JPH03103397A - High-strength diamond - Google Patents
High-strength diamondInfo
- Publication number
- JPH03103397A JPH03103397A JP24262789A JP24262789A JPH03103397A JP H03103397 A JPH03103397 A JP H03103397A JP 24262789 A JP24262789 A JP 24262789A JP 24262789 A JP24262789 A JP 24262789A JP H03103397 A JPH03103397 A JP H03103397A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- group
- elements
- strength
- additive element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 82
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 77
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000012808 vapor phase Substances 0.000 claims abstract description 14
- 230000000737 periodic effect Effects 0.000 claims abstract description 9
- 229910052776 Thorium Inorganic materials 0.000 claims abstract description 5
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 5
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 4
- 229910052752 metalloid Inorganic materials 0.000 claims description 7
- 238000001308 synthesis method Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 34
- 239000002994 raw material Substances 0.000 abstract description 7
- 239000000654 additive Substances 0.000 abstract description 6
- 230000000996 additive effect Effects 0.000 abstract description 6
- 150000001875 compounds Chemical class 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000007787 solid Substances 0.000 abstract description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 2
- 230000005284 excitation Effects 0.000 abstract description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 230000001678 irradiating effect Effects 0.000 abstract 3
- 150000002894 organic compounds Chemical class 0.000 abstract 1
- 238000005520 cutting process Methods 0.000 description 20
- 239000002184 metal Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000000678 plasma activation Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は切削工具や掘削工具に適用できる高強度気相合
成ダイヤモンドに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-strength vapor-phase synthetic diamond that can be applied to cutting tools and drilling tools.
ダイヤモンドの微粉末と金属バインダーを超高圧下で焼
結して作製する焼結ダイヤモンドが非鉄金属の切削工具
,ドリルビット,線引ダイス等に使用されている。また
近年低圧下の気相中より合或された気相合成ダイヤモン
ドを切削工具や掘削工具に適用することが検討されてい
るが、未だ十分な性能が得られていなかった。Sintered diamond, which is produced by sintering fine diamond powder and a metal binder under ultra-high pressure, is used in non-ferrous metal cutting tools, drill bits, wire drawing dies, etc. In recent years, the application of vapor-phase synthetic diamonds synthesized in a gas phase under low pressure to cutting tools and drilling tools has been considered, but sufficient performance has not yet been achieved.
一般に用いられている焼結ダイヤモンドには耐熱性が劣
るという欠点があった。これはダイヤモンド粒子と金属
バインダーとの界面においてダイヤモンドの黒鉛化が生
じること、および両者の間の熱膨張率の差に起因する熱
応力によるものと考えらる。この欠点を改善するために
焼結体を酸処理して金属パインダーを除去することが提
案されているが、除去された金属の部分が空隙となるた
めに耐熱性は向上するが強度が低下してしまうという欠
点があった。また結合材としてSi及び/またはSiC
を含有する耐熱性の焼結ダイヤモンドも開発されている
が、ダイヤモンド粒子同士の結合が弱く、耐摩耗性に劣
ると言う問題がある。一方気相合成ダイヤモンドは実質
的にダイヤモンドのみからなり、結合材を全く含有しな
いため、耐熱性は良好である。しかし、ダイヤモンド粒
子同士の結合が、超高圧で焼結した焼結ダイヤモンドの
ようにネッキングにより粒界で原子の相互拡散が生じな
いために弱く、強度が低いという欠点があった。The commonly used sintered diamond has the disadvantage of poor heat resistance. This is considered to be due to graphitization of diamond occurring at the interface between the diamond particles and the metal binder, and thermal stress caused by the difference in thermal expansion coefficient between the two. In order to improve this drawback, it has been proposed to treat the sintered body with acid to remove the metal binder, but since the removed metal parts become voids, the heat resistance improves but the strength decreases. There was a drawback that Also, Si and/or SiC can be used as a bonding material.
A heat-resistant sintered diamond containing . On the other hand, vapor-phase synthetic diamond consists essentially only of diamond and does not contain any binder, so it has good heat resistance. However, the bond between the diamond particles is weak because atoms do not interdiffuse at the grain boundaries due to necking, unlike in sintered diamond sintered under ultra-high pressure, resulting in low strength.
