JPH03103748A - Instrument and method for measuring viscosity of fluid - Google Patents

Instrument and method for measuring viscosity of fluid

Info

Publication number
JPH03103748A
JPH03103748A JP24065789A JP24065789A JPH03103748A JP H03103748 A JPH03103748 A JP H03103748A JP 24065789 A JP24065789 A JP 24065789A JP 24065789 A JP24065789 A JP 24065789A JP H03103748 A JPH03103748 A JP H03103748A
Authority
JP
Japan
Prior art keywords
viscosity
fluid
container
shaft
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24065789A
Other languages
Japanese (ja)
Other versions
JP2758454B2 (en
Inventor
Mitsuhiro Sakawa
坂輪 光弘
Asayuki Nakagawa
朝之 中川
Soichiro Inoue
総一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUSOKU KENKYUSHO KK
Nippon Steel Corp
Original Assignee
TOUSOKU KENKYUSHO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUSOKU KENKYUSHO KK, Nippon Steel Corp filed Critical TOUSOKU KENKYUSHO KK
Priority to JP24065789A priority Critical patent/JP2758454B2/en
Publication of JPH03103748A publication Critical patent/JPH03103748A/en
Application granted granted Critical
Publication of JP2758454B2 publication Critical patent/JP2758454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure the viscosity of fluid under high-temp. and high-pressure conditions by putting fluid for viscosity measurement in a measuring vessel made of a metal, heating and stirring the fluid and measuring the viscosity of the fluid from the relative positional deviation of a driving shaft with a magnet and a load shaft with a magnet. CONSTITUTION:The solid which is liquid at ordinary temp. or is fluidized by heating the same up to a specified temp. is inserted into the vessel 11 for viscosity measurement provided in a hermetic vessel V made of a nonmagnetic metal and the viscosity thereof is measured by operating a stirrer 10 and a heating furnace 12. The stirrer 10 is rotated by an external magnetic rotor 2 existing in the outside part of the hermetic vessel V to apply rotating torque to the driving shaft 4 with a magnet, the torsion shaft 6 and the load shaft 6 with a magnet, thereby rotating these shafts. The torsion quantity of the torsion shaft 6 at various temps. is detected by magnetic detectors 7, 8 from the outside of the hermetic vessel V. The phase difference of the detected values is converted to the viscosity of the fluid by a microcomputer 14.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高温において高圧の不活性ガス雰囲気あるいは
可燃性ガス高圧雰囲気の条件のもとて流体の粘度を測定
する装置および方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an apparatus and method for measuring the viscosity of a fluid under conditions of a high-temperature, high-pressure inert gas atmosphere or a high-pressure flammable gas atmosphere. .

[従来の技術] 流体を高圧あるいは真空状態で温度可変下で扱う工業で
はプラント設計七、これらの状態下での粘度測定は不可
欠である。たとえば高分子、石油化学のプラント設計、
近年では石炭液化のプラント設計でも粘度の測定は必要
である。しかし現実にはプラント操業条件下での粘度測
定はむずかしく、常圧1での測定結果を外挿するとかの
方法がとられてきた。
[Prior Art] In industries where fluids are handled under high pressure or vacuum conditions and under variable temperature conditions, viscosity measurements under these conditions are essential for plant design. For example, polymer and petrochemical plant design,
In recent years, viscosity measurement is also required in coal liquefaction plant design. However, in reality, it is difficult to measure viscosity under plant operating conditions, and methods such as extrapolating measurement results at normal pressure 1 have been used.

最近高圧下での粘度測定をオートクレープ内に粘度計を
設置する方法(千葉他;燃料協会誌;蝕(4),P26
5、1986)で行なっている例がある。しかしこの方
法では測定を目視するための窓を設けること、あるいは
測定信−弓を容器外に取り出すためのリード線孔を設け
る必要があり、特に水素等の可燃性ガス雰囲気において
測定を行なう場合には安全上充分ではない。
Recently, a method of installing a viscometer in an autoclave to measure viscosity under high pressure (Chiba et al.; Journal of Japan Fuel Association; Eclipse (4), p. 26)
5, 1986). However, with this method, it is necessary to provide a window to visually observe the measurement or a lead wire hole to take the measurement signal out of the container, which is especially important when performing measurements in an atmosphere of flammable gas such as hydrogen. is not sufficient for safety.

また、粘度の検出方法として、粘度測定液の中に没清し
四転子(ローター)にかかるトルクを一定にするための
回転子の回転数を変化させている。しかしこのような方
法では測定系を一定の攪拌条件とすることは不可能であ
り、この点に関しては特に化学反応を仔う系の粘度測定
においては反応系の均一攪拌という点で問題がある。
In addition, as a method for detecting viscosity, the liquid is immersed in a viscosity measurement liquid and the rotational speed of a rotor is varied in order to keep the torque applied to the rotor constant. However, with this method, it is impossible to maintain constant stirring conditions in the measurement system, and in this regard, there is a problem in uniformly stirring the reaction system, especially when measuring the viscosity of a system involving a chemical reaction.

[発明が解決しようとする課題] 高温高圧状態において流体の粘度をitIl定する場合
は、安全L雰囲気が不活性ガス(N2. Ar, ll
e等)であろうと可燃性ガス(1!2, CIL . 
Co専〉であろうと,粘度を測定する容器は密閉状態を
保たなければならない。このため高温・高圧の条件で流
体の粘度を測定するためには、耐圧容器内で測定を行な
う必要かあるが、常圧下で粘度の測定を行なう場合に用
いられる粘度の検出機構を、容積の限られた高圧容器内
に入れることは現実的に不可能である。
[Problems to be Solved by the Invention] When determining the viscosity of a fluid in a high temperature and high pressure state, the safe L atmosphere must be an inert gas (N2.
combustible gas (1!2, CIL.e, etc.).
Even if the container is for Co only, the container in which the viscosity is to be measured must be kept tightly closed. Therefore, in order to measure the viscosity of a fluid under conditions of high temperature and high pressure, it is necessary to perform the measurement in a pressure-resistant container, but the viscosity detection mechanism used when measuring viscosity under normal pressure is It is practically impossible to put it in a limited high-pressure container.

本発明はかかるa”sを解決し、高温・高圧条件で流体
の粘度測定装置および測定方法を提供することを目的と
する。
It is an object of the present invention to solve this problem and provide a device and method for measuring fluid viscosity under high temperature and high pressure conditions.

[3題を麻決するための千段] 本発明は、粘度測定用の流体を入れる金属製測定容器と
、粘度測定系と、前記測定容器および前記粘度測定系を
収納する非磁性の密閉容器と,前記粘度測定系が承直に
上部から前記密閉容器内壁直下に設置した内部磁気回転
子と駆動軸と捻れ軸と負荷軸と前記測定容器中に浸漬さ
れる攪拌機とを接続した構造であるとともに前記駆動軸
および前記負荷軸に磁石を設置した構造であり、更に前
記密閉容器の外部で前記内部回転子と相対する位置に設
置した外部磁気回転子とこれを駆動するモーターと、前
記駆動軸および前記負荷軸に設置した磁石の磁気を検出
する2個の磁気検出器と、磁気検出器から生じる電流を
記録する記録計と、前記密閉容器の側聖部に設けた温度
測定部に設置した温度ぶで測定される温度および前記磁
気検出益から生じるl′ニ流とを一定の間隔で計測し、
測定結果等をCRTおよびプリンタに出刀し、および磁
気媒体に記録する計測システムと、前記測定容器を前記
密閉容器の外部から一定の温度に;レ1御することかり
能な加熱炉とからなることを特徴とする流体粘度測定装
置であり、 また非磁性で金属製の密閉容器中に設置した粘度測定用
の測定容器中に常温で流体または一定の温度まで加熱す
ることにより流動化する固体を神大し、前記流体を攪拌
機で回転させて前記流体の粘度を測定するにあたり,、
前記攪拌機を密閉容器の外部にある外部磁気回転子を回
転させることにより前記密閉容器の内部で前記外部磁気
回転子に相対する位置でかつ前記攪拌機に磁石を設孜し
た駆動軸と捻れ軸と磁石を設置した負荷軸により接続さ
れている内部磁気回転子に回転トルクを与えて回転させ
、各種温度における捻れ軸の捻れ1j【を前記密閉容藩
の外部から2個の磁気検出器によって検出し、この検出
値に基いて粘度を求めることを特徴とする流体の粘度測
定方法である。
[A Thousand Steps to Solve Three Problems] The present invention comprises a metal measurement container containing a fluid for viscosity measurement, a viscosity measurement system, and a non-magnetic airtight container housing the measurement container and the viscosity measurement system. , the viscosity measurement system has a structure in which an internal magnetic rotor, a drive shaft, a torsion shaft, a load shaft, and a stirrer immersed in the measurement container are directly connected from the top directly below the inner wall of the closed container; It has a structure in which magnets are installed on the drive shaft and the load shaft, and further includes an external magnetic rotor and a motor for driving the external magnetic rotor that is installed outside the sealed container at a position facing the internal rotor, and the drive shaft and the load shaft. Two magnetic detectors that detect the magnetism of the magnet installed on the load shaft, a recorder that records the current generated from the magnetic detector, and a temperature measurement unit installed in the side part of the sealed container. measuring the temperature measured by the bu and the l' current resulting from the magnetic detection gain at regular intervals;
It consists of a measurement system that sends measurement results to a CRT and printer and records them on a magnetic medium, and a heating furnace that can control the measurement container to a constant temperature from the outside of the sealed container. This is a fluid viscosity measurement device characterized by the following: A fluid at room temperature or a solid that becomes fluidized by heating to a certain temperature is placed in a viscosity measurement container placed in a non-magnetic metal closed container. In measuring the viscosity of the fluid by rotating the fluid with a stirrer,
A drive shaft, a torsion shaft, and a magnet are installed in the stirrer at a position opposite to the external magnetic rotor inside the hermetic container by rotating an external magnetic rotor located outside the hermetic container. A rotational torque is applied to an internal magnetic rotor connected by a load shaft installed with the rotor, and the torsion of the torsion shaft at various temperatures is detected by two magnetic detectors from the outside of the sealed container, This is a fluid viscosity measuring method characterized by determining the viscosity based on this detected value.

[作用] 以下図而を用いて本発明の詳細を説明する。[Effect] The details of the present invention will be explained below using the following illustrations.

第1図に本発明に係わる装置の模式図を示す。FIG. 1 shows a schematic diagram of an apparatus according to the present invention.

金属製の測定容器1lに常温で液体または常温で固体で
加熱により溶融する性質をもつ物質を入れてから、流体
の攪拌に十分な機能を有する攪拌翼の付いた攪拌機IO
をセットする。攪拌機lOは負荷軸6に接続される。負
荷軸6には磁石8′が設置されており、捻れ軸5を介し
て磁石7′付き駆動軸4と接続される。磁石付き駆動軸
4には内部磁気回転子3が接続されており、駆動用モー
ター1により駆動する外部磁気回転子2によって回転す
る。磁石付き駆動軸4が回転するとそれに伴って磁石付
き負荷軸6が回転し、磁石付き負荷軸6に流体の粘度に
よって生じるところのトルクがかかり、このトルクによ
って捻れ軸5に捻れが生じ、結果として磁石付き駆動軸
4と磁石付き負荷軸6の相対位置にずれが生じる。この
ずれから流体の粘度を測定する。
After putting a substance that is liquid at room temperature or solid at room temperature and has the property of melting when heated into a 1 liter metal measuring container, use a stirrer IO equipped with stirring blades with sufficient function to stir the fluid.
Set. The stirrer lO is connected to the load shaft 6. A magnet 8' is installed on the load shaft 6, and is connected to the drive shaft 4 with a magnet 7' via the torsion shaft 5. An internal magnetic rotor 3 is connected to the magnetized drive shaft 4 and is rotated by an external magnetic rotor 2 driven by the drive motor 1 . When the drive shaft 4 with a magnet rotates, the load shaft 6 with a magnet rotates, and a torque generated by the viscosity of the fluid is applied to the load shaft 6 with a magnet, and this torque causes twisting of the torsion shaft 5, resulting in A deviation occurs in the relative positions of the magnet-equipped drive shaft 4 and the magnet-equipped load shaft 6. The viscosity of the fluid is measured from this deviation.

本発明では前記測定容”Xi I 1とその上部の粘度
測定系とは、非磁性の金属製密閉容器(圧力容8)V内
に収納されている。
In the present invention, the measurement volume "Xi I 1" and the viscosity measurement system above it are housed in a non-magnetic metal closed container (pressure volume 8) V.

磁石イ・1き駆動軸4および磁石付き負荷軸6に取り付
けられた磁石7’,8’は、軸周上で互いに180゜、
あるいは90°のように一定の角度をなすように設置さ
れる。磁Zi付き耶動軸4と磁石付き賃荷軸6に取り付
けられる磁石7 ’,8 ’の個数は同数であり、隣り
合う磁石は互いに逆極をなさなければならない。磁界の
強度は、磁石7 ’,8 ’ と磁気検出器7.8間を
隔てる金屈製の圧力容器Vによって減衰されても磁気検
出器に誘導起電力を生しさせ、記録計に記録可能な強度
を持つ程度に強い磁界を持つことが必要である。また、
すべての磁石は同じ程度の強さを持っていることが必要
である。
The magnets 7' and 8' attached to the magnet A-1 drive shaft 4 and the magnet-equipped load shaft 6 are oriented at 180 degrees to each other on the shaft circumference.
Alternatively, they are installed at a constant angle such as 90°. The numbers of magnets 7' and 8' attached to the sliding shaft 4 with magnet Zi and the load shaft 6 with magnet are the same, and adjacent magnets must have opposite polarities. Even if the strength of the magnetic field is attenuated by the pressure vessel V made of Kinkuku that separates the magnets 7', 8' and the magnetic detector 7.8, it still causes an induced electromotive force in the magnetic detector and can be recorded in the recorder. It is necessary to have a magnetic field strong enough to have a certain strength. Also,
It is necessary that all magnets have the same degree of strength.

磁気検出器7と8は磁性体を芯として導線を捲いた誘導
コイルであり、変動磁界中に置かれた場合には磁界の強
さに応じた誘導起電力を生じる。
The magnetic detectors 7 and 8 are induction coils having a magnetic core and a conductive wire wound around them, and when placed in a fluctuating magnetic field, generate an induced electromotive force depending on the strength of the magnetic field.

磁石付き駆動軸4および磁石付き負荷軸6−ヒに同程度
の強さを持つ磁石を前記の位置関係で設置した場合に、
両磁石の四転によって磁気検出器7と8の誘導コイルに
生しる誘導起電力による電流は位相検出藩9によってど
ちらも正弦波として観測される。
When magnets with the same strength are installed on the drive shaft 4 with magnet and the load shaft 6-H with magnet in the above positional relationship,
Currents due to induced electromotive force generated in the induction coils of the magnetic detectors 7 and 8 due to the four rotation of both magnets are both observed by the phase detection unit 9 as a sine wave.

この内、磁気検出器7によって生じた正弦波から駆動軸
4の回転数、また磁気検出器8によって生した正弦波か
ら0荷軸6および攪拌機Inの回転数および回転速度を
知ることができる。さらに磁気検出器7および磁気検出
器8のそれぞれの疋弦波の位相差は、捻れ袖5に捻れを
生じさせる流体の粘度とある特定の関係にあるので、こ
の位相差と液体の粘度の関係を粘度の標準となる液体で
求めておけば、磁気検出器7および磁気検出器8のそれ
ぞれから生じる正弦波の位相差から測定流体の粘度値に
換算することができる。
Among these, the rotational speed of the drive shaft 4 can be determined from the sine wave generated by the magnetic detector 7, and the rotational speed and rotational speed of the zero load shaft 6 and the stirrer In can be determined from the sine wave generated by the magnetic detector 8. Furthermore, since the phase difference between the respective twisted chord waves of the magnetic detector 7 and the magnetic detector 8 has a certain relationship with the viscosity of the fluid that causes twisting in the twisting sleeve 5, there is a relationship between this phase difference and the viscosity of the liquid. If it is determined using a liquid that serves as a viscosity standard, it can be converted into the viscosity value of the measured fluid from the phase difference between the sine waves generated from the magnetic detectors 7 and 8, respectively.

この位相検出器9によって出力される前記位相差を流体
の粘度に換算することおよび1)『記換算によって求め
られた流体の粘度および測定温度等の計測されたデータ
のリアルタイムでのCRTおよびプリンタ17への出力
および磁気媒体への記録は、マイクロコンピュータ14
によって行なう。
Converting the phase difference outputted by the phase detector 9 into the viscosity of the fluid; The microcomputer 14 performs output to and records onto the magnetic medium.
It is done by

また、本装1dは測定容器IIを加熱炉12内に設置す
れば常温から測定容rv I Iの耐熱温度までの加熱
条件下における流体の粘度の測定が可能であり,同時に
測定容器内を100 Paまでのj′(空条件、あるい
は不活性ガスまたは可燃性ガスによる測定容器11の耐
LE圧力までの加圧条件下での流体の粘度測定を行なう
ことが可能である。なお、l3は温度測定番、15は温
度コントローラ、16は密閉容訝の外壁部に設けた温度
計である。
In addition, this device 1d can measure the viscosity of a fluid under heating conditions from room temperature to the heat-resistant temperature of the measurement container II by installing the measurement container II in the heating furnace 12. It is possible to measure the viscosity of the fluid under empty conditions or pressurized conditions up to the LE pressure of the measurement container 11 using inert gas or flammable gas. Note that l3 is the temperature Measurement number 15 is a temperature controller, and 16 is a thermometer provided on the outer wall of the sealed volume.

測定容器11の材質は、磁気検出能、耐熱・耐圧能専か
ら非磁性、高耐熱性、高強度金属を用いる必要がある。
As the material of the measurement container 11, it is necessary to use a non-magnetic, high heat resistant, and high strength metal due to its magnetic detection ability, heat resistance, and pressure resistance.

このような観点から測定容器11の材質としてはSUS
316が用いられる。
From this point of view, SUS is selected as the material for the measurement container 11.
316 is used.

[夫施例] 第2図に第1図に示した装;dを用いて石炭スラリーの
粘度を測定した結果を示す。+00メッシュ以下に粉砕
した石炭をタレオソートnbとアントラセン浦を屯1辻
比でl:1に混合した溶剤に混ぜた。石炭の濃度をOか
ら50%まで変化させて、粘度を測定した結果である。
[Example] Fig. 2 shows the results of measuring the viscosity of coal slurry using the equipment shown in Fig. 1. Coal pulverized to a size of +00 mesh or less was mixed with a solvent in which Taleosote nb and Anthraceneura were mixed at a ratio of 1:1. These are the results of measuring viscosity while varying the concentration of coal from O to 50%.

温度を80℃まで変えて測定した。この測定は常圧下で
ある。第3図は温度450℃まで変化させ、112圧力
下の粘度測定結果である。石炭スラリー中の石炭濃度は
40%である。
Measurements were made at varying temperatures up to 80°C. This measurement is under normal pressure. FIG. 3 shows the results of viscosity measurement at a temperature of 450°C and a pressure of 112°C. The coal concentration in the coal slurry is 40%.

[発明の効果] 本発明は非接触の状態で流体の粘度を測定可能な装置お
よび方法を採用した結果、高温高圧丁における流体の粘
度の測定か可能となり、プラントにおける配管内の流体
の移動に関し定量的な判断に利川できることとなり、そ
のT業上の効果は極めて大きい。
[Effects of the Invention] As a result of the present invention adopting an apparatus and method capable of measuring the viscosity of a fluid in a non-contact state, it is possible to measure the viscosity of a fluid in a high-temperature, high-pressure pipe, and this invention is useful for the movement of fluid in piping in a plant. This will enable Ikawa to make quantitative decisions, which will have an extremely large effect on the T industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本装置の模式図、第2図、第3[シ1は石炭ス
ラリーの粘度測定結果であり,第2図は室素ガス常圧下
、第3図は窒素ガス7Pa加圧−Fで450℃までの粘
度測定結果である。 1・・・駆動用モーター 2・・・外部磁気回転子、3
・・・内部磁気回転子、4・・・磁石付き駆動軸、5・
・・捻れ軸,6・・・磁石付き1l荷軸、7.8・・・
磁気検出益、7’,8’・・・磁石、9・・・位相検出
器、10・・・攪拌機、I +−・・測定容器、12・
・・加熱夕戸、13・・・温度測定番. + 4 =−
マイクロコンピュータ,!5・・・温度コントローラ、
I 6 ”’ 泥度計,+7−・・プリンタ、■・・・
密閉容器。
Figure 1 is a schematic diagram of this device, Figures 2 and 3 are the results of measuring the viscosity of coal slurry, Figure 2 is the room gas under normal pressure, and Figure 3 is nitrogen gas under 7 Pa pressure These are the viscosity measurement results up to 450°C. 1... Drive motor 2... External magnetic rotor, 3
... Internal magnetic rotor, 4... Drive shaft with magnet, 5.
...Twisted shaft, 6...1L load shaft with magnet, 7.8...
Magnetic detection gain, 7', 8'... Magnet, 9... Phase detector, 10... Stirrer, I +-... Measuring container, 12.
...Heating door, 13...Temperature measurement number. + 4 =-
Microcomputer! 5...Temperature controller,
I 6 ”' Mud meter, +7-...Printer, ■...
Closed container.

Claims (1)

【特許請求の範囲】 1、粘度測定用の流体を入れる金属製測定容器と、粘度
測定系と、前記測定容器および前記粘度測定系を収納す
る非磁性の密閉容器と、前記粘度測定系が垂直に上部か
ら前記密閉容器内壁直下に設置した内部磁気回転子と駆
動軸と捻れ軸と負荷軸と前記測定容器中に浸漬される攪
拌機とを接続した構造であるとともに前記駆動軸および
前記負荷軸に磁石を設置した構造であり、更に前記密閉
容器の外部で前記内部回転子と相対する位置に設置した
外部磁気回転子とこれを駆動するモーターと、前記駆動
軸および前記負荷軸に設置した磁石の磁気を検出する2
個の磁気検出器と、磁気検出器から生じる電流を記録す
る記録計と、前記密閉容器の側壁部に設けた温度測定部
に設置した温度計で測定される温度および前記磁気検出
器から生じる電流とを一定の間隔で計測し、測定結果等
をCRTおよびプリンタに出力し、および磁気媒体に記
録する計測システムと、前記測定容器を前記密閉容器の
外部から一定の温度に制御することが可能な加熱炉とか
らなることを特徴とする流体粘度測定装置。 2、非磁性で金属製の密閉容器中に設置した粘度測定用
の測定容器中に常温で流体または一定の温度まで加熱す
ることにより流動化する固体を挿入し、前記流体を攪拌
機で回転させて前記流体の粘度を測定するにあたり、前
記攪拌機を密閉容器の外部にある外部磁気回転子を回転
させることにより前記密閉容器の内部で前記外部磁気回
転子に相対する位置でかつ前記攪拌機に磁石を設置した
駆動軸と捻れ軸と磁石を設置した負荷軸により接続され
ている内部磁気回転子に回転トルクを与えて回転させ、
各種温度における捻れ軸の捻れ量を前記密閉容器の外部
から2個の磁気検出器によって検出し、この検出値に基
いて粘度を求めることを特徴とする流体の粘度測定方法
[Scope of Claims] 1. A metal measurement container containing a fluid for viscosity measurement, a viscosity measurement system, a non-magnetic sealed container that houses the measurement container and the viscosity measurement system, and the viscosity measurement system arranged vertically. It has a structure in which an internal magnetic rotor, a drive shaft, a torsion shaft, a load shaft, and a stirrer immersed in the measurement container are connected from the top directly below the inner wall of the sealed container, and the drive shaft and load shaft are connected to each other. It has a structure in which magnets are installed, and further includes an external magnetic rotor installed outside the sealed container at a position facing the internal rotor, a motor for driving the rotor, and magnets installed on the drive shaft and the load shaft. Detecting magnetism 2
a magnetic detector, a recorder that records the current generated from the magnetic detector, a temperature measured by a thermometer installed in a temperature measuring section provided on the side wall of the sealed container, and a current generated from the magnetic detector. A measurement system that measures the temperature at regular intervals, outputs the measurement results to a CRT and printer, and records them on a magnetic medium, and is capable of controlling the temperature of the measurement container to a constant temperature from the outside of the sealed container. A fluid viscosity measuring device characterized by comprising a heating furnace. 2. Insert a fluid at room temperature or a solid that becomes fluidized by heating to a certain temperature into a viscosity measurement container placed in a non-magnetic metal closed container, and rotate the fluid with a stirrer. In measuring the viscosity of the fluid, the stirrer is placed at a position facing the external magnetic rotor inside the closed container by rotating an external magnetic rotor outside the closed container, and a magnet is placed on the stirrer. A rotating torque is applied to the internal magnetic rotor, which is connected by a driven shaft, a torsion shaft, and a load shaft equipped with a magnet, to rotate it.
A method for measuring the viscosity of a fluid, characterized in that the amount of twist of a torsion shaft at various temperatures is detected from the outside of the sealed container using two magnetic detectors, and the viscosity is determined based on the detected values.
JP24065789A 1989-09-19 1989-09-19 Fluid viscosity measuring device and measuring method Expired - Lifetime JP2758454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24065789A JP2758454B2 (en) 1989-09-19 1989-09-19 Fluid viscosity measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24065789A JP2758454B2 (en) 1989-09-19 1989-09-19 Fluid viscosity measuring device and measuring method

Publications (2)

Publication Number Publication Date
JPH03103748A true JPH03103748A (en) 1991-04-30
JP2758454B2 JP2758454B2 (en) 1998-05-28

Family

ID=17062756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24065789A Expired - Lifetime JP2758454B2 (en) 1989-09-19 1989-09-19 Fluid viscosity measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP2758454B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260667A (en) * 1994-03-17 1995-10-13 Ngk Insulators Ltd Method and device for measuring high temperature viscosity
EP0968811A1 (en) * 1998-07-03 2000-01-05 Hilger u. Kern GmbH Dynamic mixing tube
CN103217362A (en) * 2013-03-15 2013-07-24 中国海洋石油总公司 Drilling fluid rheological property measurement device and measurement method
CN105223108A (en) * 2015-10-29 2016-01-06 重庆科技学院 A kind of oil viscosity measurement mechanism and measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260667A (en) * 1994-03-17 1995-10-13 Ngk Insulators Ltd Method and device for measuring high temperature viscosity
EP0968811A1 (en) * 1998-07-03 2000-01-05 Hilger u. Kern GmbH Dynamic mixing tube
CN103217362A (en) * 2013-03-15 2013-07-24 中国海洋石油总公司 Drilling fluid rheological property measurement device and measurement method
CN105223108A (en) * 2015-10-29 2016-01-06 重庆科技学院 A kind of oil viscosity measurement mechanism and measuring method

Also Published As

Publication number Publication date
JP2758454B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
CN102713560B (en) Probe and method for obtaining rheological property value
Taylor Phase equilibria in the system FeO-Fe2O3-TiO2 AT 1300° C.
US3875791A (en) Variable shear rate, wide dynamic range true indicating viscometer
US4594883A (en) Monitoring physical properties of a fluid
Chen et al. Development of controlled hydrodynamic techniques for corrosion testing
US4557142A (en) Apparatus and method for real-time measurement of drilling fluid properties
US2624198A (en) Flowmeter
US10371598B1 (en) High sensitivity bearing tester and systems thereof
JPH03103748A (en) Instrument and method for measuring viscosity of fluid
JPH0621850B2 (en) Slurry viscometer and method for measuring slurry viscosity
JP4883142B2 (en) Reaction liquid viscosity measuring apparatus, reaction liquid manufacturing apparatus, and reaction liquid manufacturing method
JP2766929B2 (en) Non-destructive inspection equipment
JPS61502488A (en) Rheological property measuring device
US4499753A (en) Rotational viscometer for high-pressure high-temperature fluids
JPH09159596A (en) Viscosity measuring method and device
Gregg et al. A variable-volume optical pressure-volume-temperature cell for high-pressure cloud points, densities, and infrared spectra, applicable to supercritical fluid solutions of polymers up to 2 kbar
CA2868847A1 (en) Non-contact torque measurement apparatus and method
US4589782A (en) Thermocentrifugometric analysis
CN213022742U (en) Rotational viscometer for measuring sand fracturing fluid
CN106018259A (en) Ultrasonic sample corrosion apparatus
JPH01147360A (en) Method and device for detecting deterioration
CN107870185A (en) Powdery type solid concentration real-time measurement apparatus and method in a kind of liquid
EP0128590B1 (en) Thermocentrifugometric analyzer
CN205844150U (en) A kind of corrosion sound Sample devices
JP2561578Y2 (en) Detector of rotating body in closed container