JPH03103368A - Ceramic composite sintered compact and production thereof - Google Patents

Ceramic composite sintered compact and production thereof

Info

Publication number
JPH03103368A
JPH03103368A JP1243132A JP24313289A JPH03103368A JP H03103368 A JPH03103368 A JP H03103368A JP 1243132 A JP1243132 A JP 1243132A JP 24313289 A JP24313289 A JP 24313289A JP H03103368 A JPH03103368 A JP H03103368A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide particles
oxide
ceramic composite
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1243132A
Other languages
Japanese (ja)
Other versions
JP2858811B2 (en
Inventor
Yutaka Furuse
古瀬 裕
Keiji Matsuhiro
啓治 松廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP1243132A priority Critical patent/JP2858811B2/en
Priority to CA002025425A priority patent/CA2025425C/en
Priority to US07/582,586 priority patent/US5196386A/en
Priority to DE69011447T priority patent/DE69011447T2/en
Priority to EP90310091A priority patent/EP0419151B1/en
Publication of JPH03103368A publication Critical patent/JPH03103368A/en
Application granted granted Critical
Publication of JP2858811B2 publication Critical patent/JP2858811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a high-toughness and high-strength ceramic composite sintered compact by blending oxide or nonoxide ceramics with a specific amount of a reinforcing material composed of two kinds of silicon carbide particles having different particle diameters. CONSTITUTION:(A) A base material composed of oxide ceramics, such as alumina, mullite or magnesia, or nonoxide ceramics, such as silicon nitride or sialon, is mixed with (B) a reinforcing material composed of silicon carbide particles having the size covering both ranges of <=1mum and 5-20mum so as to provide 10-50vol.% amount of the component (B). The resultant mixed powder is then formed. If the component (A) is the oxide ceramics, the resultant compact is sintered at 1400-1900 deg.C. If the component (A) is the nonoxide ceramics, the compact is sintered at 1500-2000 deg.C. Thereby, a ceramic composite sintered compact is obtained. The obtained ceramic composite sintered compact is suitable used as high-temperature structural materials, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、靭性と強度を改良したセラミックス複合焼結
体およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic composite sintered body with improved toughness and strength, and a method for manufacturing the same.

[従来の技術] セラミックスは耐熱性、耐食性に優れるとともに硬度が
大きい点から耐火物や化学材料として古くから使用され
てきている。また、最近の化学技術の発展により高純度
の原料の精製、合或技術が進み、プロセス制御技術の進
歩とともにセラミックスの特性も大きく変化し、多くの
期待が寄せられるようになってきている。特に、ガスタ
ービンブレード等におけるように、高温あるいは悪環境
に晒されるような用途では耐熱合金が従来より用いられ
てきたが、近年の高性能化を目指す市場動向から高温構
造材料としてより優秀な材料が求められるようになって
きており、セラミックスがこれらの要件を満たす重要な
材料として注目され始めている。これはセラミックス材
が他の材料に比べて耐熱性、耐酸化性、耐食性に著しく
優れていることによる。
[Prior Art] Ceramics have been used as refractories and chemical materials for a long time because of their excellent heat resistance, corrosion resistance, and high hardness. In addition, with the recent development of chemical technology, the refining of high-purity raw materials and coalescence technology have progressed, and with the progress of process control technology, the characteristics of ceramics have changed significantly, and many expectations have been placed on them. In particular, heat-resistant alloys have traditionally been used in applications that are exposed to high temperatures or harsh environments, such as in gas turbine blades, but recent market trends toward higher performance have led to the use of better materials as high-temperature structural materials. There are increasing demands for these, and ceramics are beginning to attract attention as important materials that meet these requirements. This is because ceramic materials have significantly better heat resistance, oxidation resistance, and corrosion resistance than other materials.

然しなから、窒化珪素、アルミナ、炭化珪素等のセラミ
ックスは一般に脆く、例えば、破壊靭性値で5 M N
 m−,”以下のものが多い。このためセラミックスの
靭性および強度を改善する種々の方法が提案され、実施
されている。
However, ceramics such as silicon nitride, alumina, and silicon carbide are generally brittle, for example, with a fracture toughness of 5 M N
m-," or less. Therefore, various methods for improving the toughness and strength of ceramics have been proposed and implemented.