本発明者らは焼結ダイヤの欠点である耐熱性を改善し、
かつ気相合或ダイヤの機械的強度を向上させるために鋭
意検討を重ねた結果、本発明に至ったのである。即ち、
気相合或法で合戒されるダイヤモンドにおいて周期律表
第IVa族,va族,VIa族、VIIa族、VIII
族の金属元素および周期律表第mb族.■b族,Vb族
の金属元素並びに半金属元素の中から選ばれる少なくと
も一つ以上の元素を含有し、かつその含有量が原子%で
o. ooi%以上2.0%以下とすることによって、
耐熱性に優れかつ機械的強度にも優れたダイヤモンドが
得られることを新規に知見したのである。The present inventors improved the heat resistance, which is a drawback of sintered diamond,
As a result of intensive studies to improve the mechanical strength of gas-phase diamonds, the present invention was achieved. That is,
Among the diamonds that are certified by the vapor phase method, the periodic table groups IVa, VA, VIa, VIIa, and VIII
Group metallic elements and group mb of the periodic table. (2) Contains at least one element selected from metal elements and metalloid elements of Group B and Group Vb, and the content thereof is o. By setting ooi% or more and 2.0% or less,
It was discovered that diamonds with excellent heat resistance and mechanical strength can be obtained.
またそれに加えて、La, Ce, Th, Reの中
から選ばれる少なくとも一つ以上の元素を含有し、かつ
その含有量が原子%で0. 001%以上0.2%以下
とすることにより、前述の性能がさらに向上することを
見い出したのである。In addition, it contains at least one or more elements selected from La, Ce, Th, and Re, and the content is 0.0 at %. They have found that the above-mentioned performance can be further improved by setting the content to 0.001% or more and 0.2% or less.
気相合戒ダイヤモンドの機械的強度の劣る原因の一つは
、焼結ダイヤと異なり、ダイヤモンド粒子同士がネッキ
ングにより結晶粒界で原子の相互拡散を生じないために
、結晶粒界での結合が弱いためと考えられる。また気相
合成法でダイヤモンドのバルクを作製しようとすると、
特別な処置をしない限り結晶粒は粗大化し、組織も柱状
晶となるが、これも気相合成ダイヤモンドの強度を低下
させる原因と思われる。ところが本発明の高強度ダイヤ
モンドでは含有される金属元素または半金属元素が結晶
粒界に存在し粒界の強度を高め、また結晶粒内にも存在
してマトリックスの強度を高めるため高強度が実現され
るものと思われる。またバルクを作製した際、本発明の
高強度ダイヤモンドは金属元素、半金属元素を含まない
場合と比較して結晶粒の粗大化が抑制され、緻密な組織
が得られることも高強度化に寄与しているものと考えら
れる。本発明の高強度ダイヤモンドでは約100μmの
厚さまでダイヤモンドを或長させた時の戊長上面から観
察されるダイヤモンドの結晶粒径は15μm以下に抑制
される。特許請求の範囲に規定した添加元素の含有量の
下限値よりも少ない場合にはこの抑制効果が明確に認め
られない。One of the reasons why vapor-phase akai diamond has poor mechanical strength is that, unlike sintered diamond, diamond particles do not neck to each other and cause interdiffusion of atoms at grain boundaries, so the bonds at grain boundaries are weak. It is thought that this is because of this. Furthermore, when attempting to produce bulk diamond using vapor phase synthesis,
Unless special treatment is taken, the crystal grains will become coarse and the structure will become columnar, which is also thought to be the cause of the decrease in the strength of vapor-phase synthesized diamond. However, in the high-strength diamond of the present invention, high strength is achieved because the metal elements or metalloid elements contained exist in the grain boundaries and increase the strength of the grain boundaries, and also exist within the grains to increase the strength of the matrix. It seems likely that it will be done. In addition, when producing a bulk, the high-strength diamond of the present invention suppresses coarsening of crystal grains and obtains a dense structure, which also contributes to high strength. It is thought that this is the case. In the high-strength diamond of the present invention, when the diamond is elongated to a thickness of about 100 μm, the crystal grain size of the diamond observed from the top surface of the elongated diamond is suppressed to 15 μm or less. If the content of the additive element is less than the lower limit specified in the claims, this suppressing effect will not be clearly recognized.
さらに本発明のダイヤモンドに添加する元素の内、炭素
と結合しやすいもの(例えば7i, Ta, Mo,W
等)を用いた場合には、ダイヤモンドが気相中から析出
する際に、同時に析出する無定形炭素や黒鉛と結合して
炭化物を形或することが考えられ、無定形炭素や黒鉛の
析出を阻止する効果があると予想される。このことも高
強度化に寄与するものと思われる。Furthermore, among the elements added to the diamond of the present invention, those that easily bond with carbon (for example, 7i, Ta, Mo, W
etc.), when diamond is precipitated from the gas phase, it is thought that it combines with amorphous carbon and graphite that are precipitated at the same time to form carbides, which may prevent the precipitation of amorphous carbon and graphite. expected to have a deterrent effect. This also seems to contribute to higher strength.
本発明においてダイヤモンドに含有させる元素並びに含
有量を限定したのは以下の理由による。In the present invention, the elements and contents contained in diamond are limited for the following reasons.
周期律表第1a族およびIIa族の金属元素に関しては
ダイヤモンド中への添加が難しく、含有量の制御も困難
なためである。ma族の金属元素に関してはLa, C
e, Th, Re以外の元素では明瞭な効果が認めら
れなかったからである。This is because it is difficult to add metal elements in Groups Ia and IIa of the periodic table to diamond, and it is also difficult to control their content. Regarding the metal elements of the ma group, La, C
This is because no clear effect was observed with elements other than e, Th, and Re.
また周期律表第IVa族,Va族,VIa族、VIIa
族、VIII族の金属元素および周期律表第mb族、I
Vb族,vb族の金属元素並びに半金属元素の中から選
ばれる少なくとも一つ以上の元素を含有し、かつその含
有量が原子%で0.001%以上2.0%以下としたの
は、o. ooi%よりも少ないとダイヤモンドを高強
度化する改善の効果が不十分であり、逆に2.0%より
も多いとかえって強度の低下を招くからである。これら
の元素の中でもTi, V, Nb,Ta, Cr,
Mo, W , Ni. B , Ag. Si,
N並びにPがより好ましい効果を発揮する。Also, groups IVa, Va, VIa, and VIIa of the periodic table
Metallic elements of group VIII, group mb of the periodic table, group I
Containing at least one element selected from metal elements and metalloid elements of the Vb group and Vb group, and the content of which is 0.001% or more and 2.0% or less in atomic %, o. If it is less than ooi%, the improvement effect of increasing the strength of diamond will be insufficient, and if it is more than 2.0%, the strength will decrease. Among these elements, Ti, V, Nb, Ta, Cr,
Mo, W, Ni. B, Ag. Si,
N and P exhibit more favorable effects.
一方上述の元素に加えてLa, Ce, Th, Re
を微量添加することによりさらに高強度化が図られるが
、その添加量を原子%で0.001%以上0.2%以下
としたのは、0. 001%よりも少ないと高強度化の
効果が不十分であり、0.2%を超えると逆に強度が低
下するからである。On the other hand, in addition to the above elements, La, Ce, Th, Re
Further increase in strength can be achieved by adding a small amount of , but the reason why the amount added is set to 0.001% or more and 0.2% or less in atomic % is because 0. If it is less than 0.001%, the effect of increasing the strength will be insufficient, and if it exceeds 0.2%, the strength will decrease.
本発明の高強度ダイヤモンドの製造方法は一般に使用さ
れるダイヤモンドの気相合成法を用いることができる。The method for producing high-strength diamond of the present invention can use a commonly used diamond vapor phase synthesis method.
