JPH03103189A - Monoclonal antibody and hybridoma capable of secreting same antibody - Google Patents

Monoclonal antibody and hybridoma capable of secreting same antibody

Info

Publication number
JPH03103189A
JPH03103189A JP1236881A JP23688189A JPH03103189A JP H03103189 A JPH03103189 A JP H03103189A JP 1236881 A JP1236881 A JP 1236881A JP 23688189 A JP23688189 A JP 23688189A JP H03103189 A JPH03103189 A JP H03103189A
Authority
JP
Japan
Prior art keywords
bfgf
fibroblast growth
growth factor
basic fibroblast
mouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1236881A
Other languages
Japanese (ja)
Other versions
JP2871743B2 (en
Inventor
Katsuzo Nishikawa
西川 克三
Kano Yoshitake
吉竹 佳の
Koichi Matsuzaki
松崎 恒一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iatron Laboratories Inc
Mitsubishi Kagaku Iatron Inc
Original Assignee
Iatron Laboratories Inc
Mitsubishi Kagaku Iatron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iatron Laboratories Inc, Mitsubishi Kagaku Iatron Inc filed Critical Iatron Laboratories Inc
Priority to JP1236881A priority Critical patent/JP2871743B2/en
Publication of JPH03103189A publication Critical patent/JPH03103189A/en
Application granted granted Critical
Publication of JP2871743B2 publication Critical patent/JP2871743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

NEW MATERIAL:A monoclonal antibody inhibiting a biological activity of basic fibroblast growth factor(bFGF) and exhibiting no crossing-over reaction with bFGF inactivated by heating. USE:Useful for basic research of bFGF and diagnosis and treatment of malignant tumor by measuring bFGF which is malignant tumor maker in high precise. PREPARATION:A mouse is immunized with bFGF separated from cow brain, etc., and then a spleen cell of the above-mentioned mouse is fused with a mouse myeloma cell. Then cell capable of producing the aimed antibody from the resultant hybridoma is selected and the selected cell is proliferated in abdominal dropsy of mouse to provide the aimed antibody.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は、2種類の新規モノクローナル抗体、及びそれ
らのモノクローナル抗体を各々分泌するハイブリドーマ
に関する. 【従来の技術及び発明が解決しようとする課題1線維芽
細胞成長因子(FGF: fibroblast gr
owthfactor)は、大脳や脳下垂体抽出液中に
見いだされるタンパク質で、塩基性線維芽細胞成長因子
(bFGF:basic FGF )及び酸性線維芽細
胞成長因子( aFGF: acidic FGF )
が知られている.線維芽細胞戒長因子(FGF)類は、
培養線維芽細胞の他、血管内皮細胞を含む多くの中胚葉
山来の培養細胞の増殖を低濃度(数pg〜数ng /m
l )で促進する[Gospodarowicz等、J
. Cell. Physiol., Supplem
ent 5,15−26 (1987)] .塩基性線
維芽細胞成長因子(bFGF)と酸性線維芽細胞或長因
子(aFGF)の作用はほとんど類似しているが、塩基
性線維芽細胞成長因子(bFGF)の方が生体内に広く
分布していることや、腫gff,Ia!胞において産生
例が多いことが知られている。塩基性線維芽細胞成長因
子(bFGF)のイン・ビボにおける作用としては、胚
における外胚葉から中胚葉への分化作用、神経細胞の生
存促進や分化作用等が知られているが、特に血管新生作
用が注目されている。腫瘍細胞が産生ずる塩基性線維芽
細胞成長因子(bFOF)は、腫瘍血管新生因子の一つ
と考えられ、固形腫瘍の形成における役割が考えられて
いる。従って、塩基性線維芽細胞成長因子(bFGF)
は生物活性を持つ腫瘍マーカーとなる可能性があるが、
血中レベルの正確な測定例はまだない。しかし、尿路系
腫瘍患者の尿中に高い塩基性線維芽細胞成長因子(bF
GF)の排出があるという報告はある[Chodak等
、Cancer Res., 48, 2083−20
88(198g)], 塩基性線維芽細胞成長因子(bFGF)に対するポリク
ローナル抗体は、抗原として合成ベプチド又は天然分子
を用いて得られていた[例えば、Sehwei ger
er等, Nature, 325,257−259(
1987)]. !,かじ、この塩基性線維芽細胞成長
因子(bFGF)に対するモノクローナル抗体を生成す
ることは非常に困難であった。Massoglia等は
、塩基性線維芽細胞成長因子(bFGF)に対する4種
のモノクローナル抗体の生或を最初に報告した(Mas
soglia等、J. Cell. Physiol.
,132, 531−537(1987)]が、これら
はいずれもその塩基性線維芽細胞成長因子(bFGF)
の生物活性を阻害しなかった.続いて、Seno等も塩
基性線維芽細胞成長因子(bFGF)に対する4種のモ
ノクローナル抗体の生成を報告した[Seno等、Hy
bridoma, 8, 209−221(1989)
]が、これらもその塩基性線維芽細胞成長因子(bFG
F)の生物活性を阻害しながった。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to two types of novel monoclonal antibodies and hybridomas that secrete each of these monoclonal antibodies. [Problem to be solved by the prior art and the invention 1 Fibroblast growth factor (FGF)
owthfactor) is a protein found in the cerebrum and pituitary gland extracts, and is a protein found in the cerebrum and pituitary gland extracts, and is a protein found in the cerebrum and pituitary gland extracts, and is similar to basic fibroblast growth factor (bFGF) and acidic fibroblast growth factor (aFGF).
It has been known. Fibroblast growth factors (FGFs) are
In addition to cultured fibroblasts, the proliferation of many cultured mesoderm cells including vascular endothelial cells was stimulated at low concentrations (several pg to several ng/m).
l) [Gospodarowicz et al., J.
.. Cell. Physiol. , Supplem
ent 5, 15-26 (1987)]. The actions of basic fibroblast growth factor (bFGF) and acidic fibroblast growth factor (aFGF) are almost similar, but basic fibroblast growth factor (bFGF) is more widely distributed in the body. The fact that I have a tumor, Ia! It is known that there are many cases of production in cells. The in vivo effects of basic fibroblast growth factor (bFGF) are known to include differentiation from ectoderm to mesoderm in embryos, promotion of nerve cell survival and differentiation, and especially angiogenesis. Its effects are attracting attention. Basic fibroblast growth factor (bFOF) produced by tumor cells is considered to be one of the tumor angiogenesis factors, and is thought to play a role in the formation of solid tumors. Therefore, basic fibroblast growth factor (bFGF)
has the potential to be a biologically active tumor marker;
There is still no accurate measurement of blood levels. However, basic fibroblast growth factor (bF) is found to be high in the urine of patients with urinary tract tumors.
There are reports that there is a release of GF) [Chodak et al., Cancer Res. , 48, 2083-20
88 (198 g)], polyclonal antibodies against basic fibroblast growth factor (bFGF) have been obtained using synthetic peptides or natural molecules as antigens [e.g.
er et al., Nature, 325, 257-259 (
1987)]. ! However, it has been very difficult to generate monoclonal antibodies against basic fibroblast growth factor (bFGF). Massoglia et al. first reported the production of four monoclonal antibodies against basic fibroblast growth factor (bFGF) (Massoglia et al.
soglia et al., J. Cell. Physiol.
, 132, 531-537 (1987)], but all of these have their basic fibroblast growth factor (bFGF)
did not inhibit the biological activity of Subsequently, Seno et al. also reported the generation of four monoclonal antibodies against basic fibroblast growth factor (bFGF) [Seno et al., Hy
bridoma, 8, 209-221 (1989)
], but these also have basic fibroblast growth factor (bFG)
F) did not inhibit the biological activity of F).

