 is a reflective layer. Figure 1 Figure 2 1.8 2.0 2.2 2.4 2.6
2.8 3.0 3.2 E4! L6 3.8 (N-rich) Figure 3 no (0-rich)

Claims (1)

【特許請求の範囲】 1 プラスチック基板と記録層との間に設けられる波長
830nmにおける屈折率が1.8〜2.1の酸窒化ケ
イ素から成る光ディスク用保護層をスパッタ法により形
成させるに当り、スパッタ圧P(mTorr)を、 1.0≦P≦5.0 及び 10.0−2.5n_0≦P≦12.0−2.5n_0
(ただし、n_0は前記酸窒化ケイ素から酸素を除いた
窒化ケイ素の波長830nmにおける屈折率である)の
範囲に調節することを特徴とする光ディスク用保護層の
形成方法。
[Claims] 1. In forming a protective layer for an optical disc made of silicon oxynitride having a refractive index of 1.8 to 2.1 at a wavelength of 830 nm and provided between a plastic substrate and a recording layer by sputtering, Sputtering pressure P (mTorr) is 1.0≦P≦5.0 and 10.0-2.5n_0≦P≦12.0-2.5n_0
(However, n_0 is the refractive index at a wavelength of 830 nm of silicon nitride obtained by removing oxygen from the silicon oxynitride.) A method for forming a protective layer for an optical disc.
JP1240149A 1989-09-18 1989-09-18 Formation of protective layer for optical disk Pending JPH03104038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240149A JPH03104038A (en) 1989-09-18 1989-09-18 Formation of protective layer for optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240149A JPH03104038A (en) 1989-09-18 1989-09-18 Formation of protective layer for optical disk

Publications (1)

Publication Number Publication Date
JPH03104038A true JPH03104038A (en) 1991-05-01

Family

ID=17055224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240149A Pending JPH03104038A (en) 1989-09-18 1989-09-18 Formation of protective layer for optical disk

Country Status (1)

Country Link
JP (1) JPH03104038A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034298A1 (en) * 1996-03-11 1997-09-18 Matsushita Electric Industrial Co., Ltd. Optical data recording medium, method of producing the same and method of reproducing/erasing record
US6268034B1 (en) 1998-08-05 2001-07-31 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for producing the same, method for recording and reproducing information thereon and recording/reproducing apparatus
US6343062B1 (en) 1997-09-26 2002-01-29 Matsushita Electric Industrial Co., Ltd Optical disk device and optical disk for recording and reproducing high-density signals
US6388984B2 (en) 1997-08-28 2002-05-14 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and its recording and reproducing method
US6764736B2 (en) 2001-07-12 2004-07-20 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and recording method using the same
US6821707B2 (en) 1996-03-11 2004-11-23 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034298A1 (en) * 1996-03-11 1997-09-18 Matsushita Electric Industrial Co., Ltd. Optical data recording medium, method of producing the same and method of reproducing/erasing record
US6153063A (en) * 1996-03-11 2000-11-28 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information
US6821707B2 (en) 1996-03-11 2004-11-23 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information
US7037413B1 (en) 1996-03-11 2006-05-02 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information
US6388984B2 (en) 1997-08-28 2002-05-14 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and its recording and reproducing method
US6343062B1 (en) 1997-09-26 2002-01-29 Matsushita Electric Industrial Co., Ltd Optical disk device and optical disk for recording and reproducing high-density signals
US6268034B1 (en) 1998-08-05 2001-07-31 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for producing the same, method for recording and reproducing information thereon and recording/reproducing apparatus
US6764736B2 (en) 2001-07-12 2004-07-20 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and recording method using the same

Similar Documents

Publication Publication Date Title
JPH03104038A (en) Formation of protective layer for optical disk
WO2007088682A1 (en) Information recording medium, method for producing same, and apparatus for producing same
JP2771601B2 (en) Optical recording medium and manufacturing method thereof
JPH02267752A (en) Optical recording medium
JP2801729B2 (en) Protective film for optical recording medium and optical recording medium using the same
JP2850713B2 (en) Optical information recording medium
JPH03156753A (en) Optical recording medium
JP2521324B2 (en) Method of manufacturing optical recording medium
JP2002352472A (en) Optical information recording medium, its manufacturing method and its recording/reproducing method
JP5838306B2 (en) Information recording medium and manufacturing method thereof
JP2523180B2 (en) Optical recording medium and manufacturing method thereof
JP2703003B2 (en) Optical disc and method of manufacturing the same
JP2699690B2 (en) Optical information recording medium
JPH06111403A (en) Film formation for recording medium consisting of multilayered artificial lattice films of transition metal/ noble metal
JPH02252150A (en) Optical disk and production thereof
JPH0773522A (en) Optical information recording medium and its production
JPH03105739A (en) Formation of protective film of optical disk and optical disk having protective film formed by the method
JPH01138637A (en) Information recording material
JPH0490145A (en) Magneto-optical recording medium and its production
JPH03122845A (en) Optical recording medium
JPH11219543A (en) Optical disk
JPH0191337A (en) Optical recording material
JPH03134834A (en) Optical recording medium
JPH0798888A (en) Optical disk
JPH031338A (en) Optical recording medium