金属並びに半金属元素の添加方法としては
■添加元素の化合物(塩化物.フッ化物.有機金属化合
物等)をガスソースとして反応容器に導入する。As a method for adding metals and metalloid elements, (1) A compound of the added element (chloride, fluoride, organometallic compound, etc.) is introduced into the reaction vessel as a gas source.
■添加する元素単体または化合物の固体を反応容器内部
で原料ガスの励起ゾーンに入れるか、近づけるかして、
加熱により蒸発させたり、あるいはプラズマでスパッタ
することにより行う。■Place the element or solid compound to be added into the excitation zone of the raw material gas inside the reaction vessel, or bring it close to it.
This is done by evaporating by heating or by sputtering with plasma.
■熱電子放射材に添加する元素を使用するか、熱電子放
射材に予め添加する元素を含有させておき、熱電子放射
材を高温加熱することにより行う。(2) This is carried out by using an element added to the thermionic emitting material, or by adding the element to the thermionic emitting material in advance and heating the thermionic emitting material at a high temperature.
等が一例と考えられるが、本発明のダイヤモンドを製造
できればこれらに限定されなくても構わない。etc. are considered to be examples, but the method is not limited to these as long as the diamond of the present invention can be manufactured.
実施例1
高温加熱した熱電子放射材を原料ガスの分解,活性化に
使用する熱フィラメン}CVD法並びに特開昭64−5
2699号公報にて開示した熱電子放射材を陰極に、基
材もしくは基材支持台を正極に接続してDCプラズマ形
戊し、高温加熱した熱電子放射材による熱活性化とプラ
ズマ活性化を併用する方法を用いた。熱電子放射材は直
径0.25mlB.長さ120 armのものを5lQ
II+間隔で15本張り、基材との間隔は5mmに設定
した。基材並びに基材支持台にはMOを使用し、その下
にさらに冷却支持台を設け、冷却能を調整して基材表面
温度を980℃に制御した。基材表面は予め3000番
のダイヤパウダーで傷付け処理を行ってから合成を実施
した。Example 1 Hot filament using high-temperature heated thermionic emissive material for decomposition and activation of raw material gas}CVD method and JP-A-64-5
The thermionic emitting material disclosed in Publication No. 2699 is connected to the cathode and the base material or base material support is connected to the positive electrode to form a DC plasma, and thermal activation and plasma activation by the thermionic emitting material heated at high temperature are performed. A combination method was used. The thermionic emissive material has a diameter of 0.25mlB. 5lQ of length 120 arm
Fifteen pieces were strung at II+ intervals, and the distance from the base material was set to 5 mm. MO was used for the base material and the base material support, and a cooling support was further provided below, and the cooling capacity was adjusted to control the base material surface temperature at 980°C. The surface of the base material was previously scratched with No. 3000 diamond powder before synthesis.
第1表に示した作製条件を用い、合或時間を調節して膜
厚が約100μになるようにダイヤモンドを合成した。Using the manufacturing conditions shown in Table 1, diamond was synthesized by adjusting the coalescence time so that the film thickness was approximately 100 μm.
イオンマイクロアナライザーを用いて作製したダイヤモ
ンドの不純物を分析した結果を第1表に併記した。また
合成したダイヤモンドの戊長上面の結晶粒径は試料八が
25μ,Bが20μであったのに対し、他の試料はいず
れも15μ以下であった。Table 1 also shows the results of analyzing impurities in the diamond produced using an ion microanalyzer. Further, the crystal grain size of the top surface of the synthesized diamond was 25 μm for sample 8 and 20 μm for sample B, whereas it was 15 μm or less for all the other samples.