例えば、セラミックスを強靭化するものとして特開昭5
9−30770号に開示されるように、ウィスカやファ
イバ等の針状形態を有するものを強化材として添加する
方法が知られている。この場合、セラミックス中に分散
されたウィスカ等によりセラミックス中に生じたクラブ
クが曲げられるクラック偏向効果、ウィスカの引き抜き
効果等によって靭性の向上が達或されていると考えられ
る。
For example, in JP-A-5, it was developed as a material to strengthen ceramics.
As disclosed in Japanese Patent Application No. 9-30770, a method is known in which a material having an acicular shape such as whiskers or fibers is added as a reinforcing material. In this case, it is thought that the toughness is improved by the crack deflection effect in which cracks generated in the ceramic are bent by the whiskers dispersed in the ceramic, the whisker pull-out effect, and the like.

然しなから、セラミックス中に針状の強化材を均一に分
散させることは困難である。これは、ファイバ等の場合
、セラミックス中でファイバ同士が互いに絡み合い、塊
状になり易いことによる。
However, it is difficult to uniformly disperse acicular reinforcing materials in ceramics. This is because, in the case of fibers, the fibers tend to become entangled with each other in ceramics and form a lump.

一方、アルミナセラミックスを強靭化する方法として、
特公昭59−25748号に示されるように、強化材と
してジルコニアを添加する方法も提案されている。この
方法は、アルミナ中にジルコニアの準安定正方品を室温
まで残留させ、発生したクラブクの先端での応力により
誘起される正方晶系から単斜晶系への結晶変態の約4%
の体積膨張に起因する残留圧縮応力により室温での機械
的性質を著しく改善するようにしている。
On the other hand, as a method to toughen alumina ceramics,
As shown in Japanese Patent Publication No. 59-25748, a method of adding zirconia as a reinforcing material has also been proposed. This method allows metastable tetragonal zirconia to remain in alumina up to room temperature, and approximately 4% of the crystal transformation from tetragonal to monoclinic is induced by stress at the tip of the generated tetragon.
The residual compressive stress caused by the volumetric expansion of the material significantly improves the mechanical properties at room temperature.

然しなから、この方法においても、上記の変態温度であ
る約900℃以上の大気中で長時間保持されると、酸化
ジルコニウムと非酸化物である母材との間で反応が進行
し、母材特性が維持されなくなるため上記の強靭化効果
は期待出来なかった。
However, even in this method, if the temperature is kept in the atmosphere for a long time above the above-mentioned transformation temperature of approximately 900°C, a reaction will proceed between zirconium oxide and the non-oxide base material, causing the base material to deteriorate. Since the material properties were no longer maintained, the above toughening effect could not be expected.

さらに、特開昭61−174165号公報には、上記従
来技術の問題点を解決するものとして、アルミナ素地中
に炭化珪素を分敗させ、高強度化を図る方法が提案され
ている。この方法では、平均粒径3μm以下の炭化珪素
粒子、あるいは径が1μm以下で長さが20μm以下の
炭化珪素繊維(ウィスカ)をアルミナ素地中に独立して
分散させ、アルミナ素地粒界に局部的な残留応力を与え
、高温での機械的性質を改善するようにしている。
Furthermore, Japanese Patent Laid-Open No. 61-174165 proposes a method of increasing the strength by partitioning silicon carbide into an alumina matrix in order to solve the above-mentioned problems of the prior art. In this method, silicon carbide particles with an average particle size of 3 μm or less or silicon carbide fibers (whiskers) with a diameter of 1 μm or less and a length of 20 μm or less are independently dispersed in the alumina base material, and are locally dispersed at the grain boundaries of the alumina base material. It is designed to provide a strong residual stress and improve mechanical properties at high temperatures.

[発明が解決しようとする課題] 然しなから、上記セラミックスにウィスカやファイバ等
を分散させることによる高靭化、高強度化の場合、ウィ
スカやファイバ等を均一に分散させることが困難である
。また、これらを比較的均一に分散させ得たとしても、
製造プロセスにおいて特殊な処理を施さない限り良好な
特性のセラミックス複合焼結体を得ることが出来ず、ま
た、強化材としてウィスカやファイバ等を使用すると高
価になる等の問題点があった。
[Problems to be Solved by the Invention] However, when increasing the toughness and strength by dispersing whiskers, fibers, etc. in the ceramic, it is difficult to uniformly disperse the whiskers, fibers, etc. Furthermore, even if these can be dispersed relatively uniformly,
Unless a special treatment is applied during the manufacturing process, a ceramic composite sintered body with good characteristics cannot be obtained, and the use of whiskers, fibers, etc. as reinforcing materials causes problems such as high cost.

また、上記酸化ジルコニウム粒子を分散させることによ
り高靭化を図る場合、変態が進行しない高温ではその高
靭化効果が消失してしまう。
Furthermore, when increasing toughness by dispersing the zirconium oxide particles, the toughening effect disappears at high temperatures where transformation does not proceed.

さらに、高温中で長時間保持すると酸化ジルコニウムと
母材である非酸化物との間で反応が進行し、母材特性の
維持が出来なくなる等の問題点があった。
Furthermore, if the zirconium oxide is kept at a high temperature for a long period of time, a reaction will proceed between the zirconium oxide and the non-oxide material which is the base material, resulting in the problem that the properties of the base material cannot be maintained.

本発明の目的は、酸化物母材または非酸化物母材に所定
の形状の炭化珪素粒子を強化材として付加することによ
り高靭性・高強度化されたセラミックス複合焼結体およ
びその製造方法を提供することにある。
An object of the present invention is to provide a ceramic composite sintered body with high toughness and high strength by adding silicon carbide particles of a predetermined shape to an oxide base material or a non-oxide base material as a reinforcing material, and a method for manufacturing the same. It is about providing.

[課題を解決するための手段] 上記の目的を達戒するために、本発明に係るセラミック
ス複合焼結体は、アルミナ、ムライト、マグネシア等の
酸化物セラミックスあるいは窒化珪素、サイアロン等の
非酸化物セラミックスのいずれか一方を母材とし、強化
材として、大きさが1μm以下および5〜20μmの両
範囲にわたる炭化珪素粒子を含むことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the ceramic composite sintered body according to the present invention is made of oxide ceramics such as alumina, mullite, and magnesia, or non-oxide ceramics such as silicon nitride and sialon. It is characterized in that one of the ceramics is used as a base material, and silicon carbide particles having sizes ranging from 1 μm or less to 5 to 20 μm are included as reinforcing materials.

1た、本発明は大きさが1μm以下および5〜20μm
の両範囲にわたる炭化珪素粒子を容積比で10〜50%
含み、残部が実質的にアルミナ、ムライト、マグネシア
等の酸化物あるいは窒化珪素、サイアロン等の非酸化物
からなる混合粉体を形威し、前記混合粉体から得られた
或形体を、酸化物セラミックスを母材とするものに対し
てl400〜1900℃の範囲の温度、あるいは非酸化
物セラミックスを母材とするものに対して1500〜2
000℃の範囲の温度で焼結することを特徴とする。
1. Also, the present invention is applicable to particles with a size of 1 μm or less and 5 to 20 μm.
Silicon carbide particles ranging from 10 to 50% by volume
A mixed powder containing oxides such as alumina, mullite, magnesia, etc. or non-oxides such as silicon nitride, sialon, etc. is formed, and a certain shaped body obtained from the mixed powder is formed into an oxide. Temperatures in the range of 1400 to 1900°C for those whose base material is ceramics, or 1500 to 200°C for those whose base material is non-oxide ceramics.
It is characterized by sintering at a temperature in the range of 000°C.

さらに、本発明はアルミナ、ムライト、マグネシア等の
酸化物セラミックスまたは窒化珪素、サイアロン等の非
酸化物セラミックスのいずれか一方を母材とし、強化材
として、大きさがlμm以下の炭化珪素粒子、および最
大径が5〜50μm、厚さが最大径の1/3以下の板状
炭化珪素粒子を共に含むことを特徴とする。
Furthermore, the present invention uses either an oxide ceramic such as alumina, mullite, or magnesia or a non-oxide ceramic such as silicon nitride or sialon as a base material, and silicon carbide particles having a size of 1 μm or less as a reinforcing material; It is characterized by containing plate-shaped silicon carbide particles having a maximum diameter of 5 to 50 μm and a thickness of ⅓ or less of the maximum diameter.

また、本発明は大きさがlμm以下の炭化珪素粒子およ
び最大径が5〜50μm1厚さが最大径の173以下の
板状炭化珪素粒子を容積比で10〜50%含み、残部が
実質的にアルミナ、ムライト、マグネシア等の酸化物あ
るいは窒化珪素、サイアロン等の非酸化物からなる混合
粉体を形威し、前記混合粉体から得られた戒形体を、酸
化物セラミックスを母材とするものに対して1400〜
1900℃の範囲の温度、あるいは非酸化物セラミッス
クを母材とするものに対して1500〜2000℃の範
囲の温度で焼結することを特徴とする。
In addition, the present invention contains 10 to 50% by volume of silicon carbide particles having a size of 1 μm or less and plate-shaped silicon carbide particles having a maximum diameter of 5 to 50 μm and a thickness of 173 or less of the maximum diameter, and the remainder is substantially Forming a mixed powder consisting of oxides such as alumina, mullite, magnesia, or non-oxides such as silicon nitride, sialon, etc., and using oxide ceramics as a base material for the shaped body obtained from the mixed powder. 1400~
It is characterized in that it is sintered at a temperature in the range of 1900°C, or at a temperature in the range of 1500 to 2000°C for those whose base material is non-oxide ceramics.

[作用] 本発明では、母材のアルミナ等の酸化物セラミックスあ
るいは窒化珪素等の非酸化物セラミックスに、強化材と
して大きさがiμm以下および5〜20μmの炭化珪素
粒子を共に容積比で10〜50%、好ましくは20〜4
0%加えて混合粉体を或形し、または、大きさが1μm
以下の炭化珪素粒子および最大径が5〜50μm1好ま
しくは10〜40μm1厚さが最大径の1/3以下の板
状をなす炭41)珪素粒子を共に容積比で10〜50%
、好ましくは20〜40%加えて混合粉体を或形し、得
られた成形体を酸化物セラミックスを母材とするものに
対して1400〜1900℃の温度範囲、あるいは非酸
化物セラミックスを母材とするものに対して1500〜
2000℃の温度範囲で焼結することにより高靭性、高
強度のセラミックス複合焼結体が得られる。
[Function] In the present invention, silicon carbide particles having a size of iμm or less and a size of 5 to 20 μm are added as a reinforcing material to an oxide ceramic such as alumina or a non-oxide ceramic such as silicon nitride as a base material in a volume ratio of 10 to 20 μm. 50%, preferably 20-4
Add 0% and form the mixed powder, or the size is 1 μm
The following silicon carbide particles and carbon having a plate shape with a maximum diameter of 5 to 50 μm, preferably 10 to 40 μm, and a thickness of 1/3 or less of the maximum diameter 41) Silicon particles are both 10 to 50% by volume.
, preferably 20 to 40%, to form a mixed powder, and the resulting molded body is heated in a temperature range of 1400 to 1900 °C for those whose base material is oxide ceramics, or at a temperature range of 1,400 to 1,900 °C for those whose base material is non-oxide ceramics. 1500~ for the material
By sintering at a temperature range of 2000°C, a ceramic composite sintered body with high toughness and high strength can be obtained.

[実施例゛] 次に、本発明に係る高靭性、高強度のセラミックス複合
焼結体およびその製造方法について好適な実施例を挙げ
、添付の図面に基づいて以下詳細に説明する。
[Example ゛] Next, preferred examples of the high toughness, high strength ceramic composite sintered body and the manufacturing method thereof according to the present invention will be described in detail based on the attached drawings.

本発明による焼結体は、母材としてのアルミナ、マグネ
シア、ムライト等の酸化物セラミックス、または、窒化
珪素、サイアロン等の非酸化物セラミックスと、強化材
どしての炭化珪素粒子とを或分として構或される。この
場合、原料中に不純物として含まれる少量の他の或分が
存在しても構わない。また、通常の酸化物セラミックス
または非酸化物セラミックスを基にした焼結体の場合と
同様に、焼結助剤を含有させることが好ましい。戊形方
法としては、プレス或形、泥漿鋳込み戒形、射出戊形、
押出或形等の通常の全ての或形方法が適用出来る。
The sintered body according to the present invention includes an oxide ceramic such as alumina, magnesia, or mullite as a base material, or a non-oxide ceramic such as silicon nitride or sialon, and silicon carbide particles as a reinforcing material. It is constructed as In this case, there may be a small amount of other components contained as impurities in the raw material. Further, as in the case of a sintered body based on ordinary oxide ceramics or non-oxide ceramics, it is preferable to contain a sintering aid. Forming methods include press forming, slurry casting, injection forming,
All conventional shaping methods such as extrusion or shaping can be applied.

焼結は、ホットプレス(HP)を使用し、真空または非
酸化性雰囲気中で行ったが、常圧焼結、予備焼或H I
 P /sinter−H I P)やカプセルH[’
 (カプセル中に封入)でも同様の効果が得られる。
Sintering was performed using a hot press (HP) in a vacuum or non-oxidizing atmosphere, but pressureless sintering, pre-sintering or H I
P/sinter-H I P) and capsule H['
A similar effect can be obtained by enclosing it in a capsule.

焼結温度は、母材に酸化物セラミックスを使用した場合
は1400〜1900℃、非酸化物セラミックスの場合
は1500〜2000℃の範囲とした。
The sintering temperature was in the range of 1400 to 1900°C when oxide ceramics were used as the base material, and 1500 to 2000°C in the case of non-oxide ceramics.

母材が非酸化物セラミックスの場合は、焼結温度が17
00℃以上になると、母材として使用した窒化珪素、サ
イアロンの分解が激しくなるので、窒素雰囲気の圧力を
高くし、通常は9〜9.9kg−f /cm2で行った
When the base material is non-oxide ceramic, the sintering temperature is 17
When the temperature exceeds 00°C, the decomposition of silicon nitride and sialon used as the base material becomes intense, so the pressure of the nitrogen atmosphere was increased, usually 9 to 9.9 kg-f/cm2.

なお、焼結温度が上記範囲より低温になると、得られる
焼結体の密度が低くなり、逆にそれより高温になると上
記のように母材の分解等が生じるため、緻密な焼結体が
得られなかった。この場合の最適焼結温度は、常圧焼結
、ホットプレス、シンターH[’,カプセルHIPの条
件、および強化材の炭化珪素粒子の大きさと量に依存し
て変化した。また、炭化珪素の添加量が容積比で10%
より少ないと破壊靭性と強度改善の効果が認められず、
50%より多いと、得られたセラミックス複合焼結体の
密度が低く、緻密化は達威されなかった。さらに、炭化
珪素粒子の大きさが1μm以下および5〜20μmの両
範囲にわたらない場合には、特性は改善されなかった。
If the sintering temperature is lower than the above range, the density of the obtained sintered body will be low, and if the sintering temperature is higher than that, the base material will decompose as described above, so a dense sintered body will not be produced. I couldn't get it. The optimum sintering temperature in this case varied depending on the conditions of pressureless sintering, hot pressing, sinter H[', capsule HIP, and the size and amount of silicon carbide particles of the reinforcement. In addition, the amount of silicon carbide added is 10% by volume.
If it is less, the effect of improving fracture toughness and strength will not be recognized,
When the amount was more than 50%, the density of the obtained ceramic composite sintered body was low and densification was not achieved. Furthermore, when the size of silicon carbide particles was not within the range of 1 μm or less and 5 to 20 μm, the characteristics were not improved.

すなわち、1μm以下の粒子が含まれない場合には強度
改善の効果がなく、一方、5〜20μmの粒子が含まれ
ない場合、すなわち、1〜5μmの粒子のみ並びに1μ
m以下の粒子と1〜5μm内の粒子との組み合わせの場
合には破壊靭性が改善されなかった。さらに、20μm
以上の粒子のみ並びに1μm以下の粒子と20μm以上
の粒子との組み合わせの場合には、得られたセラミック
ス複合焼結体の密度が低くなり緻密化が達或されなかっ
た。
That is, if particles of 1 μm or less are not included, there is no strength improvement effect, whereas if particles of 5 to 20 μm are not included, that is, only particles of 1 to 5 μm and 1 μm
Fracture toughness was not improved in the case of a combination of particles with a diameter of less than m and particles with a diameter of 1 to 5 μm. Furthermore, 20μm
In the case of using only the above particles or a combination of particles of 1 μm or less and particles of 20 μm or more, the density of the obtained ceramic composite sintered body was low and densification was not achieved.

また、大きさが1μm以下の炭化珪素粒子および最大径
が5〜50μm、厚さが最大径の1/3以下の板状炭化
珪素粒子を同時に含まない場合も特性は改善されない。
Further, the characteristics are not improved when silicon carbide particles having a size of 1 μm or less and plate-shaped silicon carbide particles having a maximum diameter of 5 to 50 μm and a thickness of 1/3 or less of the maximum diameter are not included at the same time.

すなわち、lμm以下の粒子が含まれない場合は強度改
善の効果がなく、一方、最大径が5〜50μm1厚さが
1/3以下の板状粒子を含まない場合、すなわち、1μ
m以下の粒子と最大径が5μm以下の板状粒子との組み
合わせの場合には破壊靭性が改善されなかった。さらに
、1μm以下の粒−子と最大径が50μm以上の板状経
子との組み合わせの場合には、得られたセラミックス複
合焼結体の密度が低くなり緻密化が達或されなかった。
That is, if particles with a diameter of 1 μm or less are not included, there is no strength improvement effect, whereas if a plate-like particle with a maximum diameter of 5 to 50 μm and a thickness of 1/3 or less is not included, that is, 1 μm
Fracture toughness was not improved in the case of a combination of particles with a diameter of 5 μm or less and plate-shaped particles with a maximum diameter of 5 μm or less. Furthermore, in the case of a combination of particles with a diameter of 1 μm or less and a plate-like warp with a maximum diameter of 50 μm or more, the density of the obtained ceramic composite sintered body was low and densification was not achieved.

四点曲げ強度試験は、J I S  R1601  r
ファインセラミックスの曲げ強さ試験法」に従って測定
した。また、破壊靭性は、SEPB法(Single 
edge Pre−cracked Beam法)゛に
より測定した。すなわち、JIS  R1601に準拠
した試料を用意し、ビッカース圧子圧入により圧痕をつ
けた後、予亀裂を入れるため荷重を加え、イヤホンでポ
ップ・イン(Pop−In)を検知した。続いて予亀裂
長さを測定するため着色を行い、そして曲げ試験を行い
、破断荷重を測定した。破断試料の予亀裂長さを測定し
た後、破壊靭性の算出式により破壊靭性値を求めた。
The four-point bending strength test is JIS R1601r
It was measured according to the "Bending Strength Test Method for Fine Ceramics". In addition, the fracture toughness was measured using the SEPB method (Single
It was measured by the edge pre-cracked beam method). That is, a sample conforming to JIS R1601 was prepared, an indentation was made by Vickers indentation, a load was applied to create a pre-crack, and pop-in was detected with an earphone. Subsequently, the sample was colored to measure the pre-crack length, and a bending test was conducted to measure the breaking load. After measuring the pre-crack length of the fractured sample, the fracture toughness value was determined using the fracture toughness calculation formula.

次に、具体的実施例について説明する。Next, specific examples will be described.

第1図は本発明の方法を示す説明図である。FIG. 1 is an explanatory diagram showing the method of the present invention.

先ず、母材および強化材をポットミルに入れ、水または
エタノール中で24時間混合し混合物を形成する。強化
材は、既に説明したように、母材として酸化物セラミッ
クスを使用した場合も、非酸化物セラミックスを使用し
た場合も、その容積含有比は10〜50%とし、また、
大きさは1μm以下および5〜20μmの両範囲にわた
る炭化珪素粒子、あるいは大きさが1μm以下の炭化珪
素粒子および最大径が5〜50μm1厚さが最大径の1
73以下の板状炭化珪素粒子を共に使用した。
First, the matrix and reinforcing materials are placed in a pot mill and mixed for 24 hours in water or ethanol to form a mixture. As already explained, the volume content of the reinforcing material is 10 to 50% regardless of whether oxide ceramics or non-oxide ceramics are used as the base material, and
Silicon carbide particles with a size of 1 μm or less and 5 to 20 μm, or silicon carbide particles with a size of 1 μm or less and a maximum diameter of 5 to 50 μm 1 thickness of 1 μm of the maximum diameter
Plate-shaped silicon carbide particles of 73 or less were also used.

第2図は本発明における炭化珪素粒子の定義を示す説明
図である。炭化珪素粒子は、第2図(a)に示すように
、短軸径(2本の平行線で挟み最小間隔となるときの間
隔)が5〜20μmのものとして定義される。また、板
状炭化珪素粒子は、本発明において形状が好ましいもの
であり、第2図ら)に定義を示す。すなわち、板状粒子
は最大径が5〜50μmで厚さが最大径の173以下の
ものとして定義される。
FIG. 2 is an explanatory diagram showing the definition of silicon carbide particles in the present invention. As shown in FIG. 2(a), silicon carbide particles are defined as having a minor axis diameter (the minimum distance between two parallel lines) of 5 to 20 μm. Further, the shape of plate-shaped silicon carbide particles is preferable in the present invention, and the definition is shown in FIG. 2 etc.). That is, plate-like particles are defined as having a maximum diameter of 5 to 50 μm and a thickness of 173 μm or less of the maximum diameter.

次に、得られた混合物を120℃で24時間乾燥させ、
メッシュが149μmの大きさの篩にかけ、或形用粉体
とした。
Next, the resulting mixture was dried at 120°C for 24 hours,
It was passed through a sieve with a mesh size of 149 μm to obtain a powder for a certain shape.

次に圧力200kg/cm2でブレス或形、場合によっ
ては圧力7 ton/cm’でラバープレス成形し、焼
成する。酸化物セラミックスを母材としたl atmの
Ar雰囲気下でのHP温度は1400〜1900℃、非
酸化物セラミックスの場合は1 atmのN2を使用し
て1500〜2000℃とした。HP圧力は300kg
/ cm2であった。なお、非酸化物セラミックスの場
合は1700℃以上の温度では既に説明した理由から、
N2圧は9. 5atmとした。
Next, it is press-molded in a press at a pressure of 200 kg/cm2, or in some cases rubber press-molded at a pressure of 7 ton/cm', and fired. The HP temperature was 1,400 to 1,900°C in an Ar atmosphere using oxide ceramics as a base material, and 1,500 to 2,000°C using 1 atm of N2 in the case of non-oxide ceramics. HP pressure is 300kg
/cm2. In addition, in the case of non-oxide ceramics, at temperatures above 1700°C, for the reasons already explained,
N2 pressure is 9. 5 atm.

表1−1、表1−2は、このようにして得られた高靭化
、高強度化の結果を示したもので、母材の酸化物セラミ
ックスとしてアルミナ、ムライト、マグネシアを、非酸
化物セラミックスとして窒化珪素、サイアロンに対し、
夫々、表に示した条件で炭化珪素を強化材として付加し
た場合の値を示したものである。
Tables 1-1 and 1-2 show the results of high toughness and high strength obtained in this way. Compared to silicon nitride and sialon as ceramics,
Each value is shown when silicon carbide is added as a reinforcing material under the conditions shown in the table.

[発明の効果] 本発明に係るセラミックス複合焼結体は、酸化物または
非酸化物の母材に適切な大きさと形態の炭化珪素粒子を
適切な容積比で分散付加することにより、高靭性、高強
度化を呈するセラミックスを得ることが出来る効果があ
る。また、特殊な設備は特に必要とせず、通常のセラミ
ックス製造設備を使用するだけで済むので、製造原価を
低減出来る効果がある。
[Effects of the Invention] The ceramic composite sintered body according to the present invention has high toughness and high toughness by adding silicon carbide particles of an appropriate size and shape to an oxide or non-oxide base material in an appropriate volume ratio. This has the effect of making it possible to obtain ceramics exhibiting high strength. In addition, no special equipment is required, and it is sufficient to use ordinary ceramic manufacturing equipment, which has the effect of reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明によるセラミックス複合焼結体を製造す
る方法の一実施例を示す説明図、第2図は強化材の炭化
珪素粒子の寸法を定義する説明図である。
FIG. 1 is an explanatory view showing one embodiment of the method for manufacturing a ceramic composite sintered body according to the present invention, and FIG. 2 is an explanatory view defining dimensions of silicon carbide particles of the reinforcing material.

Claims (6)

【特許請求の範囲】[Claims] (1)アルミナ、ムライト、マグネシア等の酸化物セラ
ミックスあるいは窒化珪素、サイアロン等の非酸化物セ
ラミックスのいずれか一方を母材とし、強化材として、
大きさが1μm以下および5〜20μmの両範囲にわた
る炭化珪素粒子を含むことを特徴とするセラミックス複
合焼結体。
(1) Either oxide ceramics such as alumina, mullite, or magnesia or non-oxide ceramics such as silicon nitride or sialon are used as a base material, and as a reinforcing material,
A ceramic composite sintered body characterized by containing silicon carbide particles having a size of 1 μm or less and a size ranging from 5 to 20 μm.
(2)請求項1記載の焼結体において、炭化珪素粒子を
容積比で10〜50%含むことを特徴とするセラミック
ス複合焼結体。
(2) A ceramic composite sintered body according to claim 1, which contains silicon carbide particles in an amount of 10 to 50% by volume.
(3)大きさが1μm以下および5〜20μmの両範囲
にわたる炭化珪素粒子を容積比で10〜50%含み、残
部が実質的にアルミナ、ムライト、マグネシア等の酸化
物あるいは窒化珪素、サイアロン等の非酸化物からなる
混合粉体を形成し、前記混合粉体から得られた成形体を
、酸化物セラミックスを母材とするものに対して140
0〜1900℃の範囲の温度、あるいは非酸化物セラミ
ックスを母材とするものに対して1500〜2000℃
の範囲の温度で焼結することを特徴とするセラミックス
複合焼結体の製造方法。
(3) Contains 10 to 50% by volume of silicon carbide particles with sizes ranging from 1 μm or less and from 5 to 20 μm, with the remainder being substantially oxides such as alumina, mullite, and magnesia, or silicon nitride, sialon, etc. A mixed powder made of a non-oxide is formed, and a molded body obtained from the mixed powder is heated to a temperature of 140
Temperatures in the range of 0 to 1900°C, or 1500 to 2000°C for those whose base material is non-oxide ceramics
A method for producing a ceramic composite sintered body, characterized by sintering at a temperature in the range of .
(4)アルミナ、ムライト、マグネシア等の酸化物セラ
ミックスまたは窒化珪素、サイアロン等の非酸化物セラ
ミックスのいずれか一方を母材とし、強化材として、大
きさが1μm以下の炭化珪素粒子、および最大径が5〜
50μm、厚さが最大径の1/3以下の板状炭化珪素粒
子を共に含むことを特徴とするセラミックス複合焼結体
(4) The base material is either oxide ceramics such as alumina, mullite, or magnesia or non-oxide ceramics such as silicon nitride or sialon, and silicon carbide particles with a size of 1 μm or less and the maximum diameter are used as reinforcing materials. is 5~
A ceramic composite sintered body characterized by containing plate-shaped silicon carbide particles having a thickness of 50 μm and a thickness of ⅓ or less of the maximum diameter.
(5)請求項4記載の焼結体において、炭化珪素粒子と
板状炭化珪素粒子とからなる炭化珪素粒子を容積比で1
0〜50%含むことを特徴とするセラミックス複合焼結
体。
(5) In the sintered body according to claim 4, silicon carbide particles consisting of silicon carbide particles and plate-like silicon carbide particles are contained in a volume ratio of 1
A ceramic composite sintered body characterized by containing 0 to 50%.
(6)大きさが1μm以下の炭化珪素粒子および最大径
が5〜50μm、厚さが最大径の1/3以下の板状炭化
珪素粒子を容積比で10〜50%含み、残部が実質的に
アルミナ、ムライト、マグネシア等の酸化物あるいは窒
化珪素、サイアロン等の非酸化物からなる混合粉体を形
成し、前記混合粉体から得られた成形体を、酸化物セラ
ミックスを母材とするものに対して1400〜1900
℃の範囲の温度、あるいは非酸化物セラミックスを母材
とするものに対して1500〜2000℃の範囲の温度
で焼結することを特徴とするセラミックス複合焼結体の
製造方法。
(6) Contains 10 to 50% by volume of silicon carbide particles with a size of 1 μm or less and plate-shaped silicon carbide particles with a maximum diameter of 5 to 50 μm and a thickness of 1/3 or less of the maximum diameter, with the remainder being substantially A mixed powder consisting of an oxide such as alumina, mullite, magnesia or a non-oxide such as silicon nitride or sialon is formed on the powder, and a molded body obtained from the mixed powder is made of an oxide ceramic as a base material. 1400-1900 for
A method for producing a ceramic composite sintered body, characterized in that sintering is carried out at a temperature in the range of 1500 to 2000 °C for a non-oxide ceramic base material.
JP1243132A 1989-09-18 1989-09-18 Ceramic composite sintered body and method of manufacturing the same Expired - Fee Related JP2858811B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1243132A JP2858811B2 (en) 1989-09-18 1989-09-18 Ceramic composite sintered body and method of manufacturing the same
CA002025425A CA2025425C (en) 1989-09-18 1990-09-14 Sintered ceramic composite body and method of manufacturing same
US07/582,586 US5196386A (en) 1989-09-18 1990-09-14 Sintered ceramic composite body and method of manufacturing same
DE69011447T DE69011447T2 (en) 1989-09-18 1990-09-14 Sintered ceramic composite body and process for its production.
EP90310091A EP0419151B1 (en) 1989-09-18 1990-09-14 Sintered ceramic composite body and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1243132A JP2858811B2 (en) 1989-09-18 1989-09-18 Ceramic composite sintered body and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03103368A true JPH03103368A (en) 1991-04-30
JP2858811B2 JP2858811B2 (en) 1999-02-17

Family

ID=17099277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243132A Expired - Fee Related JP2858811B2 (en) 1989-09-18 1989-09-18 Ceramic composite sintered body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2858811B2 (en)

Also Published As

Publication number Publication date
JP2858811B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
RU2744543C1 (en) Method for producing ceramic composite material based on silicon carbide, reinforced with silicon carbide fibers
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
JP5062402B2 (en) Reaction sintered silicon nitride-based sintered body and method for producing the same
US5196386A (en) Sintered ceramic composite body and method of manufacturing same
JPH0563430B2 (en)
US5217932A (en) Sintered ceramic composite body and method of manufacturing same
JP2925089B2 (en) Ceramic composite sintered body and method of manufacturing the same
JPH03103368A (en) Ceramic composite sintered compact and production thereof
JP2854340B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP2645894B2 (en) Method for producing zirconia ceramics
JP3009046B2 (en) Ceramic composite sintered body and method of manufacturing the same
JPH02255570A (en) Zirconia ceramics material and production thereof
JPH0624726A (en) Zirconia/molybdenum disilicide composition and its production
JP3148559B2 (en) Ceramic fiber reinforced turbine blade and method of manufacturing the same
JP3044290B2 (en) Method for producing particle-dispersed composite ceramics
KR940006423B1 (en) Process for the preparation of composite sintering ai2o3-zro2
Manshor et al. Effect of Pressure Load on the Physical Properties of ZTA-TiO2-Cr2O3
JP3359443B2 (en) Alumina sintered body and method for producing the same
Tekeli Effect of Y2O3 content on cavity formation in ZrO2-based ceramics
JPH09183648A (en) Aluminous sintered compact
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JPS63162583A (en) Manufacture of fiber reinforced ceramics
KR930004555B1 (en) Al2o3 composite ceramic articles and methods of making same
JPH0829982B2 (en) Process for producing silicon carbide whisker reinforced zirconia ceramic composite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees