JPH0310376B2 - - Google Patents

Info

Publication number
JPH0310376B2
JPH0310376B2 JP57127612A JP12761282A JPH0310376B2 JP H0310376 B2 JPH0310376 B2 JP H0310376B2 JP 57127612 A JP57127612 A JP 57127612A JP 12761282 A JP12761282 A JP 12761282A JP H0310376 B2 JPH0310376 B2 JP H0310376B2
Authority
JP
Japan
Prior art keywords
exchange resin
water
ion exchange
sodium
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57127612A
Other languages
Japanese (ja)
Other versions
JPS5919548A (en
Inventor
Junichi Matsuda
Kazutaka Hirohata
Isao Etsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP57127612A priority Critical patent/JPS5919548A/en
Publication of JPS5919548A publication Critical patent/JPS5919548A/en
Publication of JPH0310376B2 publication Critical patent/JPH0310376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明はアンモニア形復水脱塩装置の処理方法
に関するものであり、再生剤費の低減と再生工程
の簡略化を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment method for an ammonia condensate desalination apparatus, and aims to reduce regenerant costs and simplify the regeneration process.

アンモニア形強酸性陽イオン交換樹脂とOH形
強塩基性陰イオン交換樹脂の混合イオン交換樹脂
を用いてボイラー復水を処理するいわゆるアンモ
ニア形復水脱塩方法は、復水中のアンモニウムイ
オンを除去せずに他の不純物を除去するので、H
形強酸性陽イオン交換樹脂とOH形強塩基性陰イ
オン交換樹脂の混合イオン交換樹脂を用いる、い
わゆるH−OH形復水脱塩方法と比較し、ランニ
ングコストが廉価であり、復水の脱塩処理にアン
モニア形復水脱塩方法が盛んに用いられるように
なつて来た。
The so-called ammonia-type condensate desalination method uses a mixed ion exchange resin of an ammonia-type strongly acidic cation exchange resin and an OH-type strongly basic anion exchange resin to remove ammonium ions from the condensate. H
Compared to the so-called H-OH type condensate desalination method, which uses a mixed ion exchange resin of a strongly acidic cation exchange resin and a strongly basic anion exchange resin of the OH type, the running cost is lower and it is easier to demineralize condensate. Ammonia-type condensate desalination methods have come to be widely used for salt treatment.

アンモニア形復水脱塩装置の通水塔内の強酸性
陽イオン交換樹脂においては、NH4形強酸性陽
イオン交換樹脂で圧到的にアンモニウムイオンが
多量に存在する復水中の微量のナトリウムイオン
をイオン交換除去するのであり、したがつて
NH4形からNa形へとイオン交換平衡を僅かにず
らすだけであるから、当該イオン交換樹脂のナト
リウム分率、すなわちR−Na/R−NH4+R−
Naの値が被処理水のナトリウムリークに直接影
響を与え、Na分率が0.003以上であるとナトリウ
ムイオンがリークし、運転が困難となる。
The strongly acidic cation exchange resin in the water tower of the ammonia type condensate desalination equipment uses the NH4 type strongly acidic cation exchange resin to remove minute amounts of sodium ions from the condensate, which contains a large amount of ammonium ions. ion exchange removes, therefore
Since the ion exchange equilibrium is only slightly shifted from NH 4 form to Na form, the sodium fraction of the ion exchange resin, that is, R-Na/R-NH 4 +R-
The Na value directly affects the sodium leak in the water to be treated, and if the Na fraction is 0.003 or more, sodium ions will leak, making operation difficult.

一方、コンデンサーから海水がリークしない通
常の復水の場合、復水脱塩装置の通水塔の入口の
復水は酸化鉄などのクラツドが存在するもののナ
トリウムイオンなどの不純物イオンは極微量しか
含まれていない。したがつてこのような復水を処
理する場合の通水の終点は、あらかじめ決定した
充分に余裕がある定収量に達した場合か、あるい
は前記クラツドが樹脂層中に捕促されることによ
る圧力損失の増加が主なる要因であり、通水の終
点におけるイオン交換樹脂は不純物イオンがほと
んど吸着しておらず、したがつてイオン交換的見
地からはまだ充分に通水に供することができるも
のである。
On the other hand, in the case of normal condensate where seawater does not leak from the condenser, the condensate at the inlet of the water tower of the condensate desalination equipment contains crud such as iron oxide, but contains only trace amounts of impurity ions such as sodium ions. Not yet. Therefore, when treating such condensate, the end point of water flow is either when a predetermined constant yield with sufficient margin is reached, or when the pressure loss due to the crud being trapped in the resin layer is reached. The main reason is that the ion exchange resin at the end of the water flow has almost no impurity ions adsorbed, and therefore, from an ion exchange standpoint, it can still be used sufficiently for water flow. .

換言すればこのような通水の終点に達した通水
塔の強酸性陽イオン交換樹脂のナトリウム分率は
0.003以下である。
In other words, the sodium content of the strongly acidic cation exchange resin in the water tower that has reached the end point of water flow is
It is 0.003 or less.

従来のアンモニア形復水脱塩装置においては前
述したような定収量あるいは圧力損失の増加が要
因となつて通水の終点に達した混合イオン交換樹
脂でも通常の再生を行なつており、大変不経済な
処理をしていた。
In conventional ammonia type condensate desalination equipment, even the mixed ion exchange resin that has reached the end point of water flow due to the above-mentioned fixed yield or increased pressure loss is regenerated as usual, which is very inconvenient. It was an economical process.

本発明はこの点に鑑みてなされたもので、通水
の終点に達した通水塔の混合イオン交換樹脂のナ
トリウム分率を迅速に分析し、そのナトリウム分
率の値によつては再生剤の通薬を行なわずにふた
たび通水塔に用いることにより再生剤費の低減を
計り、さらに再生工程を簡略化するものである。
The present invention was made in view of this point, and it is possible to quickly analyze the sodium fraction of the mixed ion exchange resin in the water tower that has reached the end point of water flow, and depending on the value of the sodium fraction, the regenerant can be used. By reusing it in the water tower without passing it through, the cost of regenerating agent can be reduced and the regeneration process can be simplified.

すなわち本発明は複数の通水塔からなる通水系
統と、再生系統からなるアンモニア形復水脱塩装
置において、定収量あるいは圧力損失が既定値に
達した通水塔を通水系統から切りはなし、当該通
水塔の混合イオン交換樹脂中の強酸性陽イオン交
換樹脂のナトリウム分率を測定し、当該値が
0.003未満であれば当該混合イオン交換樹脂を逆
洗してクラツドを除去するのみで、再生剤を通薬
することなくそのまま通水塔に充填して復水処理
することを特徴とするアンモニア形復水脱塩装置
の処理方法である。
In other words, the present invention provides an ammonia type condensate desalination apparatus consisting of a water passage system consisting of a plurality of water towers and a regeneration system, in which a water tower whose fixed yield or pressure loss reaches a predetermined value is disconnected from the water passage system, and Measure the sodium fraction of the strongly acidic cation exchange resin in the mixed ion exchange resin of the water tower, and check that the value is
If it is less than 0.003, the mixed ion exchange resin is simply backwashed to remove crud, and the ammonia-type condensate is directly filled into a water tower for condensation treatment without passing a regenerant. This is a processing method for desalination equipment.

以下に本発明を図面を参照して詳細に説明す
る。
The present invention will be explained in detail below with reference to the drawings.

第1図は本発明のフローを示す説明図であり、
図中1,2,3は通水塔であり、当該複数の通水
塔1,2,3によつて通水系統を構成し、4,5
はそれぞれ再生塔および樹脂貯槽であり、当該再
生塔4と樹脂貯槽5によつて再生系統を構成して
いる。なお図面に示した再生塔4は混合イオン交
換樹脂を分離し、次いで上層の陰イオン交換樹脂
と下層の陽イオン交換樹脂を当該再生塔4で再生
するものであるが、場合によつては別にアニオン
再生塔(図示せず)を設置し、再生塔4で分離し
た上層の陰イオン交換樹脂をアニオン再生塔に移
送し、陽イオン交換樹脂は再生塔4で、陰イオン
交換樹脂はアニオン再生塔で再生するごとく構成
した通水系統でもさしつかえない。また図面に示
した実線は液体の流路を、また点線はイオン交換
樹脂スラリーの流路を示す。
FIG. 1 is an explanatory diagram showing the flow of the present invention,
In the figure, 1, 2, and 3 are water towers, and the plurality of water towers 1, 2, and 3 constitute a water system.
are a regeneration tower and a resin storage tank, respectively, and the regeneration tower 4 and resin storage tank 5 constitute a regeneration system. The regeneration tower 4 shown in the drawing separates the mixed ion exchange resin, and then regenerates the anion exchange resin in the upper layer and the cation exchange resin in the lower layer. An anion regeneration tower (not shown) is installed, and the upper layer anion exchange resin separated in the regeneration tower 4 is transferred to the anion regeneration tower.The cation exchange resin is transferred to the regeneration tower 4, and the anion exchange resin is transferred to the anion regeneration tower. A water system configured to regenerate the water can also be used. Further, the solid lines shown in the drawings indicate the flow paths of the liquid, and the dotted lines indicate the flow paths of the ion exchange resin slurry.

このような通水系統と再生系統とからなる復水
脱塩装置を運転するにあたり、復水母管6を用い
て通水塔1,2,3に復水を流入し、各通水塔内
の混合イオン交換樹脂によつて処理し、処理水を
復水母管61から流出する。
When operating a condensate desalination apparatus consisting of such a water passage system and a regeneration system, condensate is flowed into the water passage towers 1, 2, and 3 using the condensate main pipe 6, and the mixed ions in each water passage tower are The treated water is treated with the exchange resin and flows out from the condensate main pipe 61 .

また通水によつて、たとえば通水塔1が定収量
あるいは圧力損失が既定値に達した場合、従来の
復水脱塩装置においては弁操作によつて常法によ
り通水塔1を通水系統から切りはなし、通水塔1
内の混合イオン交換樹脂を樹脂移送管7によつて
再生塔4に移送する。次いで樹脂貯槽5内の通水
済みの混合イオン交換樹脂を樹脂移送管8によつ
て、通水塔1内に充填し、通水を再開する一方、
再生塔4内の混合イオン交換樹脂を無条件に分離
して常法により再生し、再生済みの混合イオン交
換樹脂を樹脂移送管9を用いて樹脂貯槽5に移送
して次の通水塔への移送に待機するという操作を
行なつていた。しかしながら本発明は以下のよう
な操作を行なう。
In addition, when water flow reaches a fixed yield or pressure loss in the water tower 1, for example, in the conventional condensate desalination equipment, the water tower 1 is removed from the water flow system by operating a valve. No cut, water tower 1
The mixed ion exchange resin inside is transferred to the regeneration tower 4 via the resin transfer pipe 7. Next, the mixed ion exchange resin in the resin storage tank 5 through which water has been passed is filled into the water tower 1 through the resin transfer pipe 8, and the water flow is resumed, while
The mixed ion exchange resin in the regeneration tower 4 is unconditionally separated and regenerated by a conventional method, and the regenerated mixed ion exchange resin is transferred to the resin storage tank 5 using the resin transfer pipe 9 and sent to the next water tower. They were waiting for transportation. However, the present invention performs the following operations.

すなわち通水塔1が定収量あるいは圧力損失が
既定値に達した場合、弁操作によつて通水塔1を
通水系統から切りはなすまでは従来と同様である
が、次いで通水塔内の混合イオン交換樹脂を通水
塔の下部に取りつけた空気流入管(図示せず)な
どから空気を流入して充分に混合する。その後樹
脂移送管7を用いて当該混合イオン交換樹脂を再
生塔4に移送するが、この間に弁10を開けて樹
脂採取管11より計量ホツパー12に少量の混合
イオン交換樹脂を採取し、採取し終つたら弁10
を閉める。計量ホツパー12は液は通すがイオン
交換樹脂を通さないサランネツトなどのスクリー
ン13を上部に付設したもので、当該計量ホツパ
ー12により規定量の混合イオン交換樹脂を採取
することができる。
In other words, when the water tower 1 reaches a fixed yield or pressure loss, the process is the same as before until the water tower 1 is disconnected from the water system by valve operation, but then the mixed ion exchange inside the water tower is performed. Air is introduced into the resin through an air inlet pipe (not shown) attached to the bottom of the water tower, and the resin is thoroughly mixed. Thereafter, the mixed ion exchange resin is transferred to the regeneration tower 4 using the resin transfer pipe 7. During this time, the valve 10 is opened and a small amount of mixed ion exchange resin is collected from the resin collection pipe 11 into the weighing hopper 12. When finished, valve 10
Close. The measuring hopper 12 is equipped with a screen 13 such as a saran net on the top that allows the liquid to pass through but does not allow the ion exchange resin to pass through, and the measuring hopper 12 allows a specified amount of the mixed ion exchange resin to be collected.

なお再生塔4に混合イオン交換樹脂を移送し終
えたら常法により、空気、水などで逆洗し、樹脂
中のクラツドを除去する操作を行なう。
After the mixed ion exchange resin has been transferred to the regeneration tower 4, it is backwashed with air, water, etc. in a conventional manner to remove crud in the resin.

一方再生塔4でクラツドを除去する操作を行な
つている間に、前記計量ホツパー12に採取した
混合イオン交換樹脂について以下の操作により、
混合イオン交換樹脂中の強酸性陽イオン交換樹脂
のナトリウム分率を測定する。
On the other hand, while the crud removal operation was being performed in the regeneration tower 4, the mixed ion exchange resin collected in the weighing hopper 12 was subjected to the following operation.
Measure the sodium fraction of the strongly acidic cation exchange resin in the mixed ion exchange resin.

すなわち弁14,15を開けて計量ホツパー1
2内の混合イオン交換樹脂を試験カラム16に充
填し、次いで弁14,15を閉じ弁17,18を
開けて純水配管19から純水を試験カラム16に
流入し、当該カラム内の混合イオン交換樹脂のク
ラツドを逆洗により除去する。次いで弁17,1
8を閉じるとともに、イオン交換樹脂を沈整し、
弁20,21を開けて溶離液管22から約0.2%
のアンモニア水を試験カラム16に一定の流速で
通流し、混合イオン交換樹脂中の強酸性陽イオン
交換樹脂のナトリウムイオンを脱着し、その脱着
液を脱着液管23を介してナトリウム電極を用い
るナトリウムモニター24に通流し、脱着液中の
ナトリウムイオンを測定し、当該強酸性陽イオン
交換樹脂のナトリウム分率をあらかじめ作成した
グラフにより求める。
That is, the valves 14 and 15 are opened and the weighing hopper 1 is
The mixed ion exchange resin from 2 is packed into the test column 16, and then the valves 14 and 15 are closed and the valves 17 and 18 are opened to allow pure water to flow into the test column 16 from the pure water pipe 19, and the mixed ion in the column is Remove crud of replacement resin by backwashing. Then valve 17,1
8, and settle the ion exchange resin.
Open the valves 20 and 21 and dispense approximately 0.2% from the eluent tube 22.
of ammonia water is passed through the test column 16 at a constant flow rate to desorb the sodium ions of the strongly acidic cation exchange resin in the mixed ion exchange resin, and the desorption liquid is passed through the desorption liquid pipe 23 to the sodium ion exchanger using a sodium electrode. The sodium ions in the desorption liquid are measured by flowing through the monitor 24, and the sodium fraction of the strongly acidic cation exchange resin is determined from a graph prepared in advance.

以下にこのナトリウム分率の測定についてさら
に詳細に説明する。
The measurement of the sodium fraction will be explained in more detail below.

ナトリウム電極によるナトリウムイオンの測定
は液中に含まれている微量のナトリウムイオンの
定量に適しており、従来からアンモニア形復水脱
塩装置の処理水のナトリウム濃度の測定に用いら
れている。
Measuring sodium ions using a sodium electrode is suitable for quantifying trace amounts of sodium ions contained in a liquid, and has been conventionally used to measure the sodium concentration of treated water in ammonia-type condensate desalination equipment.

ナトリウム電極による方法はPH電極と同じよう
に検水中に電極を挿入し、電位差によつてナトリ
ウム濃度を測定するものであり、操作が簡単で、
かつ正確である。
The method using a sodium electrode is similar to the PH electrode, in which the electrode is inserted into the sample water and the sodium concentration is measured by the potential difference, and it is easy to operate.
and accurate.

したがつてナトリウム電極を前記ナトリウム分
率の測定に応用できれば迅速に測定結果が得られ
る。
Therefore, if a sodium electrode can be applied to the measurement of the sodium fraction, measurement results can be obtained quickly.

本発明者等は本課題について種々検討した結
果、特に大部分がNH4形で小量がNa形であるよ
うなアンモニア形復水脱塩装置に用いられる強酸
性陽イオン交換樹脂の場合は、検体である強酸性
陽イオン交換樹脂を小型カラムに充填し、たとえ
ばアンモニア水などの溶離液を一定の流速で通液
すると、その脱着液のナトリウム濃度は第2図に
示したような特徴のあるリーク曲線を呈し、かつ
その曲線はナトリウム分率によつて秩序正しく変
化することを知見した。
As a result of various studies on this subject, the present inventors found that, in particular, in the case of strongly acidic cation exchange resins used in ammonia type condensate desalination equipment, where most of the NH 4 form and a small amount of Na form are used, When a strongly acidic cation exchange resin sample is packed into a small column and an eluent such as aqueous ammonia is passed through it at a constant flow rate, the sodium concentration of the desorbed solution has the characteristics shown in Figure 2. It was found that the leakage curve was exhibited and that the curve changed in an orderly manner depending on the sodium content.

なお検体として、強酸性陽イオン交換樹脂と強
塩基性陰イオン交換樹脂の混合イオン交換樹脂を
用いても全く同じように特徴のあるリーク曲線が
得られる。何故ならば強塩基性陰イオン交換樹脂
には陰イオンしか吸着していないから、たとえ検
体に当該陰イオン交換樹脂が混入しても何らの障
害とならないからである。
Note that even if a mixed ion exchange resin of a strongly acidic cation exchange resin and a strongly basic anion exchange resin is used as the specimen, a leak curve with exactly the same characteristics can be obtained. This is because only anions are adsorbed on the strongly basic anion exchange resin, so even if the anion exchange resin is mixed into the sample, it will not cause any trouble.

また溶離液の濃度を適当な濃度とすることによ
り、脱着液を希釈することなく、直接ナトリウム
電極で測定できることも併めて知見した。
We also discovered that by adjusting the concentration of the eluent to an appropriate concentration, the desorption solution could be measured directly with a sodium electrode without diluting it.

本発明におけるナトリウム分率の測定は上述し
たような知見を応用するものであり、前記試験カ
ラム16に充填した混合イオン交換樹脂に約0.2
%のアンモニア水を通流して、脱着液中のナトリ
ウム濃度をナトリウム電極で測定し、ナトリウム
分率が既知の強酸性陽イオン交換樹脂を用いた混
合イオン交換樹脂について前記測定条件と同一条
件下であらかじめ測定した溶離液中のナトリウム
濃度と比較することにより強酸性陽イオン交換樹
脂のナトリウム分率を測定するのである。
The measurement of the sodium fraction in the present invention applies the above-mentioned knowledge, and the mixed ion exchange resin packed in the test column 16 is
% of ammonia water was passed through it, and the sodium concentration in the desorption solution was measured using a sodium electrode. The sodium fraction of the strongly acidic cation exchange resin is measured by comparing it with the sodium concentration in the eluent, which has been measured in advance.

第2図は上述した手法によりあらかじめ作成し
たナトリウムイオンとナトリウム分率の関係図で
あり、ナトリウム分率をそれぞれ0.002、0.004、
0.006に調整した強酸性陽イオン交換樹脂アンバ
ーライト(登録商標、以下同様)200CTにOH形
に調整した強塩基性陰イオン交換樹脂アンバーラ
イトIRA−900を、陽イオン交換樹脂:陰イオン
交換樹脂=2:1の比率で混合した混合樹脂を試
験カラムに充填し、0.2%のアンモニア水をそれ
ぞれに通流し、脱着液のナトリウムイオン量とナ
トリウム分率の関係をグラフで示したものであ
る。
Figure 2 is a diagram of the relationship between sodium ions and sodium fraction prepared in advance using the method described above, with sodium fractions of 0.002, 0.004, and 0.004, respectively.
A strong acid cation exchange resin Amberlite (registered trademark, the same hereinafter) 200CT adjusted to 0.006 and a strong basic anion exchange resin Amberlite IRA-900 adjusted to OH form were added to the cation exchange resin: anion exchange resin = The graph shows the relationship between the amount of sodium ions in the desorption solution and the sodium fraction when test columns were filled with mixed resins mixed at a ratio of 2:1 and 0.2% ammonia water was passed through each column.

このように復水脱塩装置に用いる同一名柄およ
び同一混合比のイオン交換樹脂について第2図の
ようなグラフを作成しておけば当該グラフからナ
トリウム分率を簡単にかつ迅速に測定し得る。
If you create a graph like the one shown in Figure 2 for ion exchange resins of the same name and mix ratio used in condensate desalination equipment, you can easily and quickly measure the sodium fraction from the graph. .

前述したごとく試験カラム16に充填した通水
塔1の混合イオン交換樹脂について第2図を作成
したと同じ条件でアンモニア水を通流し、たとえ
ば溶離開始から20分後の脱着液のナトリウムイオ
ン量が50ppbであれば第2図より、当該混合イオ
ン交換樹脂中の陽イオン交換樹脂のナトリウム分
率は0.002以下であることが解る。
As mentioned above, ammonia water is passed through the mixed ion exchange resin of the water tower 1 packed in the test column 16 under the same conditions as those used in creating FIG. If so, it can be seen from FIG. 2 that the sodium fraction of the cation exchange resin in the mixed ion exchange resin is 0.002 or less.

なおナトリウムイオンを溶離する際の溶離液と
しては塩酸、硫酸等の鉱酸およびアンモニア水等
を用いることができるが、ナトリウム電極による
ナトリウムイオンの測定は水素イオンが防害する
ので、鉱酸を用いる場合は測定する前に中和する
必要があり、したがつて溶離液としてはアンモニ
ア水が好ましく、その濃度は0.2%前後とすると
よい。
Note that mineral acids such as hydrochloric acid, sulfuric acid, and aqueous ammonia can be used as eluents to elute sodium ions; however, when measuring sodium ions with a sodium electrode, hydrogen ions prevent damage, so when using mineral acids, must be neutralized before measurement, therefore aqueous ammonia is preferable as the eluent, and its concentration is preferably around 0.2%.

このような手法により試験カラム16に採取し
た混合イオン交換樹脂中の陽イオン交換樹脂のナ
トリウム分率を測定した後、この値により本発明
は以下の操作を行なう。
After measuring the sodium fraction of the cation exchange resin in the mixed ion exchange resin collected in the test column 16 by such a method, the present invention performs the following operations based on this value.

すなわちナトリウム分率の値が0.003未満であ
れば再生塔4内の混合イオン交換樹脂を再生する
ことなく、樹脂移送管81,8を用いてそのまま
通水塔1にもどすか、あるいは樹脂貯槽5内の再
生済みの混合イオン交換樹脂を樹脂移送管8を用
いて通水塔1に移送し、次いで再生塔4内の混合
イオン交換樹脂を再生することなく、そのまま樹
脂移送管9を用いて樹脂貯槽5に移送し、次の通
水塔への移送に待機する。なお通水塔1への混合
イオン交換樹脂の移送が終了したら、弁操作によ
り通水塔1を通水系統に組み入れ、通水を再開す
る。
In other words, if the value of the sodium fraction is less than 0.003, the mixed ion exchange resin in the regeneration tower 4 is not regenerated and is returned to the water tower 1 as it is using the resin transfer pipes 8 1 and 8, or the mixed ion exchange resin in the resin storage tank 5 is The recycled mixed ion exchange resin is transferred to the water tower 1 using the resin transfer pipe 8, and then transferred to the resin storage tank 5 using the resin transfer pipe 9 without regenerating the mixed ion exchange resin in the regeneration tower 4. and waits for transfer to the next water tower. When the transfer of the mixed ion exchange resin to the water tower 1 is completed, the water tower 1 is incorporated into the water flow system by operating a valve, and water flow is resumed.

一方ナトリウム分率の値が0.003以上の場合は、
樹脂貯槽5内の再生済みの混合イオン交換樹脂を
樹脂移送管8によつて通水塔1に移送し、通水塔
1を通水系統に組み入れて通水を再開し、再生塔
4内の混合イオン交換樹脂を常法により再生し、
再生後樹脂移送管9により再生済みの混合イオン
交換樹脂を樹脂貯槽5に移送し、次の通水塔への
移送に待機する。
On the other hand, if the sodium fraction value is 0.003 or more,
The recycled mixed ion exchange resin in the resin storage tank 5 is transferred to the water tower 1 via the resin transfer pipe 8, and the water tower 1 is incorporated into the water flow system to resume water flow, and the mixed ion exchange resin in the regeneration tower 4 is transferred to the water tower 1. Regenerate the exchanged resin using conventional methods,
After regeneration, the regenerated mixed ion exchange resin is transferred to the resin storage tank 5 by the resin transfer pipe 9, and is placed on standby for transfer to the next water tower.

なお試験カラム16内の混合イオン交換樹脂に
ついては前述したナトリウム分率の測定後、弁2
0,21を閉じ、弁15,25を開けて純水配管
19から当該カラム内に純水を流入して混合イオ
ン交換樹脂を洗浄した後、弁15を閉じ、弁1
7,26を開けて試験カラム16の上下から純水
を流入して、樹脂返送管27、樹脂採取管11を
介して、試験カラム内の混合イオン交換樹脂を再
生塔4に返送する。なおこの返送操作は、再生塔
4内の混合イオン交換樹脂を通水塔1あるいは樹
脂貯槽5へ移送する以前あるいは再生塔4内の混
合イオン交換樹脂を再生する以前に行なつておく
とよい。
Regarding the mixed ion exchange resin in the test column 16, after measuring the sodium fraction described above, the valve 2
0 and 21 are closed, valves 15 and 25 are opened, and pure water flows into the column from the pure water piping 19 to wash the mixed ion exchange resin. After that, the valve 15 is closed, and the valve 1
7 and 26 are opened to allow pure water to flow in from above and below the test column 16, and the mixed ion exchange resin in the test column is returned to the regeneration tower 4 via the resin return pipe 27 and the resin collection pipe 11. This return operation is preferably performed before the mixed ion exchange resin in the regeneration tower 4 is transferred to the water tower 1 or the resin storage tank 5, or before the mixed ion exchange resin in the regeneration tower 4 is regenerated.

また本実施態様においては、混合イオン交換樹
脂中の強酸性陽イオン交換樹脂のナトリウム分率
を測定するに際して、試験カラム16に混合イオ
ン交換樹脂を充填したが、たとえば通水塔1から
再生塔4に移送した混合イオン交換樹脂を当該再
生塔4内で逆洗により分離し、再生塔4の下方部
に付設した取り出しノズル(図示せず)から強酸
性陽イオン交換樹脂のみをとり出し、これを試験
カラム16に充填して、前述と同じようにナトリ
ウム分率を測定してもさしつかえない。なおこの
場合は第2図を作成するに際しては強酸性陽イオ
ン交換樹脂のみとすることは云うまでもない。
In addition, in this embodiment, when measuring the sodium fraction of the strongly acidic cation exchange resin in the mixed ion exchange resin, the test column 16 was filled with the mixed ion exchange resin. The transferred mixed ion exchange resin is separated by backwashing in the regeneration tower 4, and only the strongly acidic cation exchange resin is taken out from a take-out nozzle (not shown) attached to the lower part of the regeneration tower 4 and tested. It is also possible to fill the column 16 and measure the sodium fraction in the same manner as described above. In this case, it goes without saying that only the strongly acidic cation exchange resin is used when creating FIG.

このように本発明においては通水塔1,2,3
から移送される混合イオン交換樹脂中の強酸性陽
イオン交換樹脂のナトリウム分率を測定し、その
値が0.003未満であれば再生することなく、クラ
ツドを除去するのみで再び通水に供するので、再
生剤および再生廃液を中和するに要する酸、アル
カリ等の薬品費を従来の処理方法と比較して約1/
3に低減することができ、かつ再生工程そのもの
も簡略化することができる。
In this way, in the present invention, water towers 1, 2, 3
The sodium fraction of the strongly acidic cation exchange resin in the mixed ion exchange resin transferred from the reactor is measured, and if the value is less than 0.003, the resin is not regenerated and the crud is simply removed and the water is passed through again. The cost of chemicals such as acids and alkalis required to neutralize the regenerating agent and regenerated waste liquid is reduced to approximately 1/2 compared to conventional treatment methods.
3, and the regeneration process itself can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図共に本発明の実施態様を示し、
第1図は本発明のフローを示す説明図であり、第
2図はナトリウム分率が既知の強酸性陽イオン交
換樹脂を用いた混合イオン交換樹脂にアンモニア
水を通流したときにおけるナトリウムイオンのリ
ーク曲線を示したグラフであり、縦軸にナトリウ
ムイオン量、横軸に通流時間を示す。 1,2,3……通水塔、4……再生塔、5……
樹脂貯槽、6……復水母管、7,8,9……樹脂
移送管、10,14,15,17,18,20,
21,25,26……弁、11……樹脂採取管、
12……計量ホツパー、13……スクリーン、1
6……試験カラム、19……純水配管、22……
溶離液管、23……脱着液管、24……ナトリウ
ムモニター、27……樹脂返送管。
Both FIG. 1 and FIG. 2 show embodiments of the present invention,
Figure 1 is an explanatory diagram showing the flow of the present invention, and Figure 2 shows the concentration of sodium ions when aqueous ammonia is passed through a mixed ion exchange resin using a strongly acidic cation exchange resin with a known sodium content. This is a graph showing a leak curve, with the vertical axis showing the amount of sodium ions and the horizontal axis showing the flow time. 1, 2, 3... Water tower, 4... Regeneration tower, 5...
Resin storage tank, 6... Condensate main pipe, 7, 8, 9... Resin transfer pipe, 10, 14, 15, 17, 18, 20,
21, 25, 26... Valve, 11... Resin collection tube,
12...Measuring hopper, 13...Screen, 1
6...Test column, 19...Pure water piping, 22...
Eluent tube, 23... Desorption liquid tube, 24... Sodium monitor, 27... Resin return tube.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の通水塔からなる通水系統と、再生系統
からなるアンモニア形復水脱塩装置において、定
収量あるいは圧力損失が既定値に達した通水塔を
通水系統から切りはなし、当該通水塔の混合イオ
ン交換樹脂中の強酸性陽イオン交換樹脂のナトリ
ウム分率を測定し、当該値が0.003未満であれば
当該混合イオン交換樹脂を逆洗してクラツドを除
去するのみで、再生剤を通薬することなくそのま
ま通水塔に充填して復水処理することを特徴とす
るアンモニア形復水脱塩装置の処理方法。
1. In an ammonia type condensate desalination equipment consisting of a water system consisting of multiple water towers and a regeneration system, the water tower whose fixed yield or pressure loss has reached a predetermined value is disconnected from the water system, and the water tower in question is Measure the sodium fraction of the strongly acidic cation exchange resin in the mixed ion exchange resin, and if the value is less than 0.003, simply backwash the mixed ion exchange resin to remove crud and pass the regenerant through it. A method for treating ammonia-type condensate desalination equipment, which is characterized in that the ammonia-type condensate is directly charged into a water tower and treated as condensate without being washed.
JP57127612A 1982-07-23 1982-07-23 Treatment of desalinator for type-ammonia condensed water Granted JPS5919548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57127612A JPS5919548A (en) 1982-07-23 1982-07-23 Treatment of desalinator for type-ammonia condensed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127612A JPS5919548A (en) 1982-07-23 1982-07-23 Treatment of desalinator for type-ammonia condensed water

Publications (2)

Publication Number Publication Date
JPS5919548A JPS5919548A (en) 1984-02-01
JPH0310376B2 true JPH0310376B2 (en) 1991-02-13

Family

ID=14964391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127612A Granted JPS5919548A (en) 1982-07-23 1982-07-23 Treatment of desalinator for type-ammonia condensed water

Country Status (1)

Country Link
JP (1) JPS5919548A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776722B2 (en) * 1993-03-26 1998-07-16 オルガノ株式会社 Operation method of ammonia type condensate desalination equipment

Also Published As

Publication number Publication date
JPS5919548A (en) 1984-02-01

Similar Documents

Publication Publication Date Title
US5162084A (en) Process for monitoring and controlling an alkanolamine reaction process
US4298696A (en) Regeneration of ion exchange materials
DE1442689A1 (en) Process for the treatment of liquids with ion exchangers
EP0550138B1 (en) Monitoring and control system for selective regeneration of alkanolamine from cation ion exchange resin with sodium hydroxide
CA1114530A (en) Isotope separation
US4564455A (en) Three component resin system and method for purifying aqueous solutions
JPH0310376B2 (en)
US4442229A (en) Regeneration of ion exchange materials
NO742693L (en)
JPS5876147A (en) Regeneration of ion exchange resin
JP2002361247A (en) Method for manufacturing pure water
JPH0310377B2 (en)
JPH055998Y2 (en)
US3585127A (en) Method for treating water by ion exchange
Crosby III et al. New techniques of water sampling for carbon 14 analysis
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JPH0439382B2 (en)
JPH0363439B2 (en)
JP3066204B2 (en) Operation method of ammonia type condensate desalination equipment
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP7105619B2 (en) Method for recovering boron from wastewater containing boron
RU1787526C (en) Method of regeneration of ion-exchange resin in block-design desalination plant of nuclear power station condensate system
JPS6036829B2 (en) Condensate treatment method
JPH0437738B2 (en)
JPH07116526A (en) Storage method for ion exchange resin and operation preparation method for mixed bed type desalting device