この試料を熱王水中に浸漬し、Mo基材を溶解除去して
高強度ダイヤモンドを採取した。この高強度ダイヤモン
ドを切削工具として使用した場合の性能を評価するため
に、超硬合金の合金にろう付けし、切削チップを作製し
た。比較材として、結合材にCoを10容量%含有する
平均粒径1oμmの超高圧焼結ダイヤモンドを用いて、
同様に切削チップを作製した。被削材として10mm幅
を有する溝が90度ごとの角度をなして4本、軸方向に
沿って外周面に入れられたAβ−12%Si合金(AC
8A−T6)を使用し、第2表に示す条件で切削試験を
実施した。60分間切削後の結果を第3表に取りまとめ
て示した。This sample was immersed in hot aqua regia, the Mo base material was dissolved and removed, and high-strength diamond was collected. In order to evaluate the performance of this high-strength diamond when used as a cutting tool, it was brazed to a cemented carbide alloy to create a cutting tip. As a comparison material, ultra-high pressure sintered diamond with an average particle size of 1 µm and containing 10% by volume of Co as a binder was used.
A cutting tip was prepared in the same manner. Aβ-12%Si alloy (AC
8A-T6), a cutting test was conducted under the conditions shown in Table 2. The results after cutting for 60 minutes are summarized in Table 3.
第
3
表
本発明の高強度ダイヤモンドを使用した試料C.D,E
.FおよびGは良好な切削特性を示し、比較材として用
いた焼結ダイヤモンドよりも優れた性能を示した。これ
に対して本発明の範囲をはずれる試料A,BおよびHは
短時間で欠損を生じ、本発明品並びに焼結ダイヤと比較
して強度が低いものと判断される。Table 3 Sample C using high strength diamond of the present invention. D,E
.. F and G exhibited good cutting properties and exhibited better performance than the sintered diamond used as a comparison material. On the other hand, Samples A, B, and H, which fall outside the scope of the present invention, develop defects in a short period of time and are judged to have lower strength than the products of the present invention and sintered diamond.
実施例2
ダイヤモンドの気相合成に一般に使用されるマイクロ波
プラズマCVD法を用いて第4表に示す条件でSi基材
にダイヤモンドを合成した。ダイヤモンド中に本発明の
金属元素または半金属元素を含有させる方法としては、
基材の近傍にこれらの元素の酸化物あるいは塩化物の固
体粉末を置きプラズマ中にさらして高温加熱し、蒸発あ
るいはスパッタリングにより合或ダイヤ中に添加する方
法を採用した。この際粉末のサイズや量並びに置き場所
を変えてダイヤモンド中に添加する量を調節した。透明
石英円盤の上に31厚さのMO円盤を置き基材支持台と
した。反応容器内の圧力は100Torrとし、マイク
ロ波出力を調節して基材表面温度を1000℃に制御し
た。基材表面は予め5000番のダイヤパウダーで傷付
け処理を行ってから合成を実施した。合成時間を調節し
て各々の条件で膜厚が約120μのダイヤモンドを合成
した。イオンマイクロアナライザーを用いて作製したダ
イヤモンドの不純物を分析した結果を第4表に併記した
。また合或したダイヤモンドの戊長上面の結晶粒径は試
料■が30μであったのに対し、他の試料はいずれも1
5μ以下であった。Example 2 Diamond was synthesized on a Si base material under the conditions shown in Table 4 using the microwave plasma CVD method generally used for vapor phase synthesis of diamond. As a method for incorporating the metal element or metalloid element of the present invention into diamond,
A method was adopted in which solid powders of oxides or chlorides of these elements were placed near the base material, exposed to plasma, heated at high temperature, and added into the diamond by evaporation or sputtering. At this time, the amount added to the diamond was adjusted by changing the size, amount, and location of the powder. An MO disk with a thickness of 31 mm was placed on a transparent quartz disk to serve as a substrate support. The pressure inside the reaction vessel was set at 100 Torr, and the substrate surface temperature was controlled at 1000° C. by adjusting the microwave output. The surface of the base material was previously scratched with No. 5000 diamond powder before synthesis. Diamond with a film thickness of about 120 μm was synthesized under each condition by adjusting the synthesis time. Table 4 also shows the results of analyzing impurities in the diamond produced using an ion microanalyzer. In addition, the crystal grain size on the top surface of the amalgamated diamond was 30 μm for sample (2), whereas it was 1 μm for all other samples.
It was less than 5μ.
