JPH03103808A - Image pickup optical system - Google Patents

Image pickup optical system

Info

Publication number
JPH03103808A
JPH03103808A JP24049989A JP24049989A JPH03103808A JP H03103808 A JPH03103808 A JP H03103808A JP 24049989 A JP24049989 A JP 24049989A JP 24049989 A JP24049989 A JP 24049989A JP H03103808 A JPH03103808 A JP H03103808A
Authority
JP
Japan
Prior art keywords
lens group
image
lens
optical system
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24049989A
Other languages
Japanese (ja)
Other versions
JP2864420B2 (en
Inventor
Akira Yokota
横田 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1240499A priority Critical patent/JP2864420B2/en
Publication of JPH03103808A publication Critical patent/JPH03103808A/en
Application granted granted Critical
Publication of JP2864420B2 publication Critical patent/JP2864420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain the zoom lens image pickup optical system for a television exclusive endoscope, whose total magnification is high and which has no eyepiece by constituting it of four lens groups, and allowing it to satisfy a specific condition. CONSTITUTION:This optical system transmits an image to a solid-state image pickup element from an image guide and forms an image, and constituted of a first lens group of positive refracting power having a focusing function, a second lens group of positive refracting power having a compensator function, a third lens group of negative refracting power having a variator function, and a fourth lens group of positive refracting power being a fixed image forming lens group in order from an image guide side, and allowed to satisfy the expression I. In this regard, beta 12 denotes composite magnification of a first lens group and a second lens group. In such a way, this system consists of four group zoom lenses of positive, positive, negative and positive, has high magnification and a high variable power rate, and that which can be utilized enough even if it is combined with an extra fine fiber-scope, for instance, such as a blood vessel scope is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ファイバーカテーテルを取付けてモニターの
撮像素子上に結像させるCCU (カメラコントロール
ユニット)内の光学系で、ズーミング機能を有する撮像
光学系に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an optical system in a CCU (camera control unit) to which a fiber catheter is attached and which forms an image on an image sensor of a monitor, and an imaging optical system having a zooming function. It is related to the system.

[従来の技術』 第33図は、体腔内部又は機械的機構内部をテレビモニ
ターにて観察する場合に用いられる装置の機構を示す図
で、1は内部に対物レンズ2.イメージガイド3,接眼
レンズ4等よりなる観察光学系と、光源5.ライトガイ
ド6等からなる照明系とを収納するファイバースコープ
で、物体を照明系により照明した上で観察光学系にて観
察する。又観察光学系による物体像をテレビモニターに
て観察する場合は、接眼レンズ4の後方にアダプターレ
ンズ7を置き物体像を撮像面8上に結像させてテレビ9
に写し出す。
[Prior Art] Fig. 33 is a diagram showing the mechanism of an apparatus used when observing the inside of a body cavity or a mechanical mechanism on a television monitor, in which 1 has an objective lens 2 inside. An observation optical system consisting of an image guide 3, an eyepiece 4, etc., and a light source 5. A fiberscope houses an illumination system including a light guide 6 and the like, and the object is illuminated by the illumination system and then observed by the observation optical system. In addition, when observing the object image produced by the observation optical system on a television monitor, an adapter lens 7 is placed behind the eyepiece lens 4, and the object image is formed on the imaging surface 8 and then displayed on the television 9.
Copy the image to

このようなアダプターを用いてファイバースコープによ
る物体像を撮像管上に結像させてモとター上に写し出す
方式では、使用するファイバースコープの違いによりフ
ァイバースコープのイメージガイドの太さや接眼レンズ
の倍率が異なり、そのためにテレビモニター上に写し出
される像の大きさが異なる。
In the method of using such an adapter to form an object image from a fiberscope onto an image pickup tube and displaying it on the motor, the thickness of the fiberscope's image guide and the magnification of the eyepiece vary depending on the fiberscope used. Therefore, the size of the image projected on the TV monitor is different.

この問題を解消するために、近年アダプターレンズとし
てズームレンズを用いることへの要望が高まっている。
In order to solve this problem, there has been an increasing demand for using a zoom lens as an adapter lens in recent years.

そして例えば特開昭62−285454号に記載されて
いるような、各種のファイバースコープ、硬性鏡等を組
合わせて使用しても最適な倍率と明るさが得られるズー
ムレンズをアダプターレンズとして配置したものが知ら
れている。
For example, as described in Japanese Patent Application Laid-Open No. 62-285454, a zoom lens that can provide optimal magnification and brightness even when used in combination with various fiberscopes, rigid scopes, etc. is arranged as an adapter lens. something is known.

第34図は、このアダプターレンズとして使用するズー
ムレンズの従来例を示したもので、接眼部側から順に、
コンペンセーター機能を有する第1正レンズ群L1と、
バリエーター機能を有する第2負レンズ群L2と、結像
機能を有する第3正レンズ群L8とからなる3群ズーム
レンズである。
Fig. 34 shows a conventional example of a zoom lens used as this adapter lens, starting from the eyepiece side.
a first positive lens group L1 having a compensator function;
This is a three-group zoom lens consisting of a second negative lens group L2 having a variator function and a third positive lens group L8 having an imaging function.

又ズームレンズを内視鏡の接眼部に配置した例として、
特開昭58−669 1 1号公報に記載された、正.
負の2群構成のレンズ系が知られている。
Also, as an example of placing a zoom lens in the eyepiece of an endoscope,
The correct.
A lens system having two negative groups is known.

[発明が解決しようとする課題] 近年、内視鏡の分野で注目を集めている製品として、血
管観察用スコープがある。それは先端の外径が1mm前
後の超極細スコープで、血管のみならず膵管等の観察に
も適用されはじめている。
[Problems to be Solved by the Invention] In recent years, a blood vessel observation scope is a product that has been attracting attention in the field of endoscopes. It is an ultra-fine scope with an outer diameter of around 1 mm at the tip, and is beginning to be used to observe not only blood vessels but also pancreatic ducts.

これらに使用されるイメージガイドは、外径がコンマ数
ミリと極細のために、従来例のように接眼部を有するフ
ァイバースコープにアダプターを装着する方法では、接
眼観察する際の見かけの視野が小さく非常に観察しにく
く、取扱上煩雑になる。又イメージガイドから固体撮像
素子に至る光学系は、ズーム比が小さくトータルの倍率
も不足している。
The image guides used for these are extremely thin with an outer diameter of a few tenths of a millimeter, so the conventional method of attaching an adapter to a fiberscope with an eyepiece reduces the apparent field of view when observing with the eyepiece. It is small and extremely difficult to observe, making it complicated to handle. Furthermore, the optical system from the image guide to the solid-state imaging device has a small zoom ratio and is insufficient in total magnification.

本発明は、これらの問題点を解決するためになされたも
ので、CCUに対してat可能なイメージガイドとCC
U内にある固体撮像素子との間に一体的に構成、配置さ
れるトータルの倍率が高く、接眼レンズのないテレビ専
用の内視鏡用ズムレンズ撮像光学系を提供することを目
的とするちのである。
The present invention was made to solve these problems, and includes an image guide that can be attached to the CCU and a CC
The purpose of the present invention is to provide a zoom lens imaging optical system for endoscopes exclusively for televisions, which has a high total magnification and does not have an eyepiece, and which is integrally constructed and arranged between the solid-state image sensor in the U. be.

[課題を解決するための千段] 本発明の撮像光学系は、イメージガイドから固体撮像素
子へ像を伝送し結像させるもので、イメージガイド側か
ら順に、フォーカシング機能を有する正の屈折力の第1
レンズ群と、コンペンセーター機能を有する正の屈折力
の第2レンズ群と、バリエーター機能を有する負の屈折
力の第3レンズ群と、固定された結像レンズ群で正の屈
折力の第4レンズ群とより構成され下記の条件(1)を
満足するものである。
[A Thousand Steps to Solve the Problem] The imaging optical system of the present invention transmits and forms an image from an image guide to a solid-state image sensor. 1st
a second lens group with a positive refractive power having a compensator function, a third lens group with a negative refractive power having a variator function, and a fourth lens group with a positive refractive power which is a fixed imaging lens group. It is composed of a lens group and satisfies the following condition (1).

(1)  B12 <  2 ただし、β,2は第1レンズ群と第2レンズ群の合戒倍
率である。
(1) B12 < 2 However, β,2 is the combined magnification of the first lens group and the second lens group.

尚以後の条件等に用いられる値はすべて全系の物点と像
点との間の距離を100にノーマライズした時の値であ
る。
Note that all values used in the following conditions are values when the distance between the object point and the image point of the entire system is normalized to 100.

第29図は、本発明の基本構成を示す図で、CCU I
 O内に配置された前記通りの第1レンズ群I,第2レ
ンズ群II,第3レンズ群III .第4レンズ群IV
とから構成され、これにイメージガイド1.対物レンズ
2等からなる観察系と、光源5.?イトガイド6等から
なる照明系とにて構成されるイメージファイバーが脱着
自在に結合され、又テレビモニター9が接続されている
FIG. 29 is a diagram showing the basic configuration of the present invention, in which CCU I
The first lens group I, second lens group II, third lens group III . 4th lens group IV
This consists of an image guide 1. An observation system consisting of an objective lens 2, etc., and a light source 5. ? An image fiber constituted by an illumination system including a light guide 6 and the like is detachably coupled, and a television monitor 9 is also connected.