本発明者等は、種々研究の結果、塩基性線維芽細胞或長
因子(bFGF)の生物活性を阻害し・、そして塩基性
線維芽細胞或長因子(bFGF)の活性形と不活性形と
を区別することのできるモノクローナル抗体を見いだし
た. [課題を解決するための手段1 本発明は、塩基性線維芽細胞成長因子の生物活性を阻害
し、そして加熱によって不活性化された塩基性線維芽細
胞成長因子との交差反応を示さないモノクローナル抗体
に関する. 更に、本発明は、塩基性線維芽細胞或長因子の生物活性
を阻害し、そして加熱によって不活性化された塩基性線
維芽細胞成長因子との交差反応を示すモノクローナル抗
体に関する。
As a result of various studies, the present inventors have discovered that the biological activity of basic fibroblast growth factor (bFGF) can be inhibited, and that the active and inactive forms of basic fibroblast growth factor (bFGF) can be inhibited. We have discovered a monoclonal antibody that can distinguish between [Means for Solving the Problems 1] The present invention provides a monoclonal monoclonal that inhibits the biological activity of basic fibroblast growth factor and does not show cross-reactivity with basic fibroblast growth factor that has been inactivated by heating. Regarding antibodies. Additionally, the present invention relates to monoclonal antibodies that inhibit the biological activity of basic fibroblast growth factors and exhibit cross-reactivity with basic fibroblast growth factors that are inactivated by heat.

また、本発明は、塩基性線維芽細胞成長因子で免疫した
マウスの脾臓細胞とマウスのミエローマ細胞との融合に
よって形戒され、塩基性線維芽細胞成長因子の生物活性
を阻害しそして加熱によって不活性化された塩基性線維
芽細胞成長因子との交差反応を示さないモノクローナル
抗体を分泌するハイブリドーマにも関する。
The present invention is also formulated by fusion of mouse myeloma cells with mouse spleen cells immunized with basic fibroblast growth factor, which inhibits the biological activity of basic fibroblast growth factor and is inactivated by heating. It also relates to hybridomas that secrete monoclonal antibodies that do not exhibit cross-reactivity with activated basic fibroblast growth factor.

更に、本発明は、塩基性線維芽細胞成長因子で免疫した
マウスの脾臓細胞とマウスのミエローマ細胞との融合に
よって形成され、塩基性線維芽細胞成長因子の生物活性
を阻害しそして加熱によって不活性化された塩基性線維
芽細胞成長因子との交差反応を示すモノクローナル抗体
を分泌するハイブリドーマにも関する. 本発明のモノクローナル抗体は、塩基性線維芽細胞成長
因子(bFGF)の生埋的性質などの基礎的研究に有用
であり、更に悪性腫瘍マーカーとして注目されている塩
基性線維芽細胞成長因子(bFGF)を高精度に測定す
ることによる悪性腫瘍の診断及びそれに用いる診断薬、
悪性腫瘍の治療薬への応用が期待される. 以下、本発明を詳細に説明する. ]ム[免交夏0杭災 免疫原としての塩基性線維芽細胞成長因子(以下、bF
GFと略称する)は、例えばウシの脳や脳下垂体から、
公知の方法で分離、精製することができる. 具体的には以下のとおりにして免疫原を精製した.すな
わち、硫酸アンモニウム沈殿、CM−セファデックスク
ロマトグラフイ及びヘパリンーセファロースク口マトグ
ラフィを含むGospodarowicz等の方法[G
ospodarowicz等、Proc. Natl.
 Acad. Sci.USA 81, 6963−6
967(1984)]によってウシの脳からbFGFを
精製した.カラムから溶離され、DNA合成刺激活性[
ニシカワ等、Methods Enzymol− 14
6.11 −22( 1987):ヨシタケ等、Cel
l StrucLFunct. 7, 229−243
(1982)参照1を有する1本のタンパク質ピークを
与えるフラクションを集めた.精製されたbFGFの還
元化試料は、19.5%SDS−PAGE上で、分子量
18,000を有する単独バンドのタンパク質を与えた
. ユ旦と魚炎処里 精製したbFGF免疫原溶液を用いて、イン・ビボ免疫
法により、マウスを免疫する[ニシカワ等、Metho
ds Enzymol. 146. 1 1−22(1
987):−ヨシタケ等、Arch. Biochem
. Biophys− 263, 437−446 (
1988)参照].具体的には以下のとおりにして免疫
処理を実施・した.すなわち、精製したbFGF免疫原
溶液を等量のフロインド氏完全アジュバント又は不完全
アジュバントと乳化するまで混合した.このbFGF1
0μgを含む混合液を、6週令のメスのBALB/cマ
ウスの皮下に投与することにより免疫を行なった(第1
回免疫).以後、2〜4週間の間隔で同様の操作を行な
い、計5回免疫した.マウス血清の抗体力価の定量は、
Massoglia等、J. Cell Physio
l. 132,531−537 (1987)に記載の
ELISA法によって行なった. 最終免疫から4日経過後、脾臓を無菌的にマウスから取
出し以下の細胞融合工程に使用した。
Additionally, the present invention provides that basic fibroblast growth factor is formed by fusion of mouse spleen cells and mouse myeloma cells immunized with basic fibroblast growth factor, which inhibits the biological activity of basic fibroblast growth factor and is inactivated by heating. It also relates to hybridomas that secrete monoclonal antibodies that cross-react with modified basic fibroblast growth factor. The monoclonal antibody of the present invention is useful for basic research such as the bioimplantable properties of basic fibroblast growth factor (bFGF), and furthermore, the monoclonal antibody of basic fibroblast growth factor (bFGF), which is attracting attention as a malignant tumor marker, ) Diagnosis of malignant tumors by measuring with high precision and diagnostic agents used therein,
It is expected to be applied as a therapeutic agent for malignant tumors. The present invention will be explained in detail below. ] Mu [Basic fibroblast growth factor (hereinafter referred to as bF) as an immunogen
(abbreviated as GF), for example, is derived from the bovine brain and pituitary gland.
It can be separated and purified using known methods. Specifically, the immunogen was purified as follows. Namely, the method of Gospodarowicz et al. [G
ospodarowicz et al., Proc. Natl.
Acad. Sci. USA 81, 6963-6
967 (1984)] bFGF was purified from bovine brain. Eluted from the column, DNA synthesis stimulating activity [
Nishikawa et al., Methods Enzymol-14
6.11-22 (1987): Yoshitake et al., Cel
l StrucLFunct. 7, 229-243
(1982) collected fractions giving one protein peak with reference 1. A reduced sample of purified bFGF gave a single band of protein with a molecular weight of 18,000 on 19.5% SDS-PAGE. Mice are immunized by an in vivo immunization method using a bFGF immunogen solution purified from Yutan and Ichthyon [Nishikawa et al., Method.
ds Enzymol. 146. 1 1-22 (1
987): - Yoshitake et al., Arch. Biochem
.. Biophys- 263, 437-446 (
1988)]. Specifically, immunization was performed as follows. Briefly, the purified bFGF immunogen solution was mixed with an equal volume of Freund's complete or incomplete adjuvant until emulsified. This bFGF1
Immunization was performed by subcutaneously administering a mixture containing 0 μg to 6-week-old female BALB/c mice (first
immunization). Thereafter, the same procedure was performed at intervals of 2 to 4 weeks for a total of 5 immunizations. Quantification of antibody titer in mouse serum is
Massoglia et al., J. Cell Physio
l. 132, 531-537 (1987). Four days after the final immunization, the spleen was aseptically removed from the mouse and used in the following cell fusion step.

C ハイブリドーマの 1 具体的には以下の様にしてハイブリドーマの作成を行な
った。DME培地に、上記(B)のJl!!!lを入れ
、ステンレスメッシュ上で押し潰して脾臓細胞懸濁液を
得た.こうして得た細胞をDME培地で遠心法によって
洗浄し、生きている脾臓細胞数を測定した. 一方、予め培養しておいたマウスミエローマ細胞(骨髄
種細胞) P3−X63−Ag8−Ul(P3U1) 
(Dr.Oordon H. Sato,W. Alt
on Jones Cell Science Cen
ter,Inc.より入手)約5×107個に上記脾臓
細胞IXIO’個を加え、DME培地中でよく混合し、
遠心分離を行なった( 500 X g、10分間〉.
その上清を吸引し、ペレットをよく解きほぐし、50%
(w/v)ポリエチレングリコール4000のDME溶
液(37℃に保温) 0.5mlを滴下し、遠心チュー
ブを手で1分間穏やかに回転することによってポリエチ
レングリコール溶液と細胞ベレットとを混合させた.次
に、37”Cに保温しておいたDME培地24mlを小
量づつ加えて、チューブを穏やかに回転させた後、遠心
分離(500Xg, 10分間)を行なった。細胞ペレ
ットを、10%ウシ胎児血清を含むPRMI培地で遠心
洗浄した後、細胞を、10%ウシ胎児血清を含むHAT
培地(RPMI培地にアミノプテリン4×1σ7M、チ
ミジン1.6X10’M、ヒボキサンチンI X 10
’Mを添加したもの) 40mlに懸濁した.この細胞
懸濁液を96ウエル細胞培養プレートの各ウエルに20
0μlずつ分注し、37’Cで、5%炭酸ガスを含む炭
酸ガス培養器で培養を開始した.培養中、2〜3日間隔
で各ウエルの培地を約100μ1除き、新たに上記のH
AT培地100μlを加えることによりHAT培地中で
増殖するハイブリドーマを選択した。8日目からlO%
ウシ胎児血清を含むm′培地(DME培地にチミシン1
. 6 X 10”M、ヒボキサンチンIX10’Mに
なるように添加したもの)に交換し、ハイブリドーマの
増殖を観察するとともに、10日目に、下記のELIS
A法により、bFGF抗体産生ハイブリドーマをスクリ
ーニングした. Dハイブリ゛−マの 立 ハイブリドーマ培養上清中の産生抗体の有無はELIS
A法により測定した。すなわち、96ウエルELISA
用プレート(Falcon社)の各ウエルに、前記のb
FGF免疫原溶液2μg/mlずつを分注し、室温で4
時間放置した.上清を除去した後、l%BSA−PBS
を分注してブロッキングした.次に、Q.1%Twee
n20− PBSで4回洗浄した後、各ウエルの培養上
清50μlを加え、室温で4時間反応させた。その後、
上清を除去し、o.i%Tween20− PBSで4
回洗浄した次に、Tween 20−PBSで2,00
0倍に希釈したべルオキシターゼ結合ウサギ抗マウス抗
体(ダコ社、デンマーク)50μlを各ウエルに加えた
.反応終了後、0.1%Tween20−PBSで各ウ
エルを4回洗浄し、0.1Mクエン酸−リン酸緩衝液(
pH5.0)と0.4%0−フェニレンジアミンと0.
005%過酸化水素とを含む溶液50μlを各ウエルに
加え、室温で15分間反応させ、各ウエルの492nm
における吸光度を測定した。その結果、192ウエル中
5ウエルに抗体産生が認められた。その後、再度ELI
SA法によって抗bFGF抗体の産生の有無を確認して
から限界希釈法により3回クローニングした.これらの
クローンの中から、増殖のよい、抗体分泌能の高い、し
かも安定なクローンを選び、前記と同様の方法で再クロ
ーン化を行い、抗bFGF特異的抗体産生ハイブリドー
マ2種を樹立し各々bFM−1及びbFM−2と命名し
た。
C Hybridoma 1 Specifically, a hybridoma was created as follows. Jl! of (B) above in DME medium. ! ! 1 and crushed on a stainless steel mesh to obtain a spleen cell suspension. The cells thus obtained were washed with DME medium by centrifugation, and the number of living spleen cells was determined. On the other hand, pre-cultured mouse myeloma cells (myeloma cells) P3-X63-Ag8-Ul (P3U1)
(Dr. Oordon H. Sato, W. Alt.
on Jones Cell Science Center
ter, Inc. Add IXIO' of the above spleen cells to about 5
Centrifugation was performed (500 x g, 10 minutes).
Aspirate the supernatant, loosen the pellet well, and remove 50%
0.5 ml of (w/v) polyethylene glycol 4000 in DME solution (kept at 37°C) was added dropwise, and the polyethylene glycol solution and cell pellet were mixed by gently rotating the centrifuge tube by hand for 1 minute. Next, 24 ml of DME medium kept at 37"C was added in small portions, and the tube was gently rotated, followed by centrifugation (500Xg, 10 minutes). The cell pellet was mixed with 10% bovine After centrifugal washing with PRMI medium containing fetal serum, cells were incubated with HAT containing 10% fetal bovine serum.
Medium (RPMI medium with aminopterin 4 x 1σ 7M, thymidine 1.6 x 10'M, hypoxanthine I x 10
'M added) was suspended in 40 ml. Add 20 cells of this cell suspension to each well of a 96-well cell culture plate.
0 μl was dispensed and culture was started at 37'C in a carbon dioxide gas incubator containing 5% carbon dioxide gas. During culture, remove approximately 100 μl of the medium from each well at intervals of 2 to 3 days, and add freshly added H
Hybridomas growing in HAT medium were selected by adding 100 μl of AT medium. lO% from day 8
M' medium containing fetal bovine serum (thymisin 1 in DME medium)
.. 6 x 10"M, Hyboxanthin IX added to 10'M), observe the growth of hybridomas, and on the 10th day, perform the following ELIS
Hybridomas producing bFGF antibodies were screened by Method A. The presence or absence of produced antibodies in the culture supernatant of D hybridomas can be determined by ELIS.
Measured by method A. i.e. 96-well ELISA
Add the above b to each well of a plate for
Dispense 2 μg/ml of FGF immunogen solution and incubate at room temperature for 4 hours.
I left it for a while. After removing the supernatant, 1% BSA-PBS
was dispensed and blocked. Next, Q. 1%Twee
After washing four times with n20-PBS, 50 μl of the culture supernatant was added to each well and reacted at room temperature for 4 hours. after that,
Remove the supernatant and o. i%Tween20-4 on PBS
After washing twice, wash with Tween 20-PBS for 2,000
50 μl of peroxidase-conjugated rabbit anti-mouse antibody (Dako, Denmark) diluted 1:0 was added to each well. After the reaction, each well was washed 4 times with 0.1% Tween20-PBS, and 0.1M citrate-phosphate buffer (
pH 5.0), 0.4% 0-phenylenediamine and 0.4% 0-phenylenediamine.
Add 50 μl of a solution containing 0.005% hydrogen peroxide to each well, react for 15 minutes at room temperature, and
The absorbance at was measured. As a result, antibody production was observed in 5 out of 192 wells. After that, ELI again
After confirming the presence or absence of anti-bFGF antibody production using the SA method, cloning was performed three times using the limiting dilution method. Among these clones, clones with good growth, high antibody secretion ability, and stable clones were selected and re-cloned in the same manner as above to establish two types of anti-bFGF-specific antibody-producing hybridomas, each of which was bFM -1 and bFM-2.

モノクローナル  の 造:イン“ビボ′ブリスタン(
2, 6, 10. 14−テトラメチルベンタデカン
)0.5mlを7週令のBALB/c系マウスの腹腔内
に投与し、7日経過した後のマウス腹腔内に、イン・ビ
トロで増殖させたハイブリドーマbFM−1及びbFM
−2をマウスー匹当たりIXIO’細胞となるように接
種した. 各ハイブリドーマにつき一匹のマウスから約5〜1 0
mlの腹水が得られた.その抗体濃度は、1〜3mg/
mlであった.腹水中のモノクローナル抗体の精製は、
以下のようにして行なった。ガーゼで枦過した腹水を遠
心分離(20,000 X g, 10分)した後、固
形の硫酸アンモニウムを30%飽和濃度になるように加
えた.遠心分離(20,000 X g, 10分)し
た後、上清に更に硫酸アンモニウムを50%飽和濃度に
なるように加え、遠心分離により沈殿を得た.沈殿を小
量の5mM Tris−HC1[街液(pH7.5)に
溶解し、100倍量の前記緩衝液に対して3回透析した
.得られた透析物を、前記緩衝液で平衡化したDE−5
0セルロースのカラムにかけて、前記緩衝液で洗浄した
。吸着したモノクローナル抗体は、前記緩衝液とそれに
0.1 5M NaC1を加えた溶液とにより、濃度勾
配法によって溶出させた.得られたモノクローナル抗体
が均一な純度を持つことは、’SDS一電気泳動法によ
って確認した. F  グロプリンクラスの日 抗bFGF特異モノクローナル抗体bFM−1及びbF
M一2の免疫グロブリンクラス及びサブクラスの同定は
、マウスモノクローナル抗体アイソダイビングキット(
アマーシャム社製)によって行なった。
Monoclonal construction: In “Vivo’Bristan” (
2, 6, 10. 14-tetramethylbentadecane) was administered intraperitoneally to a 7-week-old BALB/c mouse, and after 7 days, the in vitro-proliferated hybridoma bFM-1 and bFM
-2 was inoculated at IXIO' cells per mouse. Approximately 5-10 cells from one mouse per hybridoma
ml of ascites was obtained. The antibody concentration is 1-3 mg/
It was ml. Purification of monoclonal antibodies in ascites
It was done as follows. After the ascites was filtered through gauze and centrifuged (20,000 x g, 10 minutes), solid ammonium sulfate was added to give a 30% saturation concentration. After centrifugation (20,000 x g, 10 minutes), ammonium sulfate was further added to the supernatant to a saturation concentration of 50%, and a precipitate was obtained by centrifugation. The precipitate was dissolved in a small amount of 5mM Tris-HC1 [street solution (pH 7.5)] and dialyzed three times against 100 times the volume of the above buffer. The obtained dialysate was mixed with DE-5 equilibrated with the above buffer solution.
0 cellulose column and washed with the above buffer. The adsorbed monoclonal antibody was eluted by the concentration gradient method using the above buffer and a solution containing 0.15M NaCl. The homogeneous purity of the obtained monoclonal antibody was confirmed by SDS-electrophoresis. F Globulin class anti-bFGF specific monoclonal antibodies bFM-1 and bF
Identification of the M-2 immunoglobulin class and subclass was performed using the Mouse Monoclonal Antibody Isodiving Kit (
(manufactured by Amersham).

その結果、それぞれ、IgG1/κであることが分かっ
た。
As a result, each was found to be IgG1/κ.

Gモノクローナル  の 差 (a)ウシ脳下垂体bFcF(1−146)[Esch
等,Proc. Natl.Acad. Sci. U
SA 82, 6507−6511 (1985)1の
天然形のアミノ酸14−16個及び追加のTyrの配列
を有する3種類のべブチドを、全自動Biolynx 
4170 PeptideSynthesizer (
Pharmacia LKB Biotechnolo
gy,スエーデン)又は全自動Applied Bio
systems 430 A PeptideSynt
hesizer (Applied Biophysi
cs Inc.、米国)中で、固相法によって合或した
[マツオ等、In Vitro Cell−Dev. 
Biol. 24, 477−480 (198g)]
 ,その内の2種は、Try”−bFGF( 1−15
 )及びTry”2−bFGF(133−146)であ
り、これらはそれぞれ天然分子のアミノ末端配列及びカ
ルボキシ末端配列に相当する。もう1種は、Try”−
bFGF(36−50)であり、これは全配列の親水性
分析によって同定したbFGFの親水性配列の主要部分
を含んでいた. 本発明のモノクローナル抗体bFM−1及びbFM−2
に関するbFGF上のエビトープを決定するために、b
FGF分子の3種の線状フラグメントとモノクローナル
抗体bFM− 1及びbFM−2との交差反応性を調べ
た. 結果を第1図及び第2図に示す。第1図及び第2図は、
本発明のモノクローナル抗体bFM−1(第1図〉及び
bFM−2 (第2図〉とbFGFフラグメント、bF
GF (後述〉及び加熱不活性化bFGF (後述)と
の交差反応性を競合結合アッセイ法で調べた結果を示す
ものである.第1図及び第2図において縦軸のB/Bo
は、各種濃度の抗原の存在下における125■ラベルb
FGFの特異的結合量(B)を非ラベル化抗原非存在下
での特異的結合量(Bo)で割った(除算した)もので
ある。第1図及び第2図の実験においては、モノクロー
ナル抗体bFM−1の6ng又はモノクローナル抗体b
FM−2の75ngを反応混合物(0.5ml)に加え
た.添加した総トレーサーの百分率でBoを示せば、モ
ノクローナル抗体bFM−1とは56%であり、モノク
ローナル抗体bFM−2とは35%であった.第1図及
び第2図において、◎は活性bFGF、○は加熱不活性
化bFGF、口はTry+6−bFGF(1−15)、
☆はTy?’−bFGF(36−50)、◇はTyr1
32−bFGF (133−146)である。第1図及
び第2図から明らかなように、これらのベプチド即ちT
ry”−bFGF(1−15)、Tyr”−bFGF 
(133−146)及びTyr”−bFGF(36−5
0)のいずれも本発明のモノクローナル抗体bFM−1
又はbFM−2とは100μg/ml(この濃度は、明
確な交差反応を示す天然bFGFのモル基準濃度の10
0−1000倍である)においてさえ交差反応を示さな
かった.このことから、これらの配列、すなわちアミノ
末端、カルボキシル末端及び主要な親水性領域が連続エ
ビトープとして本発明のモノクローナル抗体によっては
認識されないことがわかる。
G monoclonal difference (a) Bovine pituitary bFcF(1-146) [Esch
et al., Proc. Natl. Acad. Sci. U
SA 82, 6507-6511 (1985) 1, with the sequence of 14-16 amino acids in the natural form and an additional Tyr, were prepared using a fully automated Biolynx machine.
4170 Peptide Synthesizer (
Pharmacia LKB Biotechnolo
gy, Sweden) or fully automatic Applied Bio
systems 430 A Peptide Synt
hesizer (Applied Biophysics
cs Inc. [Matsuo et al., In Vitro Cell-Dev.
Biol. 24, 477-480 (198g)]
, two of which are Try”-bFGF(1-15
) and Try”2-bFGF (133-146), which correspond to the amino-terminal and carboxy-terminal sequences of the natural molecule, respectively.
bFGF(36-50), which contained the major portion of the hydrophilic sequence of bFGF identified by whole sequence hydrophilicity analysis. Monoclonal antibodies bFM-1 and bFM-2 of the present invention
To determine the evitope on bFGF for b
The cross-reactivity between three types of linear fragments of the FGF molecule and monoclonal antibodies bFM-1 and bFM-2 was investigated. The results are shown in Figures 1 and 2. Figures 1 and 2 are
Monoclonal antibodies bFM-1 (Fig. 1) and bFM-2 (Fig. 2) of the present invention and bFGF fragment, bF
This figure shows the results of cross-reactivity with GF (described later) and heat-inactivated bFGF (described later) using a competitive binding assay. In Figures 1 and 2, the vertical axis B/Bo
is the 125■ label b in the presence of various concentrations of antigen.
It is the amount of specific binding (B) of FGF divided by the amount of specific binding (Bo) in the absence of unlabeled antigen. In the experiments shown in Figures 1 and 2, 6 ng of monoclonal antibody bFM-1 or monoclonal antibody b
75 ng of FM-2 was added to the reaction mixture (0.5 ml). When Bo is expressed as a percentage of the total tracer added, it was 56% for monoclonal antibody bFM-1 and 35% for monoclonal antibody bFM-2. In Figures 1 and 2, ◎ indicates active bFGF, ○ indicates heat-inactivated bFGF, and indicates Try+6-bFGF (1-15).
☆ is Ty? '-bFGF (36-50), ◇ is Tyr1
32-bFGF (133-146). As is clear from FIGS. 1 and 2, these peptides, namely T
ry"-bFGF (1-15), Tyr"-bFGF
(133-146) and Tyr"-bFGF (36-5
0) is the monoclonal antibody bFM-1 of the present invention
or bFM-2 at 100 μg/ml (this concentration is 10% higher than the molar reference concentration of natural bFGF, which shows clear cross-reactivity).
No cross-reactivity was observed even at 0-1000 times. This shows that these sequences, ie the amino terminus, the carboxyl terminus and the major hydrophilic region, are not recognized by the monoclonal antibodies of the invention as continuous evitopes.

(b)bFGFの生物活性は熱不安定性及び酸不安定性
である.したがって、bFGF分子(これはジスルフィ
ド結合によって維持されていない)のコンフォメーショ
ンは、その生物活性に必須のものと考えられる[Gos
podarowicz等、J. Cell− Phys
iol− 128,475−484 (1986)] 
,本発明のモノクローナル抗体がbFGF分子のコンフ
オメーションを認識したかどうかを決定するために、b
FGF溶液を沸騰水浴中で5分間インキユベイションし
た.熱不活性化bFGFの生物活性( BALB/c3
T3−3Kセル中でのDNA合成の刺激によって測定し
た)は、熱処理前のbFGFの生物活性の0.2%より
低かった。本発明のモノクローナル抗体bFM−1 (
第1図)は熱不活性化bFGFと交差反応を示さなかっ
たが、本発明のモノクローナル抗体bFM−2 (第2
図〉は熱不活性化bFGFと交差反応を示した.但し、
その反応性は非処理bFGFとのものよりも幾分低かっ
た。このことは、本発明のモノクローナル抗体bFM−
1が、bFGFの生物活性に必要なbFGF分子のコン
フ才メーションを認識していることを示している。
(b) The biological activity of bFGF is thermolabile and acid labile. Therefore, the conformation of the bFGF molecule (which is not maintained by disulfide bonds) appears to be essential for its biological activity [Gos
Podarowicz et al., J. Cell-Phys
iol- 128, 475-484 (1986)]
, to determine whether the monoclonal antibody of the present invention recognized the conformation of the bFGF molecule.
The FGF solution was incubated in a boiling water bath for 5 minutes. Biological activity of heat-inactivated bFGF (BALB/c3
(measured by stimulation of DNA synthesis in T3-3K cells) was less than 0.2% of the biological activity of bFGF before heat treatment. Monoclonal antibody bFM-1 of the present invention (
The monoclonal antibody bFM-2 (Fig. 1) of the present invention did not show any cross-reactivity with heat-inactivated bFGF (Fig. 2).
Figure 〉 showed cross-reactivity with heat-inactivated bFGF. however,
Its reactivity was somewhat lower than that with untreated bFGF. This indicates that the monoclonal antibody bFM-
1 recognizes the conformation of the bFGF molecule, which is necessary for the biological activity of bFGF.

(C)様々な種から誘導されたbFGF及びウシ−aF
GFとこれらのモノクローナル抗体との反応性を、ラジ
オイムノアッセイ法(RIA)によって決定した.結果
を第1表に示す.どちらのモノクローナル抗体も、マウ
スーbFGF、ヒトーbFGF及びウシーbFGFとは
交差反応を示したが、ウシーaFGFとは交差反応を示
さなかった.第1表:様々な種のbFGF及びウシーa
FGFとモノクローナル抗体との交差反応性 ウシーbFGF マウスーbFGF ヒトーbFGF ウシ−aFGF (100) 130−170 70−100 0 (100) 100−110 90−140 0 ラジオイムノアッセイ法(RIA)の実験条件は、第1
図及び第2図に関連して記載してあるとおりである.数
値の計算は、前記したとおり、ラジオイムノアッセイ法
( RIA )によって推定したFGF濃度を、FGF
のDNA合成刺激活性から推定したFGF濃度で割って
行なった.いずれのア・ノセイにおいても、純粋なウシ
bFGFを標準として用いた。
(C) bFGF and bovine-aF derived from various species.
The reactivity of GF with these monoclonal antibodies was determined by radioimmunoassay (RIA). The results are shown in Table 1. Both monoclonal antibodies showed cross-reactivity with mouse-bFGF, human-bFGF, and bovine bFGF, but not with bovine aFGF. Table 1: bFGF and bovine a of various species
Cross-reactivity between FGF and monoclonal antibodies Bovine bFGF Mouse bFGF Human bFGF Bovine aFGF (100) 130-170 70-100 0 (100) 100-110 90-140 0 The experimental conditions for radioimmunoassay (RIA) were as follows. 1
As described in relation to Figures and Figure 2. As mentioned above, numerical calculations were carried out using the FGF concentration estimated by radioimmunoassay (RIA) and FGF concentration.
This was done by dividing the concentration by the FGF concentration estimated from the DNA synthesis stimulating activity. Pure bovine bFGF was used as a standard in both cases.

ウシbFGFの値を100%とした. bFGFのラジ イムノアツセイゞ 精製したウシbFGFを、クロラミンーT法[Kan等
、J. Biol.Chem. 263. 11306
−11313(1988)に記載1によって1251で
ラベルし、ヘパリンーSepharoseアフイニティ
クロマトグラフ4 [Neufeld等、J. Bio
l. Chem.260. 13860−13868(
1985)に記載1を若干修正した方法で精製した.簡
単に説明すれば、クロラミン−TL80μg/m 1を
含有する反応混合物110μl中で室湯下で2分間、ウ
シbFGF2.8μgと”’I 700μCi(25.
9MBq)とを0.02%CHAPSの存在下でインキ
ユベーションした[マツオ等、In Vitro Ce
ll. Dev.Biol. 24, 477−480
(198g)]。0.02Mジチオスレイトール100
μlを加えることにより、反応を停止した。
The value of bovine bFGF was set as 100%. Radioimmunoassay of bFGF Purified bovine bFGF was purified by the chloramine-T method [Kan et al., J. et al. Biol. Chem. 263. 11306
-11313 (1988) 1 and labeled with 1251 as described in Heparin-Sepharose Affinity Chromatograph 4 [Neufeld et al., J. et al. Bio
l. Chem. 260. 13860-13868(
The method described in 1985) was purified using a slightly modified method. Briefly, 2.8 μg of bovine bFGF and 700 μCi of “'I (25.0 μg) were incubated with 2.8 μg of bovine bFGF for 2 min under room water in 110 μl of a reaction mixture containing 80 μg/ml of chloramine-TL.
9MBq) was incubated in the presence of 0.02% CHAPS [Matsuo et al., In Vitro Ce
ll. Dev. Biol. 24, 477-480
(198g)]. 0.02M dithiothreitol 100
The reaction was stopped by adding μl.

次に、0.1%CHAPSを含有する塩溶液を用いて、
ヘバリン−Sepharose力ラム上で遊離の125
■がら125■ラベル付きbFGFを分離した +25
1ラベル付きbFGFの比活性は5.5 X 1 0’
cpm/ngであった.ラベルされたbFGFとラベル
されていないbFGFは、前記と同様のDNA合成刺激
から判断して、ほとんど同じ生物活性を示した, RI
A用反応混合物(5ml)は、0.1Mリン酸緩衝液(
pH7.4) /0.02%NaN30.35ml,P
BS/0.1%BSA/t).02%NaN3(PBS
−B−A沖の4 ng/ml125I−bFGF(80
00−1 5000cpm)0.05ml、PBS−B
−A中の適当な濃度のラベルされていないbFGF0.
05ml及びPBS−B−A中の各々精製されたモノク
ローナル抗体(0.12−1.5μg/ml) 0.0
5mlがらなり、これを試験管(栄研)内で4℃で一晩
インキユベートした。
Next, using a salt solution containing 0.1% CHAPS,
Hebarin - 125 Free on Sepharose Power Ram
■Gara125■Isolated labeled bFGF +25
The specific activity of 1-labeled bFGF is 5.5 x 1 0'
cpm/ng. Labeled and unlabeled bFGF showed almost the same biological activity as judged by the same stimulation of DNA synthesis as described above, RI.
The reaction mixture for A (5 ml) was prepared using 0.1 M phosphate buffer (
pH7.4) /0.02% NaN30.35ml, P
BS/0.1%BSA/t). 02% NaN3 (PBS
-4 ng/ml 125I-bFGF (80
00-1 5000cpm) 0.05ml, PBS-B
- an appropriate concentration of unlabeled bFGF0.
Purified monoclonal antibodies (0.12-1.5 μg/ml) in 0.05 ml and PBS-B-A 0.0
5 ml was incubated overnight at 4°C in a test tube (Eiken).

PBS/0.02%NaN3中の1%正常マウス血清0
.1mlとPBS/0.02%NaN3中の0.77m
g/m 1ヤギー抗−マウス免疫グロブリン(ダコ社)
0.1mlとを加えた後で、試験管をさらに4゜Cで4
時間インキユベートした。
1% normal mouse serum in PBS/0.02% NaN3
.. 1 ml and 0.77 m in PBS/0.02% NaN3
g/m 1 Goat anti-mouse immunoglobulin (Dako)
After adding 0.1 ml, the test tube was further incubated at 4°C for 4
Incubated for hours.

抗体に結合した放射能を、0.2%ポリエチレングリコ
ール6000のlmlを加えそして遠心することによっ
て沈殿させ、続いてAloka自動一ウエルガンマシス
テム(ARC−300)中で計数した.0oetz等、
In Vitro Cell Dev. Biol. 
21, 172−180(1985)に記載の条件を若
干変更した条件でウシ脳皮質からウシ毛細血管内皮細胞
を単離培養し、維持した.細胞の培養は、タイブーIV
コラーゲン(Sigma社、米国)でコートした皿で、
ペニシリン100単位/m1,ストレプトマイシン10
0μg/ml,15mM Hepes(pH7.3)及
びbFGF 1 ng/mlを補充して10%熱不活性
化ウシ胎児血清を含むRPMI1640培地中で行なっ
た。細胞を5〜9継代での増殖実験に用いた.細胞を、
■25%を含む空気中で、湿潤雰囲気下で、37℃で培
養した. 但囲亙犬櫨 タイプーIVコラーゲンでコートした60mm Fal
con皿で、維持用の培地と同じ培地5ml中に2xl
O’の密度で、ウシ毛細血管内皮細胞を平板培養“した
.細胞接種の時にのみ、bFGF及びモノクローナル抗
体を加えた.5日後、細胞をトリブシンによって採取し
、次いでコールター(Coulter )計数器内で細
胞数を計数した, bFGFを含まない培地に10’個
の細胞を平板培養して4日後に細胞数を計数した以外は
、bFGF非存在下での増殖を前記と同様の方法で分析
した。数値は、2枚の皿による実験の平均を取った。
Radioactivity bound to the antibody was precipitated by adding 1 ml of 0.2% polyethylene glycol 6000 and centrifuging, followed by counting in an Aloka automated one-well gamma system (ARC-300). 0oetz etc.
In Vitro Cell Dev. Biol.
Bovine capillary endothelial cells were isolated and cultured from bovine brain cortex under conditions slightly modified from those described in 21, 172-180 (1985), and maintained. Cell culture was carried out using Tybu IV
In a plate coated with collagen (Sigma, USA),
Penicillin 100 units/ml, streptomycin 10
It was performed in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum supplemented with 0 μg/ml, 15 mM Hepes (pH 7.3) and bFGF 1 ng/ml. Cells were used for proliferation experiments at passages 5 to 9. cells,
■ Cultured at 37°C in a humid atmosphere in air containing 25%. However, 60mm Fal coated with Inuzaki type-IV collagen
In a con dish, add 2xl in 5ml of the same medium as the maintenance medium.
Bovine capillary endothelial cells were plated at a density of O'. bFGF and monoclonal antibodies were added only at the time of cell seeding. After 5 days, cells were harvested with tribucin and then plated in a Coulter counter. Cell numbers were counted. Proliferation in the absence of bFGF was analyzed in the same manner as described above, except that 10' cells were plated in bFGF-free medium and cell numbers were counted 4 days later. Values were averaged from two-dish experiments.

也詰呈 第3図及び第4図は、外因的に加えたbFGFの存在下
及び非存在下での、ウシ毛細血管内皮細胞の増殖に対す
るモノクローナル抗体の効果を示すものである。なお、
第3図及び第4図において、○は、外因的bFGF 1
 ng/ml存在下の結果を示し、●は、外因的bFG
F非存在下での結果を示す。また、太い矢印(Ino)
は、接種細胞数を示す。10%ウシ胎児血清を含有する
培地中でのウシ毛細血管内皮細胞の増殖は、添加された
bFGPによって刺激された。細胞2×104個を接種
してから5日後の細胞数は、bFGF 1 ng/ml
の存在下及び非存在下で各々6.OX 105及び1.
IX105であった.一方、これらの細胞をより高密度
(細胞105個)で接種した場合には、これらの細胞は
外因的に添加されたbFGFの非存在下でも増殖するこ
とができた.もっとも、その増殖速度は若干遅がった,
 bFGF非存在下での高接種濃度での倍加時間及びb
FGF存在下での低接種濃度での倍加時間は各々40時
間及び24時間であった.本発明のモノクローナル抗体
bFM−1 (第3図)及び本発明のモノクローナル抗
体bFM−2 (第4図)はどちらも、外因的bFGF
の存在下だけでなく非存在下でもウシ毛細血管内皮細胞
の増殖を、供与量(0.1−10μ−mlの範囲におい
て)に依存する態様で阻害した.モノクローナル抗体b
FM−1の阻害効果はモノクローナル抗体bFM一2の
阻害効果よりも大きがった.これは、これらのモノクロ
ーナル抗体のKd値の差異と一致する。
Figures 3 and 4 show the effect of monoclonal antibodies on the proliferation of bovine capillary endothelial cells in the presence and absence of exogenously added bFGF. In addition,
In Figures 3 and 4, ○ indicates exogenous bFGF 1
Results are shown in the presence of ng/ml, ● indicates exogenous bFG
Results are shown in the absence of F. Also, thick arrow (Ino)
indicates the number of inoculated cells. Proliferation of bovine capillary endothelial cells in medium containing 10% fetal bovine serum was stimulated by added bFGP. The number of cells 5 days after inoculating 2 x 104 cells was 1 ng/ml of bFGF.
6. in the presence and absence of each. OX 105 and 1.
It was IX105. On the other hand, when these cells were seeded at a higher density (10 5 cells), they were able to grow in the absence of exogenously added bFGF. However, the growth rate was slightly slower.
b Doubling time and b at high inoculum concentration in the absence of FGF
Doubling times at low inoculum concentrations in the presence of FGF were 40 and 24 hours, respectively. Monoclonal antibody bFM-1 of the present invention (Figure 3) and monoclonal antibody bFM-2 of the present invention (Figure 4) both contain exogenous bFGF.
Proliferation of bovine capillary endothelial cells was inhibited in the presence as well as in the absence of D. in a dose-dependent manner (in the range of 0.1-10 μ-ml). monoclonal antibody b
The inhibitory effect of FM-1 was greater than that of monoclonal antibody bFM-2. This is consistent with the difference in Kd values of these monoclonal antibodies.

これらの結果は、これらのモノクローナル抗体が、bF
GFのイン・ビトロにおける生物活性を阻害し、更にウ
シ毛細血管内皮細胞がら生成分泌されるbFGFの生物
活性をも阻害し、bFGFのこの細胞におけるオートク
リン作用を抑制することを示している.
These results indicate that these monoclonal antibodies
It has been shown that it inhibits the biological activity of GF in vitro, and also inhibits the biological activity of bFGF produced and secreted from bovine capillary endothelial cells, suppressing the autocrine action of bFGF in these cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のモノクローナル抗体bFM−1と、
塩基性線維芽細胞成長因子(bFGF) 、加熱不活性
化塩基性線維芽細胞成長因子(bFGF)及び塩基性線
維芽細胞成長因子(bFGF )のフラグメントとの交
差結合性を示すグラフである.第2図は、本発明のモノ
クローナル抗体bFM−2と、塩基性線維芽細胞成長因
子(bFGF) 、加熱不活性化塩基性線維芽細胞成長
因子(bFGF)及び塩基性線維芽細胞成長因子(bF
GF )のフラグメントとの交差結合性を示すグラフで
ある.第3図は、本発明のモノクローナル抗休bFM−
1がウシ毛細血管内皮細胞のbFGFによって促進され
た増殖に与える効果を示すグラフである.第4図は、本
発明のモノクローナル抗体bFM−2がウシ毛細血管内
皮細胞のbFGFによって促進された増殖に与える効果
を示すグラフである。
FIG. 1 shows the monoclonal antibody bFM-1 of the present invention,
1 is a graph showing cross-linking with basic fibroblast growth factor (bFGF), heat-inactivated basic fibroblast growth factor (bFGF), and fragments of basic fibroblast growth factor (bFGF). Figure 2 shows monoclonal antibody bFM-2 of the present invention, basic fibroblast growth factor (bFGF), heat-inactivated basic fibroblast growth factor (bFGF), and basic fibroblast growth factor (bFGF).
This is a graph showing the cross-linkage with fragments of GF. FIG. 3 shows the monoclonal anti-abortion bFM-
FIG. 1 is a graph showing the effect of No. 1 on bFGF-promoted proliferation of bovine capillary endothelial cells. FIG. 4 is a graph showing the effect of the monoclonal antibody bFM-2 of the present invention on bFGF-promoted proliferation of bovine capillary endothelial cells.

Claims (4)

【特許請求の範囲】[Claims] (1)塩基性線維芽細胞成長因子の生物活性を阻害し、
そして加熱によって不活性化された塩基性線維芽細胞成
長因子との交差反応を示さないモノクローナル抗体。
(1) inhibiting the biological activity of basic fibroblast growth factor;
and a monoclonal antibody that does not show cross-reactivity with basic fibroblast growth factor that is inactivated by heat.
(2)塩基性線維芽細胞成長因子の生物活性を阻害し、
そして加熱によって不活性化された塩基性線維芽細胞成
長因子との交差反応を示すモノクローナル抗体。
(2) inhibiting the biological activity of basic fibroblast growth factor;
and a monoclonal antibody that cross-reacts with basic fibroblast growth factor that is inactivated by heat.
(3)塩基性線維芽細胞成長因子で免疫したマウスの脾
臓細胞とマウスのミエローマ細胞との融合によって形成
され、塩基性線維芽細胞成長因子の生物活性を阻害しそ
して加熱によって不活性化された塩基性線維芽細胞成長
因子との交差反応を示さないモノクローナル抗体を分泌
するハイブリドーマ。
(3) formed by the fusion of mouse myeloma cells with spleen cells of mice immunized with basic fibroblast growth factor, inhibited the biological activity of basic fibroblast growth factor, and was inactivated by heating. A hybridoma that secretes monoclonal antibodies that do not show cross-reactivity with basic fibroblast growth factor.
(4)塩基性線維芽細胞成長因子で免疫したマウスの脾
臓細胞とマウスのミエローマ細胞との融合によって形成
され、塩基性線維芽細胞成長因子の生物活性を阻害しそ
して加熱によって不活性化された塩基性線維芽細胞成長
因子との交差反応を示すモノクローナル抗体を分泌する
ハイブリドーマ。
(4) formed by the fusion of mouse myeloma cells with mouse spleen cells immunized with basic fibroblast growth factor, inhibited the biological activity of basic fibroblast growth factor, and was inactivated by heating. A hybridoma that secretes monoclonal antibodies that cross-react with basic fibroblast growth factor.
JP1236881A 1989-09-14 1989-09-14 Monoclonal antibodies and hybridomas secreting the antibodies Expired - Lifetime JP2871743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236881A JP2871743B2 (en) 1989-09-14 1989-09-14 Monoclonal antibodies and hybridomas secreting the antibodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236881A JP2871743B2 (en) 1989-09-14 1989-09-14 Monoclonal antibodies and hybridomas secreting the antibodies

Publications (2)

Publication Number Publication Date
JPH03103189A true JPH03103189A (en) 1991-04-30
JP2871743B2 JP2871743B2 (en) 1999-03-17

Family

ID=17007169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236881A Expired - Lifetime JP2871743B2 (en) 1989-09-14 1989-09-14 Monoclonal antibodies and hybridomas secreting the antibodies

Country Status (1)

Country Link
JP (1) JP2871743B2 (en)

Also Published As

Publication number Publication date
JP2871743B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
Matsuzaki et al. Monoclonal antibodies against heparin-binding growth factor II/basic fibroblast growth factor that block its biological activity: invalidity of the antibodies for tumor angiogenesis.
US5705157A (en) Methods of treating cancerous cells with anti-receptor antibodies
US5783185A (en) Monoclonal antibodies to transforming growth factor-beta and methods of use
US6960559B1 (en) Neurite growth regulatory factors
JPH066067B2 (en) Monoclonal antibody and method for producing the same
US20090075905A1 (en) Anticancer compounds and methods
CN112679613B (en) Application of bone marrow mesenchymal stem cells in combination with monoclonal antibody in treatment of cancer
US5747032A (en) Monoclonal antibody to human granulocyte macrophage colony stimulating factor
US5084391A (en) Monoclonal antibody to the interleukin-2-receptor and its use
US4882275A (en) Method of purifying endothelial cell growth factors using immobilized heparin
Lokeshwar et al. Development and characterization of monoclonal antibodies to murine macrophage colony-stimulating factor.
US5328986A (en) Smooth muscle mitogen
JPH04504199A (en) Monoclonal antibodies and their uses
JPH03103189A (en) Monoclonal antibody and hybridoma capable of secreting same antibody
JPH0630619B2 (en) Monoclonal anti-human granulocyte colony-stimulating factor antibody
WO1991006668A1 (en) Monoclonal antibodies to basic fibroblast growth factor that inhibit its biological activity
JPH11180895A (en) Vascularization inhibitor
JP2902129B2 (en) Method for detecting basic fibroblast growth factor
CA2039230C (en) Monoclonal antibodies that inhibit growth of kaposi's sarcoma
Buchegger et al. Swine monoclonal antibodies of high affinity and specificity to carcinoembryonic antigen
US5235042A (en) Endothelial cell growth factor
CN116589588B (en) Antibodies that bind to coagulation factor X
JPH04183397A (en) Each monoclonal antibody against human stromal type collagenase, human 72 kda gelatinase or human 92 kda gelatinase and its utilization
JPH1149701A (en) Anticancer agent
EP1090107A1 (en) Human monoclonal antibodies against the tumor antigen uk114 and lymphocyte cells and hybridomas for their production

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11