第
4
表
*:vo1%はH2に対する容量%
この試料をフッ酸と硝酸の混合液に浸漬し、Si基材を
溶解除去して高強度ダイヤモンドを採取した。この高強
度ダイヤモンドを切削工具として使用した場合の性能を
評価するために、超硬合金の合金にろう付けし、切削チ
ップを作製した。比較材として、結合材にCoを10容
量%含有する平均粒i10μmの超高圧焼結ダイヤモン
ドを用いて、同様に切削チップを作製した。被削材とし
て幅100mm,長さ400 mmのM−17%Si合
金( A 390−T 6 )を使用しJ第5表に示し
た条件で7ライス切削試験を実施した。20Pass切
削後の結果を第6表に取りまとめて示した。Table 4 *: vo1% is volume % with respect to H2 This sample was immersed in a mixed solution of hydrofluoric acid and nitric acid, the Si base material was dissolved and removed, and high-strength diamond was collected. In order to evaluate the performance of this high-strength diamond when used as a cutting tool, it was brazed to a cemented carbide alloy to create a cutting tip. As a comparison material, a cutting tip was similarly produced using ultra-high pressure sintered diamond with an average grain i of 10 μm and containing 10% by volume of Co as a binder. A 7-rice cutting test was conducted under the conditions shown in Table J5 using an M-17% Si alloy (A390-T6) with a width of 100 mm and a length of 400 mm as a work material. The results after 20-pass cutting are summarized in Table 6.
第 6
表
本発明の高強度ダイヤモンドを使用した試料J.K.M
およびNは良好な切削特性を示し、比較材として用いた
焼結ダイヤモンドよりも優れた性能を示した。これに対
して本発明のW?L囲をはずれる試料I,L,Oおよび
Pは短時間で欠損を生じ、本発明品並びに焼結ダイヤと
比較して強度が低いものと判断された。Table 6 Sample J using high strength diamond of the present invention. K. M
and N exhibited good cutting properties, and showed better performance than sintered diamond used as a comparative material. On the other hand, the W of the present invention? Samples I, L, O, and P, which fall outside of the L range, were damaged in a short period of time and were judged to have lower strength than the products of the present invention and sintered diamond.
実施例3
ダイヤモンドの気相合成に一般に使用されるマイクロ波
プラズマCVD法を用いて第7表に示す条件でMo基材
にダイヤモンドを合成した。ダイヤモンド中に本発明の
金属元素あるいは半金属元素を添加させる方法としては
、添加元素の化合物をガスの形態で原料ガス中に混合し
、合成するダイヤモンドに含有させる方法を採用した。Example 3 Diamond was synthesized on a Mo base material under the conditions shown in Table 7 using the microwave plasma CVD method generally used for vapor phase synthesis of diamond. As a method for adding the metal element or metalloid element of the present invention to diamond, a method was adopted in which a compound of the added element was mixed in the form of a gas into a raw material gas, and the compound was incorporated into the diamond to be synthesized.
表中のVOl%は原料ガス中のC H 4に対する容量
%を意味し、WF.及びNH.につぃては予め所定の濃
度に八rで希釈したボンベを作製しておき添加した。VOl% in the table means volume % with respect to C H 4 in the raw material gas, and WF. and N.H. First, a bomb was prepared in advance in which the solution was diluted with 80% to a predetermined concentration, and the solution was added.
T+Cj!nはH2をキャリャーガスに用いて所定濃度
に添加した。A(l cl sはMチップを入れたジェ
ネレイターにH c(lとH2を通して発生させ、H
C1の流量を調節して所定濃度にtA節した。石英円盤
の上に3mlTl厚さのMo円盤を置き基材支持台とし
た。T+Cj! n was added to a predetermined concentration using H2 as a carrier gas. A(l cl s is generated through H c(l and H2) to a generator containing an M chip, and H
The flow rate of C1 was adjusted to a predetermined concentration at tA. A Mo disk with a thickness of 3 ml Tl was placed on the quartz disk to serve as a base material support.
反応容器内の圧力は80Torrとし、マイクロ波出力
を調節して基材表面温度を950℃に制御した。基材表
面は予め3000番のダイヤモンドパウダーで傷付け処
理を行ってから合成を実施した。合或時間を調節して各
々の条件で膜厚が約lOOμのダイヤモンドを合成した
。イオンマイクロアナライザーを用いて作製したダイヤ
モンドの不純物を分析した結果を第8表に併記した。な
おNの分析に関してはSIMS法を用いた。The pressure inside the reaction vessel was 80 Torr, and the substrate surface temperature was controlled at 950° C. by adjusting the microwave output. The surface of the base material was previously scratched with No. 3000 diamond powder before synthesis. Diamond having a film thickness of about 100μ was synthesized under each condition by adjusting the coalescence time. Table 8 also shows the results of analyzing impurities in the diamond produced using an ion microanalyzer. Note that the SIMS method was used for the analysis of N.
第8表
*:vo1%はCH.に対する容量%
この試料を熱王水中に浸漬し、旧基材を溶解除去して高
強度ダイヤモンドを採取した。この高強度ダイヤモンド
を切削工具として使用した場合の性能を評価するために
、超硬合金の合金にろう付けし、切削チップを作製した
。比較材として、結合材にCOをIO容量%含有する平
均粒径10μmの超高圧焼結ダイヤモンドを用いて、同
様に切削チップを作製した。被削材として幅100mm
,長さ400 mmのADC12を使用し、第9表に示
した条件でフライス切削試験を実施した。30pass
切削後の結果を第10表に取りまとめて示した。Table 8*: vo1% is CH. This sample was immersed in hot aqua regia, the old base material was dissolved and removed, and high-strength diamond was collected. In order to evaluate the performance of this high-strength diamond when used as a cutting tool, it was brazed to a cemented carbide alloy to create a cutting tip. As a comparative material, a cutting tip was similarly produced using ultra-high pressure sintered diamond with an average particle diameter of 10 μm and containing IO volume % of CO as a binder. Width 100mm as work material
A milling test was conducted using an ADC12 with a length of 400 mm under the conditions shown in Table 9. 30pass
The results after cutting are summarized in Table 10.
以上説明した様に本発明による気相合或ダイヤモンドは
従来の気相合成ダイヤモンドと比較して高強度であり、
かつダイヤモンドの微粉末と金属バインダーを超高圧下
で焼結して作製する焼結ダイヤモンドよりも耐摩耗性に
優れるので、耐摩工具,切削工具,掘削工具等の分野に
利用すると効果的である。As explained above, the vapor phase synthesized diamond according to the present invention has higher strength than the conventional vapor phase synthesized diamond,
In addition, it has better wear resistance than sintered diamond, which is produced by sintering fine diamond powder and a metal binder under ultra-high pressure, so it is effective when used in fields such as wear-resistant tools, cutting tools, and drilling tools.
Claims (2)
該ダイヤモンドが周期律表第IVa族、Va族、VIa族、
VIIa族、VIII族の金属元素および周期律表第IIIb族、
IVb族、Vb族の金属元素並びに半金属元素の中から選
ばれる少なくとも一つ以上の元素を含有し、かつその含
有量が原子%で0.001%以上2.0%以下であるこ
とを特徴とする高強度ダイヤモンド。(1) In diamonds synthesized by vapor phase synthesis method,
The diamond belongs to Group IVa, Group Va, Group VIa of the periodic table,
Metal elements of group VIIa, group VIII and group IIIb of the periodic table,
It is characterized by containing at least one or more elements selected from metal elements and metalloid elements of group IVb and group Vb, and the content thereof is 0.001% or more and 2.0% or less in atomic %. High strength diamond.
とも一つ以上の元素を含有し、かつその含有量が原子%
で0.001以上0.2%であることを特徴とする高強
度ダイヤモンド。(2) Contains at least one element selected from La, Ce, Th, and Re, and the content is atomic%
A high-strength diamond characterized by having a content of 0.001 or more and 0.2%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24262789A JPH03103397A (en) | 1989-09-18 | 1989-09-18 | High-strength diamond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24262789A JPH03103397A (en) | 1989-09-18 | 1989-09-18 | High-strength diamond |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03103397A true JPH03103397A (en) | 1991-04-30 |
Family
ID=17091868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24262789A Pending JPH03103397A (en) | 1989-09-18 | 1989-09-18 | High-strength diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03103397A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0846792A1 (en) * | 1996-12-04 | 1998-06-10 | Sumitomo Electric Industries, Ltd. | Method of synthesizing diamond |
US6200652B1 (en) | 1997-07-07 | 2001-03-13 | Cvd Diamond Corporation | Method for nucleation and deposition of diamond using hot-filament DC plasma |
KR20170010839A (en) * | 2014-08-01 | 2017-02-01 | 핼리버튼 에너지 서비시즈 인코퍼레이티드 | Chemical vapor deposition-modified polycrystalline diamond |
-
1989
- 1989-09-18 JP JP24262789A patent/JPH03103397A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0846792A1 (en) * | 1996-12-04 | 1998-06-10 | Sumitomo Electric Industries, Ltd. | Method of synthesizing diamond |
US5993919A (en) * | 1996-12-04 | 1999-11-30 | Sumitomo Electric Industries, Ltd. | Method of synthesizing diamond |
US6200652B1 (en) | 1997-07-07 | 2001-03-13 | Cvd Diamond Corporation | Method for nucleation and deposition of diamond using hot-filament DC plasma |
KR20170010839A (en) * | 2014-08-01 | 2017-02-01 | 핼리버튼 에너지 서비시즈 인코퍼레이티드 | Chemical vapor deposition-modified polycrystalline diamond |
CN106795627A (en) * | 2014-08-01 | 2017-05-31 | 哈利伯顿能源服务公司 | The modified polycrystalline diamond of chemical vapor deposition |
JP2017526809A (en) * | 2014-08-01 | 2017-09-14 | ハリバートン エナジー サヴィシーズ インコーポレイテッド | Chemical vapor deposition modified polycrystalline diamond |
CN106795627B (en) * | 2014-08-01 | 2019-06-21 | 哈利伯顿能源服务公司 | The modified polycrystalline diamond of chemical vapor deposition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0155066B1 (en) | Hard diamond sintered body | |
US5106392A (en) | Multigrain abrasive particles | |
JP2562442B2 (en) | Composite powder particles, manufacturing method and manufacturing apparatus | |
JP5179185B2 (en) | Tungsten alloy produced by chemical vapor deposition. | |
EP0004177A1 (en) | A method of metal coating of diamond or cubic boron nitride particles and an abrasive tool containing the particles thus coated | |
JP4861831B2 (en) | Coated abrasive | |
JP2007517954A (en) | Coated abrasive | |
SE420508B (en) | SINTRAD HARD METAL CONTAINING MOLYBDEN-VOLFRAM CARBON NITRIDE | |
JPS63182297A (en) | Aggregate diamond | |
JP2005517626A (en) | Coated diamond particles | |
JP2949863B2 (en) | High toughness polycrystalline diamond and method for producing the same | |
JPH0791651B2 (en) | Diamond coated tungsten carbide based cemented carbide cutting tool chip | |
JPH0568548B2 (en) | ||
JPH03103397A (en) | High-strength diamond | |
JP3260157B2 (en) | Method for producing diamond-coated member | |
JP2710287B2 (en) | Polycrystalline diamond for tools | |
JPH05339659A (en) | Production of sintered hard alloy having sheet-like tungsten carbide and coated sintered hard alloy | |
JP2001179508A (en) | Cutting tool | |
JP2792136B2 (en) | High toughness polycrystalline diamond and method for producing the same | |
JPH08260129A (en) | Cubic boron nitride composite cermet tool and its production | |
JPH07100858B2 (en) | Diamond coated tungsten carbide based cemented carbide cutting tool chip | |
JPH0791650B2 (en) | Diamond coated tungsten carbide based cemented carbide cutting tool chip | |
JPS625993B2 (en) | ||
JPH0643249B2 (en) | Method for producing metal boride fiber | |
JPH01242491A (en) | Diamond-coated sintered hard alloy parts and their production |