第30図は、本発明の光学系のパワー配置を示すもので
、第1レンズ群■と第2レンズ群Hの合成の倍率をβ1
2.第3レンズ群■Iの倍率をβ3.第4レンズ群IV
の倍率をβ4とすると光学系全体の倍率βは次の式(i
1で与えられる。
Fig. 30 shows the power arrangement of the optical system of the present invention, where the composite magnification of the first lens group ■ and the second lens group H is β1.
2. The magnification of the third lens group ■I is β3. 4th lens group IV
If the magnification of the optical system is β4, then the magnification β of the entire optical system is given by
It is given by 1.

β=βI2・β3・β4(i) 条件(1)は、光学系全体の倍率を高倍にするための条
件である。光学系のトータルの倍率βを大きくするため
には、式filから明らかなようにβ12.β3.β4
に対するウェート付けを明確にする必要がある。
β=βI2·β3·β4(i) Condition (1) is a condition for increasing the magnification of the entire optical system. In order to increase the total magnification β of the optical system, β12. β3. β4
It is necessary to clarify the weighting of

ズームレンズの設計においては、バリエーター機能を有
する第3レンズ群■をコンパクトにすることが基本であ
る。
In designing a zoom lens, it is fundamental to make the third lens group (2), which has a variator function, compact.

第31図において、物体Oと像■との距離IOは、次式
(ii)で表わされる。
In FIG. 31, the distance IO between the object O and the image 2 is expressed by the following equation (ii).

IO=氾+4’ =fLf2+β,+1/βJ    
fli)ただしfLはレンズLの焦点距離、β,はレン
ズLの倍率である。
IO=Flood+4'=fLf2+β,+1/βJ
fli) However, fL is the focal length of the lens L, and β is the magnification of the lens L.

式(11)においてIOの絶対値を最小にするためには
、β,=±1である。
In order to minimize the absolute value of IO in equation (11), β,=±1.

これを前記光学系の第3レンズ群IIIに適用すること
により光学系をコンパクトにすることが出来る。
By applying this to the third lens group III of the optical system, the optical system can be made compact.

光学系のズーミング中のスタンダード位置においてβ3
=−1になるようにすると、その時の全系の倍率β8は
1βg+=β,2・β4となる。次にズーミングに伴い
第3レンズ群のバリエーターが移動した時の光線高の変
化を第1レンズ群〜第2レンズ群と第4レンズ群とで比
較すると、第4レンズ群の変化量が大である。この第4
レンズ群で生ずる光線高の変化による収差変動を抑える
ためには、第4レンズ群■を対称型に近い形にすること
が望ましく、第3レンズ群IIIの像点つまり第4レン
ズ群TVの物点と第4レンズ群の像点に対してアブラナ
ティックに近い形にすることが好ましい。そのためには
β4をーlの近傍の値にすることが望ましい。
β3 at the standard position during zooming of the optical system
=-1, then the magnification β8 of the entire system becomes 1βg+=β,2·β4. Next, when we compare the changes in the ray height between the first to second lens groups and the fourth lens group when the variator of the third lens group moves during zooming, we find that the amount of change in the fourth lens group is large. be. This fourth
In order to suppress aberration fluctuations due to changes in the height of the rays that occur in the lens group, it is desirable to make the fourth lens group ■ nearly symmetrical, so that the image point of the third lens group III, that is, the object of the fourth lens group TV. It is preferable to form a shape close to abranatic with respect to the point and the image point of the fourth lens group. For this purpose, it is desirable to set β4 to a value near -l.

以上のことがらβl2を一定値以上にすることによって
光学系を高倍率にする必要がある。そのために設けたの
が条件(1)である。したがってこの条件(11 を満
足しない高倍率化を実現し得なくなる。
For the above reasons, it is necessary to increase the magnification of the optical system by setting βl2 to a certain value or more. Condition (1) was established for this purpose. Therefore, it becomes impossible to achieve high magnification that does not satisfy this condition (11).

更に本発明において次の条件(2). (31 . (
41 . (.5)を満足することが望ましい。
Furthermore, in the present invention, the following condition (2). (31. (
41. It is desirable to satisfy (.5).

f21   1f31<20 +31   −6<β.<−0.4 (41   8 <f4<40 +5)−5<β4<−0.5 ただしf..f.は夫々第3レンズ群■I,第4レンズ
群IVの焦点距離、β3,β4は夫々第3レンズ群II
I.第4レンズ群■の倍率である。
f21 1f31<20 +31 -6<β. <-0.4 (41 8 <f4<40 +5)-5<β4<-0.5 However, f. .. f. are the focal lengths of the third lens group ■I and fourth lens group IV, respectively, and β3 and β4 are the focal lengths of the third lens group II, respectively.
I. This is the magnification of the fourth lens group ■.

条件(2)は第3レンズ群■の物体と像の距離IOを短
くするための条件である。前述の式(11)を第3レン
ズ群に適用すると次の関係が成立つ。
Condition (2) is a condition for shortening the distance IO between the object and the image of the third lens group (2). When the above-mentioned equation (11) is applied to the third lens group, the following relationship is established.

IO=f.l2+β3+l/β3)≧4f.尚β=±1
の時にf3(2+β3+l/β.1 =4f3となる。
IO=f. l2+β3+l/β3)≧4f. Note that β=±1
When , f3 (2+β3+l/β.1 = 4f3.

上記の関係から条件(2)を満足する必要があり、条件
(2)より外れると全長が長くなる。
From the above relationship, it is necessary to satisfy condition (2), and if condition (2) is deviated from, the total length will become longer.

同様に条件(3)もコンパクト化のために設けたもので
ある。第32図は第3レンズ群IIIの倍率β3とこの
レンズ群の物体と像の距離との関係を示したものである
。ズーム比をZとすると、IOが最小であって、レンズ
の移動量が小であるのは、第3レンズ群IIIの倍率β
3を−1を中心にしてβ3W =− l/r丁.β3,
=−ff(β2 W +β3丁は夫々ワイド端.テレ端
における第3レンズ群の倍率)とした時である。したが
って前記条件(3)を満足ずる必要がある。
Similarly, condition (3) is also provided for compactness. FIG. 32 shows the relationship between the magnification β3 of the third lens group III and the distance between the object and image of this lens group. When the zoom ratio is Z, IO is the minimum and the amount of lens movement is small because of the magnification β of the third lens group III.
3 centered on -1, β3W = - l/r d. β3,
=-ff (β2 W +β3 lenses are each at the wide end.The magnification of the third lens group at the telephoto end). Therefore, it is necessary to satisfy the above condition (3).

又第3レンズ群(バリエーター)の移動量Δは次のよう
に示すことが出来る。
Further, the movement amount Δ of the third lens group (variator) can be expressed as follows.

Δ= f3(1/β3W−l/β3T)このΔの値を小
にして第3レンズ群IT[の移動を小さくするためにも
必要な条件である。
Δ=f3(1/β3W-l/β3T) This is also a necessary condition for reducing the value of Δ and reducing the movement of the third lens group IT[.

条件(41.+51は、光学系のバックフォーカスを規
定したものである。
Condition (41.+51 defines the back focus of the optical system.

光学系のバックフォーカスS゜は、次の式で与えられる
The back focus S° of the optical system is given by the following equation.

S’  =f4+1−β4) もしf4が条件(4)の下限値の8を越えるか、β4が
条件(5)の上限値の−0.5を越えると第4レンズ群
■のバワーが大になり、ワイド時に上側縦コマ収差が大
きく補正不足になる。又条件(4)の下限.条件(5)
の上限の範囲内であれば固体撮像素子の前に水晶フィル
ター.赤外力・ントフイルターYAGカットフィルター
等を適当に配置し得、それらの範囲を越えるとバックフ
ォーカスが長ずざる。又条件(4)の上限値の40又は
条件(5)の下限値の−5を越えるとバックフォーカス
が短くなる。
S' = f4 + 1 - β4) If f4 exceeds the lower limit of 8 in condition (4) or β4 exceeds -0.5, the upper limit of condition (5), the power of the fourth lens group ■ becomes large. As a result, the upper vertical coma aberration is large and under-corrected when the lens is wide. Also, the lower limit of condition (4). Condition (5)
If it is within the upper limit of , install a crystal filter in front of the solid-state image sensor. Infrared power filters, YAG cut filters, etc. can be appropriately arranged, and if the range is exceeded, the back focus will not be long. Further, if the upper limit of condition (4) of 40 or the lower limit of condition (5) of -5 is exceeded, the back focus becomes short.

更に次の条件+61 . (7)を満足することが好ま
しレ)。
Furthermore, the following condition +61. It is preferable to satisfy (7).

(6)1ε 1〈15° f7)   lc’l  <15° ただしεは最大物体高から射出する光線の傾角、ε゜は
最大像高へ入射する主光線の傾角である。
(6) 1ε 1<15° f7) lc'l <15° where ε is the inclination angle of the light ray emerging from the maximum object height, and ε° is the inclination angle of the principal ray entering the maximum image height.

?件(6)は、物体側の最大物体高からの主光線の傾き
角を制限してイメージガイドの周辺光量が必要以上に落
ちないようにするために設けたものである。゛この条件
を満足しないと、周辺光量が十分確保出来ない。
? Condition (6) is provided in order to limit the inclination angle of the chief ray from the maximum object height on the object side to prevent the peripheral light amount of the image guide from dropping more than necessary. ``If this condition is not satisfied, a sufficient amount of peripheral light cannot be secured.

条件(7)は像側の最大像高へ入射する主光線の傾き角
を制限するものである。この条件を満足しないとCCD
iこ対する色シェーデインクの問題を生ずる。
Condition (7) limits the inclination angle of the principal ray that enters the maximum image height on the image side. If this condition is not met, CCD
This causes problems with color shading ink.

更に前記の条件(6)は、入射瞳が■ほぼ無限遠である
ことを示し、又条件(7)は射出瞳がほぼ無限遠である
ことを意味しており、主光線の経路を考えた時、明るさ
絞りは第1レンズ群の前や第4レンズ群の後には配置出
来ない。又第3レンズ群がバリエーターであるためこの
レンズ群の前後では光線高が変動するので、この第3レ
ンズ群の前後に絞りを配置することも適当でない。した
がって明るさ絞りは、第1レンズ群と第2レンズ群の間
に配置するのが最も適している。
Furthermore, condition (6) above means that the entrance pupil is almost infinite, and condition (7) means that the exit pupil is almost infinite, considering the path of the chief ray. In this case, the aperture stop cannot be placed in front of the first lens group or after the fourth lens group. Furthermore, since the third lens group is a variator, the height of the light ray changes before and after this lens group, so it is not appropriate to arrange an aperture before and after this third lens group. Therefore, it is most suitable for the aperture stop to be placed between the first lens group and the second lens group.

更に前述のように倍率β12を高くするために第11 1レンズ群はかなりパワーが強くなり、収差が発生しや
すい。又第2レンズ群がコンペンセー夕、第3レンズ群
がバリエーターであることを考えると、第1レンズと第
2レンズ群〜第4レンズ群とで各々独立に収差補正を施
すのが全系の収差を補正する上で適切である。そのため
にち明るさ絞りは第1レンズ群と第2レンズ群の間に配
置すべきである。
Furthermore, as mentioned above, in order to increase the magnification β12, the power of the 111st lens group becomes considerably strong, and aberrations are likely to occur. Also, considering that the second lens group is a compensator and the third lens group is a variator, the aberrations of the entire system can be corrected independently by the first lens and the second to fourth lens groups. It is appropriate for correcting. Therefore, the aperture stop should be placed between the first lens group and the second lens group.

次に、第lレンズ群のフォーカシングのための移動や第
2レンズ群のコンペンセーターとしての移動により生ず
る収差変動がないようにするためには次の条件(8)を
満足することが望ましい。
Next, in order to prevent aberration fluctuations caused by movement of the first lens group for focusing and movement of the second lens group as a compensator, it is desirable to satisfy the following condition (8).

(8)1 θl<10’ ただしθは光軸に対するマージナル光線の傾き角である
(8) 1 θl<10' where θ is the inclination angle of the marginal ray with respect to the optical axis.

この条件(8)を満足しないと、第1レンズ群,第2レ
ンズ群の上記の移動による両レンズ群間隔の変化によっ
て収差が移動するので好ましくない。
If this condition (8) is not satisfied, it is not preferable because aberrations will shift due to the change in the distance between the first and second lens groups due to the above-mentioned movement of the first lens group and the second lens group.

更にズームレンズにおける収差補正手段としてl2 ?レンズ群中に少なくと6一組の接合レンズを配置して
セパレートアクロマテイズムが用いられる。又ビント移
動の点からは、前述のようにβ12を大きくする関係上
イメージガイドからのNAは大きく、第1レンズ群の第
1面までの距離は、実用上0.01以内の精度でばらつ
きがないようにしないとピント合わせが出来ない。その
ために第lレンズ群と第2レンズ群とを合わせて移動群
とするよりも、第1レンズ群とイメージガイド端面との
距離は、イメージガイドを1#JJしても常に一定に保
たれるようなメカ構造とし、(第1レンズ群の前側焦点
位置近傍にイメージガイド端面を配置する)、第2レン
ズ群との間がほぼ平行光線となるようにし、第2レンズ
群以降にコンベンセータやバリエーターを配置すれば、
カム環のばらつき等で発生する間隔変動は、光線がほぼ
平行である第1レンズ群と第2レンズ群の間で十分吸収
出来、ピント移動はおこらない。更にこの第1レンズ群
と第2レンズ群の間を脱着可能にしてもよい。
Furthermore, l2? as an aberration correction means in a zoom lens. Separate achromatism is used by arranging at least six cemented lenses in a lens group. In addition, from the viewpoint of bint movement, the NA from the image guide is large because β12 is increased as described above, and the distance to the first surface of the first lens group has a variation within 0.01 accuracy in practice. You won't be able to focus if you don't make sure that it's not there. For this reason, rather than combining the 1st lens group and the 2nd lens group into a moving group, the distance between the 1st lens group and the end surface of the image guide is always kept constant even when the image guide is moved 1#JJ. (The image guide end face is placed near the front focal point of the first lens group.) The mechanical structure is such that the light beams are almost parallel to the second lens group, and a convencator or variator is installed after the second lens group. If you place
Spacing fluctuations caused by variations in the cam rings can be sufficiently absorbed between the first lens group and the second lens group, where the light rays are substantially parallel, and no focus shift occurs. Furthermore, the first lens group and the second lens group may be made detachable.

又イメージガイドと第1レンズ群とは、設計上脱着して
も一定位置関係が保たれているが、更にその位置を基準
位置として位置関係を調整可能にしてフォーカシング機
構としてもよい。
Furthermore, although the image guide and the first lens group are designed to maintain a fixed positional relationship even when they are attached and detached, the positional relationship may be adjusted using that position as a reference position to form a focusing mechanism.

[実施例] 以下本発明内視鏡用対物レンズの実施例を示す。[Example] Examples of the objective lens for an endoscope of the present invention will be shown below.

実施例1 f = −112.213〜3.825 .像高1.4
331〜3. 2929物点0 . .3 71ロ3 r+= ■ d,=0.3710   旧= 1.51633   
ν. =64.l5r2=(1) d2= 0.6957 r3=oO da” 0. 5566   n2= 1. 5163
3   )lz = 64. 15r4= (1) d4=0.0557 r6 = −56. 3034 ds= 0. 9276   ns= 1. 5l82
3   v3= 58.96r6=−3.061 d6= 0.2876 ry=5.2891 d,= 1.0203 1.6223 r8=−5.2891 da”0.5102 r.= −6.6981 d.= 0.8255    n.= 1.74r+o
  =2.2299 d..=1.6882  n.=1.53256r++
  =−8.9094 d.,  =2.1984 r+z  =−17.3922 ?,■ =1.3728  n,=1.53256r+
z  =−5.1963 dha  =0.4545 r14=(1)(明るさ絞り) d.. =D, (可変) r+s =15.0751 d,s =3.6083  n8=1.51633l5 = 53.2 = 28.29 =45.91 = 45.91 = 64.15 ?+e  ”−15.0751 d..  = 1.8552  n. = 1.592
7    v.  = 35.29r17 =(1) d.7=02 (可変) r..=−50.4188 d..  =0.9276  neo  =1.696
8   ν1o=55.52r+9 = 3.8383 d+e  =1.3914  n++  =1.834
   V++=37.16rzo  =  7.182
3 d2o =l)3(可変) rzr  = 18.8448 dz+  = 2.7828  n+z  = 1.6
.96   1712= 55..52r2■ =−7
.5607 d2■=0.9276  n+z  =1.834  
 ’V+a=37.16r2.=−25.0522 dza  = 17.8838 r24=clO(フレア絞リ) d24=1.8552 r25 :″l d25= 20.3141 n.. = 1.5486
9  v..= 45.5516 r26 :″l d2.  =0.0928 r27 =■ (1+t  =0.9276 nl5 = 1.52287 ν,5=59.9 rl18 die  =5.4727 r2w d29 =1.3914 n+a = 1.51633 ν,.=64.15 rxo  = (1) d..  =10.1014 r3I :oo dat  =0.371 r32 :″l f     −112.213 1),       2.998 D2       1.653 Ds      13.171 β,.(W)=−7.3915  . β, 2(Tl = −7. 3910βa (Wl 
 = −0. 6239  ,nrt = 1.51633   ν.,=64.1512.5
34    3.825 0.543     3..061 8.186    12.259 9.094    2.503 β,2(S): −7.4113 β3(Sl  =−1.00185 βa(Tl  =−1.6138 β4=−1.67677 . f! =−10.77 
. f4= 19.66C = 1.736@〜1.5
42  .  E’=−0.113〜2.56θ=0.
06 実施例2 f=45.54〜2,829 .像高1. 6399物
点0.42162 r+=■ d. = 1.0614   0,= 1.51633
rz=■ dt= 2.6111 ra”−5.0693 da” 0.5625   nx= 1.78472r
4=9.3861 d4= 2. 1653   ns= 1. 5311
3r5= −4. 165 da= 0.1698 r6= 246. 5711 da= 1.0826n4= 1.713r7= −9
. 5548 〜3.768 = 64.15 = 25.71 = 62.44 = 53.84 d,= 0.1592 ra: 5.3283 do” 1.4117    jl5= 1.713r
.=8.3384 d.= 0.1061 r+o  = 3.8773 dlo = 1.3692   Q6= 1.713r
..  =10.5833 d++  = 0.5944   nt= 1.592
7rl2  =2.3585 d+z  =3.4177 r,3=OO (明るさ絞り) d+a=D+(可変) r.4= 15.4576 d+4 =3.1264 Q8= 1.48749 r..  =−18.3761 d.6 =2.1018   n,= 1.5927r
I6 :oo d+a=D2(可変) r,,  = 171.6296 l 9 ν5 =53.84 ν.  =53.84 r+a rI9 rao νγ ν8 ν9 = 35.29 :70.2 = 35.29 rz+ r22 r211 r2a r2s r26 r27 ?.7 =2.1228 =−6.2371 d,8 =1.0614 =9.2109 d.9 =1.2737 5.0772 d2.  =1.2206 :−s.7247 d2.  =D. = 50.5648 d2■ =1.5585 = −16.9216 d2.  =0.2123 = 14.8884 d24 =3.5324 11.1969 d2r,  =3.738 16.0921 d2.  =5.2997 = 00 nlo nl+ nl2 nl8 nl4 nl5 2 0 = 1.6968 = 1.6968 = 1.6968 = 1.6968 :1.834 ν,.=37.16 ν.l=55.52 ν12 55.52 ν,.=55.52 υ+−=55.52 νIF,=37.16 d27= 17.5027 n1a = 1.5486
9  vIa= 45.55r28 =■ d2.  =0.1061 r29 (1+9 = 1.0614   net  = 1.
52287’  νl?= 59.9r30 :oo d−o  ”0.1061 r3,:oo d.,  ” 1.592i   n.8 = 1.5
1633   ν..= 64.15r32 :ω ?     45.54     6.953    
 2.829D.     3.348    0.5
3     2.566D2    5.719   
 12.703    16.438D.     1
1.07?    6.912    1.14β12
(W)=−7.6048 , β12(S)= −7.
6258βl 2 (Tl = −7. 6106β3
(W)  =−0..5987  ,  βafs) 
 =−0.9969β.fTl  =−1.5487 β.=−1.6968  .  f3=−10。459
  ,  f4=16.526ε=0.021  〜0
. 025゜.ε = −0. 262’− 3. 8
15゜θ =0.06 実施例3 f =−389.004〜2.89  .像高物点0.
66554 r1=■ d+= 0.4337   nl= 1.51633r
2= ■ d2= 0.3253 r3=(1) da = 0.6506   n2=1.54869r
4二■ d4= 0.3253 r5 == −65. 8156 ds= 1.0843   n−= 1.51823r
6 ” −3. 5782 d.= 0.331)1 ry=6.1827 d, = 1.1927   n.” 1.6223r
8 ==: −Ei. 1827 d8= 0. 5964 1.6752 〜3.2529 = 64.15 =45.55 = 58.96 =53.2 r9: 7.8297 d9= 0.965 n.:= 1.74 ?,。 =2.612 d+o =1.9734   n6=1.53256r
++”−10.4147 d,,  =2.5698 r12 = −20.3988 d,2 = 1.6048   fi7= 1.532
56r+z  =−6.0742 d,.  =0.5313 1,, =:OO (明るさ絞り) d,4=D, (可変) r.s =15.9464 61s =3.2504  ns=1−51633r+
g =−15.4875 d.6 =2.085    n*=1.5927rI
7 =00 d.■=D2(可変) r,8=−10.5871 d,a = 2.1686  nlo = 1.834
23 ν5 = 28.29 ν6 = 45.91 ν7 = 45.91 νB =64.15 ν9 = 35.29 ν,。=37.16 r+*  =−4.4433 d+s=1.ロ843   n.,  =1.6968
    ν..=55.52r2o  ” 12.51
52 a2o =Da (可変) r2,  =37.241L dg+ =2.1686  旧2=1.6968  ν
,,= 55.52r22 =−20.5354 dzz  =0.2169 r2g  ”12.7862 d23 = 3.6463  1’s  = 1.69
68   17+a= 55.52ra4 ”−12.
8368 d2<  =3.9289   0+4 =1.834
    ν++=37.l6rt5 =13.1533 dis  =4.Ol3 r26:cio das  = 17.88   1+s  = 1.5
4869   v+s= 45.55r2, =■ d.7 =O.1084 r28 :oo d2a  = 1.0843   1+e  = 1.
52287   1/,6: 59.92 4 1−29=OO d29 =0.1084 ?3o  = (1) d..  =l6264 rzI = ω f      −389、ロ04 D,        2.388 D2       9.024 D.       12.444 β12IW)ニ−6.725  . β12(T)=−6.721 β.fW)  =−0.6420  .β.fT)  
=−1.6630 84=−1.7894   .  fiε =1.68
5  〜2.183 0=0.06゜ 実施例4 f = 93.59〜3. 036 物点 0. 2764 n+7 r,=OO = 1.51633   νl7=64.159.03
2     2.89 0,53      2.991 14.326    1?.921 9.001     2.945 β, 2[S) = −6. 737 β.fS)  =−1.0121 =−9.3037  .  f.=15.9608. 
ε =−0.17  〜 −4.296,像高1. 4
236〜3.271 d,=0.4607 r2=■ d2= 0.7259 rz= (1) da”0.3041 r4=■ d.= 0.7488 rs= ω d5= 0.0533 r.= −55.9283 do”0.9214 r,=−3.0406 d7= 0.2856 r.= 5−2538 d.= 1.0135 re=−5.2538 d9=0.5068 rlo  =−6.6535 d.o =0.82 r++  =2.2151 n,= 1.51633 na=1.51633 ns=1.54869 n4= 1.51823 ns=1.6223 ns=1.74 =64.15 =64.15 = 45.55 = 58.96 = 53.20 =28.29 d++  =1.677 n,= 1.53256 ν7 =45.91 rl2 = −8.8501 dl2 =2.1837 rlil   ” 17.2763 d,.  =1.3637 n8= 1.53256 ν8 = 45.91 rl4 r+s rl8 rl7 =−5.1617 d..  =0.4515 =ω(絞り) d+s=D+(可変)・ = 14.9747 d,.” 3.5843  ns= 1.51633=
 −14.9747 d.t  ” 1.8428  n,.= 1.592
7ν9 =64.15 ν,。= 35.29 rl8 rl9 r20 d+a=Dz(可変) = −50.0829 d..  =0.9214 =3.8128 ni+ = 1.6968 ν,,=55.52 d.o =1.3821 nl2 = 1.834 ?12=37.16 r2t  =7.1344 2 7 ?2. =D3(可変) r2■ = 11.9433 d22 =2.7706   n+x rza  = 16.625 d2:+  = 1.8365   nl4r2.  
= 52.1671 d24 =16.l430 rts =QQ (フレア絞り) d25=1.3821 r26 :″l d2s = 21.9755 n’s r27 :″l d2y =0.0921 r28 :■ d2a = 0.9214  n+s r29 :oo d2. =5.4363 r3o = OO dxo = 1.382i  net r3, = ■ 2 8 : 1.834 = 1.54869 = 1.52287 = 1.51633 ν,.=55.52 ν.4=37.16 ν,,: 45.55 ν,.=59.90 ν,,=64.15 ?..  =lO.0341 r32:ocI d3■ = 0.3686 r33 :oo f        93.59 D.       2.975 D.       1.641 D.      13.084 β12(Wl = −7.3913  .β12(Tl
 = −7. 3908 β.(w)  =−0.62332  ,βs (T)
  = −1. 61416β4=−1.6769  
 .  f.ε =1.736  〜l.542 θ= 0.005 実施例5 f = 373.237 物点 0. 2764 n+a 〜3.459 r,= ■ =1.51633cノ..=64.159.39   
  3.362 0.535     3.036 8.131    12.177 9.034    2.486 β, 2(Sl = −7.4110 β3(S)= −1.00198 =−10.700  ,  f.  =19.458.
ε = −0. 132″−2.593.像高1.42
36〜3.271 d+ = 0.4607 n+=1.51633 νX =64.]5 r2=(1) d2= 0.7259 r3= (1) d3= 0.3041 r4=■ d4= 0.2488 rs= ω d5= 0.0553 r6=−55.9283 d.= 0.9214 r7=−3,ロ406 d,= 0.2856 ra=5.2538 d.= 1.0135 r9=−5、2538 d9= 0.5068 r+o  =−6.6535 d+o  =0.82 r++  =2.2151 dz  =1.677 112= 1.51633 ns=1.54869 jl4= 1.51823 ns=1.6223 ns=1.74 ny=1.53256 =64.15 = 45.55 = 58.96 = 53.20 = 28.29 = 45.91 ?+■ ”−8.8501 d12 = 2.1837 rl3  =−17.2763 d+3 =1.3677  ns=1.53256r+
4 =−5.1617 d,4 =0.4515 r皿5=ω(絞り) d+s=D+(可変) r+6 =14.9747 d+6 = 3.’ 5843  n−= 1.516
33ν.  =45.91 ν9 =64.15 rrt 14.9747 d+7  =1.8428 nlQ = 1.5927 ν,0= 35.29 r+s r+e rao rat d.. =02(可変) = −50.0829 d+9 =0.9214 =3.8128 d2o  =1.3821 = 7.1344 dz+=Da nl1 nl2 (可変) = 1.6968 =1.834 ν,,=55.52 ν12=37.16 3 l ?22=■(フレア絞り) d2■= 0−4118 r2a ”63.2338 d2g = 2.2492  n+a r2< =12.354 da< = 1− 6649  n+ar2s ’=−
19.5623 d2. =0.6921 rzs = 18.8702 dga = 1.6169  n+s r2y =−64.8613 d27=1.7394 r2a =−29.2122 dza = 0.9505  n+a rz9=−18.7819 d29= 0.9214  n.7 r3o =45.9643 d.o=lO.504 r3, ==QQ (フレア絞り) d3, =1.3821 32 = 1.741 = 1.7495 = 1.51633 = 1.72 = 1.7495 ν,.:52.68 ν,4=35.27 ν+s=64.15 ν16=50.25 ?12=35.27 ?32 =(1) d3■ =21.9755 r33 =(1) d..  =0.0921 r34 =■ d..  =0.9214 r35 :=(X) d..  =5.4363 r36 =■ daa  =1.3821 r37 =■ d.7 =IO.0341 r38 =ω d3.  =0.3686 raw  ” ■ f      373.237 0+       2.975 D2      1.64L D.      13.084 β,.[w) =−7.3913  .n20 nz+ nl8 nlll = 1.54869   ν+a=45.55=: 1
.52287   ν..=59.9” 1.5163
3  v2.= 64.15= 1.51633  ν
2’l = 64. 1510.236    3.4
59 0.535    3.036 タ.131    12.1?7 9.034    2.486 βI.tS) = −7.411Q つ ?■2(Tl = −7. 3908 (33fWl  =−0.62332  .  63(
Sl = −1.00198βa (Tl  = −1
. 61416β,=−1.5413   ,  f3
 =−10.699  .  f4=19.8318 
= 1.736  〜1.542  .  8 = 0
.125  〜 −2.198一 〇=o.oo5 実施例6 f =.−29.354〜4.478 .像高1.42
36〜3.271物点 0.2764 r1=■ d,=0.4607     n,−1.51633 
    v.  =64.15r2=(1) d2= 0.7259 rx= ■ d.=0.3041     n2=1.51633 
   v2 =64.15r4=■ d. =0.2488   n3−1.54869  
 v3=45.55r5= OO d5=0.0553 r6= −55.9283 3 4 d.= 0.9214 r7=−:3.0406 d,= 0.2856 ra= 5.2538 d.= 1.0135 rs=−5.2538 d9=0.5068 r1。 =−6.6535 d,.  =0.82 r++  =2.2151 d++  =1.677 r+z  =−8.850t d.2 =2.1837 r,.  =−17.2763 d,−  = 1.36,37  na= 1.532
56r+<  =−5.1617 d,.  =0.4515 r15=(1)(絞り) d+s =D+ (可変) r,6 ” 14.9747 n5=1.6223 fi,= 1.53256 114= 1.51823 na=1.74 ν5 ν6 ν7 ν8 35 = 58.96 =53.2 =28.29 = 45.91 =45.91 ?,6 = 3.5843   n9= 1.5163
3r,7 =−14、9747 d,,  ” 1.8428   n,.= 1.59
27rl8 : oO d+a=02(可変) r+9 =−50.0829 d,9 =0.9214  n++  =1.6968
rzo  =3.8128 d2o  = 1.3821   n.2 = 1.8
34r2+  =7.1344 d2. =D3(可変) r22 : OO d2■ = 0.4118 r2.  =−54.2046 d23”1.169  n+a =1.76182rz
4 =27.3666 d2.= 1.5864  n.4 = 1.7291
6r2s  =−16.9711 d25 =0.3931 r2.  ” 20.4547 3 6 ν9 =64.15 ν,。=35.29 ν..=55.52 νI2 37.16 ν,,= 26.55 ν..=54.68 d2s  ”1.4578 n+5 =1.7 ν,5=48.08 r.,  = 51.9027 d2,  =15.7312 r28 : O0 dz8 =1.3821 r29 : o0 d2.=21.9755 n+a =1.54869 
 V+s=45.55r30 :oo d3o = 0.0921 rs+ d31 = 0.9214 n+7 1.52287 νl?=59.9 r32 d3。
Example 1 f = −112.213 to 3.825. Image height 1.4
331-3. 2929 object points 0. .. 3 71ro 3 r+= ■ d, = 0.3710 old = 1.51633
ν. =64. l5r2=(1) d2= 0.6957 r3=oO da” 0.5566 n2= 1.5163
3) lz = 64. 15r4= (1) d4=0.0557 r6=-56. 3034 ds=0. 9276 ns=1. 5l82
3 v3 = 58.96r6 = -3.061 d6 = 0.2876 ry = 5.2891 d, = 1.0203 1.6223 r8 = -5.2891 da"0.5102 r. = -6.6981 d. = 0.8255 n.= 1.74r+o
=2.2299 d. .. =1.6882 n. =1.53256r++
=-8.9094 d. , =2.1984 r+z =-17.3922? ,■ =1.3728 n, =1.53256r+
z = -5.1963 dha =0.4545 r14 = (1) (brightness aperture) d. .. =D, (variable) r+s =15.0751 d,s =3.6083 n8=1.51633l5 = 53.2 = 28.29 =45.91 = 45.91 = 64.15? +e”-15.0751 d.. = 1.8552 n. = 1.592
7 v. = 35.29r17 = (1) d. 7=02 (variable) r. .. =-50.4188 d. .. =0.9276 neo =1.696
8 ν1o=55.52r+9 = 3.8383 d+e =1.3914 n++ =1.834
V++=37.16rzo=7.182
3 d2o = l) 3 (variable) rzr = 18.8448 dz+ = 2.7828 n+z = 1.6
.. 96 1712= 55. .. 52r2■ =-7
.. 5607 d2■=0.9276 n+z =1.834
'V+a=37.16r2. =-25.0522 dza = 17.8838 r24=clO (flare aperture) d24=1.8552 r25 :″l d25= 20.3141 n.. = 1.5486
9 v. .. = 45.5516 r26 :″l d2. =0.0928 r27 =■ (1+t =0.9276 nl5 = 1.52287 ν,5=59.9 rl18 die =5.4727 r2w d29 =1.3914 n+a = 1 .51633 ν,.=64.15 rxo = (1) d.. =10.1014 r3I :oo dat =0.371 r32 :″l f −112.213 1), 2.998 D2 1.653 Ds 13 .171 β,. (W)=-7.3915. β, 2(Tl = −7. 3910βa (Wl
= −0. 6239, nrt = 1.51633 ν. ,=64.1512.5
34 3.825 0.543 3. .. 061 8.186 12.259 9.094 2.503 β,2(S): −7.4113 β3(Sl = −1.00185 βa(Tl = −1.6138 β4=−1.67677 . f! = -10.77
.. f4 = 19.66C = 1.736@~1.5
42. E'=-0.113~2.56θ=0.
06 Example 2 f=45.54-2,829. Image height 1. 6399 object points 0.42162 r+=■ d. = 1.0614 0, = 1.51633
rz=■ dt= 2.6111 ra"-5.0693 da" 0.5625 nx= 1.78472r
4=9.3861 d4=2. 1653 ns=1. 5311
3r5=-4. 165 da= 0.1698 r6= 246. 5711 da= 1.0826n4= 1.713r7= -9
.. 5548 ~ 3.768 = 64.15 = 25.71 = 62.44 = 53.84 d, = 0.1592 ra: 5.3283 do” 1.4117 jl5 = 1.713r
.. =8.3384 d. = 0.1061 r+o = 3.8773 dlo = 1.3692 Q6 = 1.713r
.. .. = 10.5833 d++ = 0.5944 nt = 1.592
7rl2 =2.3585 d+z =3.4177 r,3=OO (brightness aperture) d+a=D+ (variable) r. 4= 15.4576 d+4 = 3.1264 Q8= 1.48749 r. .. =-18.3761 d. 6 = 2.1018 n, = 1.5927r
I6 :oo d+a=D2 (variable) r,, = 171.6296 l 9 ν5 =53.84 ν. =53.84 r+a rI9 rao νγ ν8 ν9 = 35.29 :70.2 = 35.29 rz+ r22 r211 r2a r2s r26 r27? .. 7 = 2.1228 = -6.2371 d, 8 = 1.0614 = 9.2109 d. 9 =1.2737 5.0772 d2. =1.2206 :-s. 7247 d2. =D. = 50.5648 d2■ =1.5585 = -16.9216 d2. =0.2123 = 14.8884 d24 =3.5324 11.1969 d2r, =3.738 16.0921 d2. =5.2997 = 00 nlo nl+ nl2 nl8 nl4 nl5 2 0 = 1.6968 = 1.6968 = 1.6968 = 1.6968 :1.834 ν,. =37.16 ν. l=55.52 ν12 55.52 ν,. =55.52 υ+-=55.52 νIF, =37.16 d27= 17.5027 n1a = 1.5486
9 vIa= 45.55r28 = ■ d2. =0.1061 r29 (1+9 = 1.0614 net = 1.
52287' νl? = 59.9r30 :oo d-o "0.1061 r3,:oo d.," 1.592in. 8 = 1.5
1633 ν. .. = 64.15r32 :ω? 45.54 6.953
2.829D. 3.348 0.5
3 2.566D2 5.719
12.703 16.438D. 1
1.07? 6.912 1.14β12
(W)=-7.6048, β12(S)=-7.
6258βl 2 (Tl = −7. 6106β3
(W) =-0. .. 5987, βafs)
=-0.9969β. fTl = -1.5487 β. =-1.6968. f3=-10.459
, f4=16.526ε=0.021 ~0
.. 025°. ε = −0. 262'-3. 8
15°θ = 0.06 Example 3 f = -389.004 to 2.89. Image height object point 0.
66554 r1=■ d+= 0.4337 nl= 1.51633r
2 = ■ d2 = 0.3253 r3 = (1) da = 0.6506 n2 = 1.54869r
42 ■ d4 = 0.3253 r5 == -65. 8156 ds= 1.0843 n-= 1.51823r
6 ” -3. 5782 d. = 0.331) 1 ry = 6.1827 d, = 1.1927 n.” 1.6223r
8 ==: -Ei. 1827 d8=0. 5964 1.6752 ~ 3.2529 = 64.15 = 45.55 = 58.96 = 53.2 r9: 7.8297 d9 = 0.965 n. := 1.74? ,. =2.612 d+o =1.9734 n6=1.53256r
++"-10.4147 d,, =2.5698 r12 = -20.3988 d,2 = 1.6048 fi7 = 1.532
56r+z = -6.0742 d,. =0.5313 1,, =:OO (brightness diaphragm) d, 4=D, (variable) r. s = 15.9464 61s = 3.2504 ns = 1-51633r+
g = -15.4875 d. 6 =2.085 n*=1.5927rI
7 =00 d. ■ = D2 (variable) r, 8 = -10.5871 d, a = 2.1686 nlo = 1.834
23 ν5 = 28.29 ν6 = 45.91 ν7 = 45.91 νB = 64.15 ν9 = 35.29 ν,. =37.16 r+* =-4.4433 d+s=1. B843 n. , =1.6968
ν. .. =55.52r2o” 12.51
52 a2o =Da (variable) r2, =37.241L dg+ =2.1686 Old 2 = 1.6968 ν
,,= 55.52r22 =-20.5354 dzz =0.2169 r2g "12.7862 d23 = 3.6463 1's = 1.69
68 17+a=55.52ra4”-12.
8368 d2< =3.9289 0+4 =1.834
ν++=37. l6rt5 =13.1533 dis =4. Ol3 r26:cio das = 17.88 1+s = 1.5
4869 v+s= 45.55r2, =■ d. 7=O. 1084 r28 :oo d2a = 1.0843 1+e = 1.
52287 1/,6: 59.92 4 1-29=OO d29 =0.1084? 3o = (1) d. .. =l6264 rzI = ω f -389, ro04 D, 2.388 D2 9.024 D. 12.444 β12IW) Ni-6.725. β12(T)=-6.721 β. fW) = -0.6420. β. fT)
=-1.6630 84=-1.7894. fiε =1.68
5 ~ 2.183 0 = 0.06° Example 4 f = 93.59 ~ 3. 036 object point 0. 2764 n+7 r,=OO = 1.51633 νl7=64.159.03
2 2.89 0,53 2.991 14.326 1? .. 921 9.001 2.945 β, 2[S) = −6. 737 β. fS) =-1.0121 =-9.3037. f. =15.9608.
ε = -0.17 to -4.296, image height 1. 4
236~3.271 d,=0.4607 r2=■ d2= 0.7259 rz= (1) da”0.3041 r4=■ d.= 0.7488 rs= ω d5= 0.0533 r.= − 55.9283 do”0.9214 r,=-3.0406 d7=0.2856 r. = 5-2538 d. = 1.0135 re = -5.2538 d9 = 0.5068 rlo = -6.6535 d. o = 0.82 r++ = 2.2151 n, = 1.51633 na = 1.51633 ns = 1.54869 n4 = 1.51823 ns = 1.6223 ns = 1.74 = 64.15 = 64.15 = 45.55 = 58.96 = 53.20 = 28.29 d++ = 1.677 n, = 1.53256 ν7 = 45.91 rl2 = -8.8501 dl2 = 2.1837 rlil ” 17.2763 d,. = 1.3637 n8 = 1.53256 ν8 = 45.91 rl4 r+s rl8 rl7 = -5.1617 d.. = 0.4515 = ω (aperture) d+s=D+ (variable)・ = 14.9747 d,.” 3.5843 ns= 1.51633=
-14.9747 d. t” 1.8428 n,.= 1.592
7ν9 =64.15ν,. = 35.29 rl8 rl9 r20 d+a=Dz (variable) = -50.0829 d. .. =0.9214 =3.8128 ni+ = 1.6968 ν,,=55.52 d. o = 1.3821 nl2 = 1.834? 12=37.16 r2t =7.1344 2 7? 2. =D3 (variable) r2■ = 11.9433 d22 =2.7706 n+x rza = 16.625 d2:+ = 1.8365 nl4r2.
= 52.1671 d24 =16. l430 rts = QQ (Flare aperture) d25 = 1.3821 r26 :"l d2s = 21.9755 n's r27 :"l d2y =0.0921 r28 :■ d2a = 0.9214 n+s r29 :oo d2. =5.4363 r3o = OO dxo = 1.382i net r3, = ■ 2 8 : 1.834 = 1.54869 = 1.52287 = 1.51633 ν,. =55.52 ν. 4=37.16 ν,,: 45.55 ν,. =59.90 ν,,=64.15? .. .. =lO. 0341 r32:ocI d3■ = 0.3686 r33:oo f 93.59 D. 2.975 D. 1.641 D. 13.084 β12(Wl = −7.3913 .β12(Tl
= −7. 3908 β. (w) =-0.62332, βs (T)
= -1. 61416β4=-1.6769
.. f. ε=1.736 ~l. 542 θ = 0.005 Example 5 f = 373.237 Object point 0. 2764 n+a ~3.459 r,=■ =1.51633cノ. .. =64.159.39
3.362 0.535 3.036 8.131 12.177 9.034 2.486 β, 2 (Sl = -7.4110 β3(S) = -1.00198 = -10.700, f. = 19 .458.
ε = −0. 132″-2.593. Image height 1.42
36-3.271 d+ = 0.4607 n+ = 1.51633 νX = 64. ]5 r2=(1) d2= 0.7259 r3= (1) d3= 0.3041 r4=■ d4= 0.2488 rs= ω d5= 0.0553 r6=-55.9283 d. = 0.9214 r7=-3, ro406 d, = 0.2856 ra=5.2538 d. = 1.0135 r9=-5, 2538 d9= 0.5068 r+o =-6.6535 d+o =0.82 r++ =2.2151 dz =1.677 112= 1.51633 ns=1.54869 jl4= 1. 51823 ns=1.6223 ns=1.74 ny=1.53256 =64.15 = 45.55 = 58.96 = 53.20 = 28.29 = 45.91? +■ ”-8.8501 d12 = 2.1837 rl3 =-17.2763 d+3 =1.3677 ns=1.53256r+
4 = -5.1617 d, 4 = 0.4515 r plate 5 = ω (aperture) d + s = D + (variable) r + 6 = 14.9747 d + 6 = 3. ' 5843 n-= 1.516
33ν. =45.91 ν9 =64.15 rrt 14.9747 d+7 =1.8428 nlQ = 1.5927 ν,0= 35.29 r+s r+e rao rat d. .. =02 (variable) = -50.0829 d+9 =0.9214 =3.8128 d2o =1.3821 = 7.1344 dz+=Da nl1 nl2 (variable) = 1.6968 =1.834 ν,,=55. 52 ν12=37.16 3 l? 22=■ (flare aperture) d2■= 0-4118 r2a ``63.2338 d2g = 2.2492 n+a r2< =12.354 da< = 1- 6649 n+ar2s '=-
19.5623 d2. =0.6921 rzs = 18.8702 dga = 1.6169 n+s r2y =-64.8613 d27=1.7394 r2a =-29.2122 dza = 0.9505 n+a rz9=-18.7819 d29= 0. 9214 n .. 7 r3o =45.9643 d. o=lO. 504 r3, ==QQ (flare aperture) d3, =1.3821 32 = 1.741 = 1.7495 = 1.51633 = 1.72 = 1.7495 ν,. :52.68 ν,4=35.27 ν+s=64.15 ν16=50.25? 12=35.27? 32 = (1) d3■ =21.9755 r33 = (1) d. .. =0.0921 r34 =■ d. .. =0.9214 r35 :=(X) d. .. =5.4363 r36 =■ daa =1.3821 r37 =■ d. 7=IO. 0341 r38 =ω d3. =0.3686 raw ” ■ f 373.237 0+ 2.975 D2 1.64L D. 13.084 β,.[w) =-7.3913 .n20 nz+ nl8 nllll = 1.54869 ν+a=45.55= : 1
.. 52287 ν. .. =59.9" 1.5163
3 v2. = 64.15= 1.51633 ν
2'l = 64. 1510.236 3.4
59 0.535 3.036 Ta. 131 12.1?7 9.034 2.486 βI. tS) = -7.411Q one? ■2(Tl = -7.3908 (33fWl = -0.62332.63(
Sl = -1.00198βa (Tl = -1
.. 61416β,=-1.5413, f3
=-10.699. f4=19.8318
= 1.736 ~ 1.542. 8 = 0
.. 125 ~ -2.19810=o. oo5 Example 6 f =. -29.354~4.478. Image height 1.42
36-3.271 object points 0.2764 r1=■ d,=0.4607 n,-1.51633
v. =64.15r2=(1) d2= 0.7259 rx= ■ d. =0.3041 n2=1.51633
v2 =64.15r4=■ d. =0.2488 n3-1.54869
v3=45.55r5=OO d5=0.0553 r6= -55.9283 3 4 d. = 0.9214 r7 = -: 3.0406 d, = 0.2856 ra = 5.2538 d. = 1.0135 rs=-5.2538 d9=0.5068 r1. =-6.6535 d,. =0.82 r++ =2.2151 d++ =1.677 r+z =-8.850t d. 2 = 2.1837 r,. =-17.2763 d,- = 1.36,37 na= 1.532
56r+< =-5.1617 d,. =0.4515 r15=(1) (aperture) d+s =D+ (variable) r, 6 ” 14.9747 n5=1.6223 fi,= 1.53256 114= 1.51823 na=1.74 ν5 ν6 ν7 ν8 35 = 58.96 = 53.2 = 28.29 = 45.91 = 45.91 ?, 6 = 3.5843 n9 = 1.5163
3r,7 =-14,9747 d,, ” 1.8428 n,.= 1.59
27rl8: oO d+a=02 (variable) r+9 =-50.0829 d,9 =0.9214 n++ =1.6968
rzo = 3.8128 d2o = 1.3821 n. 2 = 1.8
34r2+ =7.1344 d2. =D3 (variable) r22: OO d2■ = 0.4118 r2. =-54.2046 d23”1.169 n+a =1.76182rz
4 =27.3666 d2. = 1.5864 n. 4 = 1.7291
6r2s =-16.9711 d25 =0.3931 r2. ” 20.4547 3 6 ν9 =64.15 ν,.=35.29 ν..=55.52 νI2 37.16 ν,,= 26.55 ν..=54.68 d2s ”1.4578 n+5 = 1.7 ν, 5=48.08 r. , = 51.9027 d2, =15.7312 r28: O0 dz8 =1.3821 r29: o0 d2. =21.9755 n+a =1.54869
V+s=45.55r30 :oo d3o = 0.0921 rs+ d31 = 0.9214 n+7 1.52287 νl? =59.9 r32 d3.

= 5.4363 rxs d33 = 1.3821 nl8 = 1.51633 ν..=64.15 r34 d34 = 10.0341 r3s d35 =0.3686 r36 = 00 n+9 = 1.51633 ν..=64、15 3 7 f       −29.354 D+       2.9H D2      1.641 rl.       13.084 β,2(Wl :−7.3913  .8.2(T)=
 −7.3908 β3(W)  =−0.62332  .β3(T) 
 =−1.61416 20.759     4.478 0.535     3.036 8.131    12.177 9.034     2.486 β.2(Sl=−7.7110 β. (Sl = −1.00198 β4=−1.7015   .  f.  =ε=1.
736°〜l. 542゜, 10.699  ,  f4=18.883ε  =−
0.241〜−2.812 θ =o.oo5 実施例7 f = −12c214〜3.767 .像高1. 4
237物点0. 2764 r1=(1) d+ =0.4607    n1= 1.51633
    v1r2=■ d2= 0.7259 r3=■ da= 0.3041    02= 1.51633
    νa〜3.2713 = 64.15 =64.15 r4:■ d4= 0.2488 rt+= ■ d5= 0.0553 rs=−55.933 d6= 0.9215 r7=−3.0409 113= 1.54869 ν3 45.55 n4= 1.51823 ν.  =58.96 d,= 0.2857 ?a=5.2543 d.= 1.0136 re=−5.2543 d9= 0−5068 r,。 =:−6.654 dlo”ロ.8201 r++  =2.2152 d++  =1.6771 r12 = −8.8508 ns=1.6223 ns=1.74 n,= 1.53256 d,2 =2.1839 rlg  =−17.2778 d,3 =1.3638   ns=1.532563
 9 ν6=53.2 ν6 =28.29 ν,  =45.91 ν8 =45.91 ?++  =−5.1621 d.4 =0.4515 r+s =OO (絞り) d+s =DI(可変) r1s  = 14.9759 d..”3.5846 ’ n.=1.51633  
  v.=64.l5r.,  =−14.9759 d+y  =1.843   n+o  =1.592
7   ν,。= 35.29rlll  ” ■ d+a=02(可変) r+++  ”−50.0871 d+9 =0.9215  1++  =1.6968
   ν++=55.52rgo  =3.8131 d2o  = 1.3822  n.2 = 1.83
4    ν12=37.16r2+  ”’1135 dz+=Ds(可変) r22 =QQ d2■ : 0.4118 r2g  =75.3209 dz3= 1.3822  n+3  = 1.501
37  v+3= 56.44 0 rz4 =−14.8764 d24 =0.2764 r2.  ” 26.5985 d2B  =2.3037   n+4 =1.72r
zs  =−9.3973 d26 =0.645    n+s  =1.749
5r2t  =51.907 d27 =15.7325 roll  ” ■ d28 =1.3822 ν,4=50.25 ν1s=35.27 r2g =(1) d2g  = 21.9773  1’61.5486
9   ν+a=45.55r3。 =■ d3.  =0.0921 r3, =■ da+  ”0.9215   n+t1.52287
   ν,7=59.9?3■ =ω ?3■ 戸5.4367 r33 =■ d33 =1.3822  n,.= 1.51633
  y..= 64.1541 ?34 :oo d34 =10.0349 r35 : oO d3.= 0.3686  n..= 1.51633
  v..= 64.15ras=oo f     −124.214    12.231 
   3.767D.       2.975   
 0.535    3.036D2      1.
641    8。132   1;’.178D3 
     13.085     9.ロ34    
 2.487β+−(W) = −7.3713 , 
β1z(Sl = −7.4110β12(Tl = 
−7.3908 β.(Wl  =−0.62332  .  βa (
S) = −1. 00198βa(Tl  ==−1
.61416 β4=−1.7795  ,   fa= −10.6
99  .f4= 19−085ε= 1.736゜〜
1.542  ,E’=−0.265゜〜−z.sss
θ=o.oos’ ただしrl+ r2.・・・はレンズ各面の曲率半径、
d..d2,・・・は各レンズの肉厚および空気間隔、
旧.n2.・・・は各レンズの屈折率、ν1.ν2.−
・・は各レンズのアッペ数である。
= 5.4363 rxs d33 = 1.3821 nl8 = 1.51633 ν. .. =64.15 r34 d34 = 10.0341 r3s d35 =0.3686 r36 = 00 n+9 = 1.51633 ν. .. =64, 15 3 7 f -29.354 D+ 2.9H D2 1.641 rl. 13.084 β,2(Wl :-7.3913 .8.2(T)=
−7.3908 β3(W) = −0.62332 . β3(T)
=-1.61416 20.759 4.478 0.535 3.036 8.131 12.177 9.034 2.486 β. 2 (Sl = -7.7110 β. (Sl = -1.00198 β4 = -1.7015. f. = ε = 1.
736°~l. 542°, 10.699, f4=18.883ε =-
0.241 to -2.812 θ = o. oo5 Example 7 f = -12c214~3.767. Image height 1. 4
237 points 0. 2764 r1=(1) d+ =0.4607 n1= 1.51633
v1r2=■ d2= 0.7259 r3=■ da= 0.3041 02= 1.51633
νa~3.2713 = 64.15 =64.15 r4: ■ d4 = 0.2488 rt+= ■ d5 = 0.0553 rs = -55.933 d6 = 0.9215 r7 = -3.0409 113 = 1. 54869 ν3 45.55 n4= 1.51823 ν. =58.96 d, = 0.2857? a=5.2543 d. = 1.0136 re=-5.2543 d9= 0-5068 r,. =:-6.654 dlo" ro.8201 r++ =2.2152 d++ =1.6771 r12 = -8.8508 ns=1.6223 ns=1.74 n,=1.53256 d,2 =2.1839 rlg = -17.2778 d,3 = 1.3638 ns = 1.532563
9 ν6=53.2 ν6 =28.29 ν, =45.91 ν8 =45.91? ++ =-5.1621 d. 4 =0.4515 r+s =OO (aperture) d+s =DI (variable) r1s = 14.9759 d. .. "3.5846 ' n.=1.51633
v. =64. l5r. , =-14.9759 d+y =1.843 n+o =1.592
7 ν,. = 35.29rllll ” ■ d+a=02 (variable) r+++ ”-50.0871 d+9 =0.9215 1++ =1.6968
ν++=55.52rgo=3.8131 d2o=1.3822 n. 2 = 1.83
4 ν12=37.16r2+ ”'1135 dz+=Ds (variable) r22 =QQ d2■ : 0.4118 r2g =75.3209 dz3= 1.3822 n+3 = 1.501
37 v+3=56.44 0 rz4=-14.8764 d24=0.2764 r2. ” 26.5985 d2B = 2.3037 n+4 = 1.72r
zs = -9.3973 d26 = 0.645 n+s = 1.749
5r2t = 51.907 d27 = 15.7325 roll ” ■ d28 = 1.3822 ν, 4 = 50.25 ν1s = 35.27 r2g = (1) d2g = 21.9773 1'61.5486
9 ν+a=45.55r3. =■ d3. =0.0921 r3, =■ da+ ”0.9215 n+t1.52287
ν,7=59.9?3■=ω? 3■ Door 5.4367 r33 =■ d33 =1.3822 n,. = 1.51633
y. .. = 64.1541? 34 :oo d34 =10.0349 r35 : oO d3. = 0.3686 n. .. = 1.51633
v. .. = 64.15ras=oo f -124.214 12.231
3.767D. 2.975
0.535 3.036D2 1.
641 8.132 1;'. 178D3
13.085 9. B34
2.487β+-(W) = -7.3713,
β1z(Sl = −7.4110β12(Tl =
−7.3908 β. (Wl = -0.62332. βa (
S) = -1. 00198βa(Tl ==-1
.. 61416 β4=-1.7795, fa=-10.6
99. f4 = 19-085ε = 1.736°~
1.542, E'=-0.265°~-z. sss
θ=o. oos' However, rl+r2. ... is the radius of curvature of each lens surface,
d. .. d2,... are the wall thickness and air spacing of each lens,
Old. n2. ... is the refractive index of each lens, ν1. ν2. −
... is the Apé number of each lens.

4 2 実施例lは、第l図に示すレンズ構成で、物体側から2
番目の平行平面板(d3)とフレアー絞り(r2.lの
像側に配置された平行平面板(d251 とに水晶フィ
ルターを分割して2ケ所配置しており、これらのうち物
体側の水晶フィルター(d3)はイメジガイドのサンプ
リング周波数あるいはナイキスト周波数又像側の水晶フ
ィルターは、像側のナイキスト周波数に相当する所にカ
ットオフ周波数を与えるような水晶フィルターである。
4 2 Example 1 has the lens configuration shown in Fig. 1, and 2 points from the object side.
The crystal filter is divided into two parts: a parallel plane plate (d3) placed on the image side of the flare diaphragm (r2.l) and a parallel plane plate (d251 placed on the image side of the flare diaphragm (r2.l). (d3) is a crystal filter that gives a cutoff frequency at a location corresponding to the sampling frequency or Nyquist frequency of the image guide or the Nyquist frequency on the image side.

尚これら水晶部分をユニット化し他の種類の水晶フィル
ターと交換可能としてもよい。
Incidentally, these crystal parts may be made into a unit so that they can be replaced with other types of crystal filters.

又第1レンズ群は、正レンズ,正レンズ.接合正レンズ
より構成され、このレンズ群独立で収差補正がなされて
いる。したがって、この第1レンズ群の他の異なるレン
ズ群と交換することによって他のイメージガイド系列に
対応する光学系にすることも可能である。更にイメージ
ガイドに多成分系や石英系イメージガイドを用いてもよ
い。
The first lens group is a positive lens. It is composed of a cemented positive lens, and aberrations are corrected independently in this lens group. Therefore, by replacing this first lens group with another different lens group, it is also possible to create an optical system compatible with other image guide series. Furthermore, a multicomponent image guide or a quartz image guide may be used as the image guide.

又この実施例は、CCUに入り、接眼レンズやアダプタ
ーのない光学系であるので全長や外径の43 制約が比較的ゆるく、収差も補正しやすい。更に機能上
は、接眼観察時の見ずらさやアダプター取付けの際の煩
雑さがない。
Furthermore, since this embodiment is an optical system that is installed in the CCU and does not require an eyepiece or an adapter, restrictions on the overall length and outer diameter are relatively loose, and aberrations can be easily corrected. Furthermore, in terms of functionality, there is no difficulty in viewing when observing with the eyepiece, and there is no hassle when installing an adapter.

この実施例1の広角端.中間焦点距離,望遠端における
収差状況は夫々第8図.第9図,第10図に示す通りで
ある。
Wide-angle end of this Example 1. Figure 8 shows the aberrations at the intermediate focal length and at the telephoto end. As shown in FIGS. 9 and 10.

次に実施例2乃至実施例7は夫々第2図乃至第7図に示
す通りのレンズ構成である。これらの実施例の広角端.
中間焦点距離,望遠端における収差状況は、実施例2が
第11図.第12図,第13図、実施例3が第14図,
第15図.第16図、実施例4が第■7図.第18図,
第19図、実施例5が第20図,第21図,第22図、
実施例6が第23図.第24図.第25図、実施例7が
第26図.第27図.第28図に示す通りである。
Next, Examples 2 to 7 have lens configurations as shown in FIGS. 2 to 7, respectively. Wide-angle end of these examples.
The aberration situation at the intermediate focal length and telephoto end in Example 2 is shown in Figure 11. Figures 12 and 13, Example 3 is shown in Figure 14,
Figure 15. Fig. 16, Example 4 is shown in Fig. ■7. Figure 18,
Fig. 19, Example 5 is Fig. 20, Fig. 21, Fig. 22,
Example 6 is shown in Figure 23. Figure 24. Figure 25, Example 7 is shown in Figure 26. Figure 27. As shown in FIG.

これら実施例ち実施例■で述べたと同じ特徴を備えてい
る。例えば光学系中の物体側に近い部分と像寄りの部分
とに水晶フィルターが配置されている。又第1レンズ群
はそれ自身で収差が十分小4 4 さくなっていて、他のレンズ群と交換可能になし得る等
である。
These embodiments have the same features as described in embodiment (2). For example, crystal filters are arranged in a part of the optical system near the object side and a part near the image. Furthermore, the first lens group itself has sufficiently small aberrations and can be made interchangeable with other lens groups.

[発明の効果] 本発明の撮像光学系は、正.正,負.正の4群ズームで
、倍率が高く又高変倍率であって、例えば血管スコープ
のように極細ファイバースコープと組合わせても十分利
用し得るものである。
[Effects of the Invention] The imaging optical system of the present invention has positive effects. positive and negative. It has a positive four-group zoom, has a high magnification and a high variable magnification ratio, and can be fully used in combination with an ultrafine fiberscope such as a blood vessel scope.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第7図は夫々実施例l乃至実施例7の断品図
、第8図乃至第10図は実施例lの収差曲綿図、第11
図乃至第13図は実施例2の収差曲線図、第14図乃至
第16図は実施例3の収差曲綿図、第17図乃至第l9
図は実施例4の収差曲線図、第20図乃至第22図は実
施例5の収差曲線図、第23図乃至第25図は実施例6
の収差曲線図、第26図乃至第28図は実施例7の収差
曲線図、第29図は本発明の光学系を備えたシステム図
、第30図は本発明光学系のパワー配分を示す構成図、
第31図はレンズの物体と像の関係を示す図、第32図
はズームレンズにおけるバリエーターの移動に伴う倍率
と物体と像との間の距離との関係を示すグラフ、第33
図は従来例のシステム図、第34図は従来の撮像光学系
の断面図である。
1 to 7 are fragmentary views of Examples 1 to 7, respectively, FIGS. 8 to 10 are aberration curve diagrams of Example 1, and 11.
Figures 13 to 13 are aberration curve diagrams of Example 2, Figures 14 to 16 are aberration curve diagrams of Example 3, and Figures 17 to 19.
The figure is an aberration curve diagram of Example 4, FIGS. 20 to 22 are aberration curve diagrams of Example 5, and FIGS. 23 to 25 are aberration curve diagrams of Example 6.
FIG. 26 to FIG. 28 are aberration curve diagrams of Example 7, FIG. 29 is a system diagram equipped with the optical system of the present invention, and FIG. 30 is a configuration showing power distribution of the optical system of the present invention. figure,
Fig. 31 is a diagram showing the relationship between the object and image of the lens, Fig. 32 is a graph showing the relationship between the magnification and the distance between the object and the image as the variator moves in a zoom lens, and Fig. 33
The figure is a system diagram of a conventional example, and FIG. 34 is a sectional view of a conventional imaging optical system.

Claims (1)

【特許請求の範囲】 イメージガイドから固体撮像素子へ像を伝送、結像させ
る光学系において、イメージガイド側から順にフォーカ
シング機能を有する正の屈折力の第1レンズ群と、コン
ペンセーター機能を有する正の屈折力の第2レンズ群と
、バリエーター機能を有する負の屈折力の第3レンズ群
と、固定された結像レンズ群で正の屈折力の第4レンズ
群とにて構成され、下記条件(1)を満足する撮像光学
系。 (1)β_1_2<−2 ただしβ_1_2は第1レンズ群と第2レンズ群の合成
倍率である。
[Scope of Claims] In an optical system that transmits and forms an image from an image guide to a solid-state image sensor, in order from the image guide side, a first lens group with a positive refractive power having a focusing function and a first lens group having a positive refractive power with a compensator function are provided. It is composed of a second lens group with a refractive power of An imaging optical system that satisfies (1). (1) β_1_2<-2 However, β_1_2 is the combined magnification of the first lens group and the second lens group.
JP1240499A 1989-09-19 1989-09-19 Imaging optical system Expired - Fee Related JP2864420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240499A JP2864420B2 (en) 1989-09-19 1989-09-19 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240499A JP2864420B2 (en) 1989-09-19 1989-09-19 Imaging optical system

Publications (2)

Publication Number Publication Date
JPH03103808A true JPH03103808A (en) 1991-04-30
JP2864420B2 JP2864420B2 (en) 1999-03-03

Family

ID=17060426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240499A Expired - Fee Related JP2864420B2 (en) 1989-09-19 1989-09-19 Imaging optical system

Country Status (1)

Country Link
JP (1) JP2864420B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831259A (en) * 1971-08-27 1973-04-24
JPS5068349A (en) * 1973-10-22 1975-06-07
JPS5866911A (en) * 1981-10-17 1983-04-21 Fuji Photo Optical Co Ltd Eyepiece zoom lens optical system
JPH01128031A (en) * 1987-11-13 1989-05-19 Olympus Optical Co Ltd Image pickup optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831259A (en) * 1971-08-27 1973-04-24
JPS5068349A (en) * 1973-10-22 1975-06-07
JPS5866911A (en) * 1981-10-17 1983-04-21 Fuji Photo Optical Co Ltd Eyepiece zoom lens optical system
JPH01128031A (en) * 1987-11-13 1989-05-19 Olympus Optical Co Ltd Image pickup optical system

Also Published As

Publication number Publication date
JP2864420B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JP2876252B2 (en) Endoscope objective lens
US6751030B2 (en) Zoom lens and image-taking apparatus
JP2900378B2 (en) Kepler-type zoom finder optical system
JP6615068B2 (en) Eyepiece and imaging device
US9075224B2 (en) Zoom lens and imaging apparatus
EP0620467B1 (en) Wide-angle aspheric zoom lens
US6788454B2 (en) Viewing apparatus having a photographic function
JPH08184759A (en) Zoom lens provided with anamorphic converter
US7075730B2 (en) Zoom lens system and image pickup apparatus including the same
US5245475A (en) Imaging optical system for endoscopes
JP2582435B2 (en) Imaging optical system
JPH05323186A (en) Endoscope
US6633437B1 (en) Zoom lens and photographing apparatus having it
JP6503383B2 (en) Zoom imaging device
US5748381A (en) Real image type zoom finder optical system
JP2004061681A (en) Zoom lens and optical equipment with same
JP2002014282A (en) Endoscopic objective variable power optical system
JPH09203861A (en) Zoom lens
JP3506796B2 (en) Real image type zoom finder
JP6750081B2 (en) Eyepiece and imaging device
JP2000214380A (en) Photographing lens
JP3939949B2 (en) Observation device with photographing function
JPH06102453A (en) Small-sized real image type variable power finder
JP2020181222A (en) Eyepiece and imaging apparatus
JPH03103808A (en) Image pickup optical system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees