JPH0310311B2 - - Google Patents

Info

Publication number
JPH0310311B2
JPH0310311B2 JP58142061A JP14206183A JPH0310311B2 JP H0310311 B2 JPH0310311 B2 JP H0310311B2 JP 58142061 A JP58142061 A JP 58142061A JP 14206183 A JP14206183 A JP 14206183A JP H0310311 B2 JPH0310311 B2 JP H0310311B2
Authority
JP
Japan
Prior art keywords
toner
fine powder
specific surface
weight
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58142061A
Other languages
Japanese (ja)
Other versions
JPS6032060A (en
Inventor
Yasuo Mihashi
Masaki Uchama
Kazunori Murakawa
Kenji Okado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58142061A priority Critical patent/JPS6032060A/en
Priority to US06/634,060 priority patent/US4626487A/en
Priority to DE3428433A priority patent/DE3428433C3/en
Publication of JPS6032060A publication Critical patent/JPS6032060A/en
Publication of JPH0310311B2 publication Critical patent/JPH0310311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/06Developing
    • G03G13/08Developing using a solid developer, e.g. powder developer
    • G03G13/09Developing using a solid developer, e.g. powder developer using magnetic brush
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子写真、静電記録、磁気記録等に用
いる新規な磁性トナーに関する。 電子写真法においては、硫化カドミウム、ポリ
ビニルカルバゾール、セレン、酸化亜鉛等の光導
電体の性質を利用して、まず静電潜像を形成し、
ついで前記静電潜像の電荷とは逆極性に荷電した
粉末で現像し、さらに必要に応じて転写シートに
転写して定着する。 このうち、転写工程を有する装置の場合には、
転写シートに転写されなかつた感光体上の残余の
トナーを除去し、感光体を繰り返し使用するのが
通常である。 感光体上の残余のトナーを除去する方法として
は、ブレードクリーニング方式、フアーブラシク
リーニング方式、磁気ブラシクリーニング方式な
ど感光体にクリーニング部材を接触させて行なう
のが一般的である。この場合は、クリーニング部
材は適当な圧力で感光体に圧接しているので、繰
り返し使用している間に感光体に傷がついたり、
トナーが固着する現像が発生する。このトナーが
感光体に固着する現像を回避するために、特開昭
48−47345号公報においてトナー中に摩擦減少現
像物質と研摩物質の双方を添加することが提案さ
れている。この方法は、確かにトナー固着現像を
回避するには有効であるが、次の欠点を持つてい
る。 すなわち、トナー固着現像を回避しうる程度に
摩擦減少物質を添加すると、繰り返しの使用によ
つて感光体表面に生成もしくは付着する紙粉、オ
ゾン付加物などの低電気抵抗物質の除去が行なわ
れにくくなり、特に高温高湿の環境下において感
光体上の潜像が低電気抵抗物によつて著しく損な
われるという欠点がある。また摩擦減少物質と研
摩物質のそれぞれの添加量が微妙であり、安定し
た特性を有するトナーを得るのが難しいという欠
点がある。 それゆえ本発明の目的は上記欠点を克服したト
ナーを提供することにある。 具体的には、本発明は、トナー重量に対して15
〜70重量%の磁性粉を含有する磁性トナー粒子
と、窒素吸着によるBET比表面積が0.8〜15m2
gのチタン酸ストロンチウム微粉体0.2〜10重量
%と、窒素吸着によるBET比表面積が40〜400
m2/gのシリカ微粉体0.03〜5重量%とを含有す
ることを特徴とする磁性トナーに関する。 本発明で使用する窒素吸着によるBET比表面
積が0.8〜15m2/g(好ましくは、1.0〜6.0m2
g)のチタン酸ストロンチウム微粉体(以下、微
粉体Aと称する)と窒素吸着法によるBET比表
面積が40〜400m2/g(好ましくは50〜350m2
g、特に好ましくは70〜300m2/g)のシリカ微
粉体(以下、微粉体Bと称する)とは共に感光体
表面に付着する紙粉、オゾン付加物等の低電気抵
抗物質及びトナーを削り取る働きを持つ。特に
BET比表面積の小さい微粉体Aは感光体表面に
微細な凹凸を生ぜしめ、感光体表面とクリーニン
グ部材との摩擦抵抗を軽減するのに有効に作用し
てトナー固着を防止し、またBET比表面積の大
きい微粉体Bは感光体表面の細かな付着物を除去
するのに効果があると考えられる。本発明によれ
ば、摩擦減少物質は基本的に必要ではなく、安定
な特性を持つトナーが得ることができる。微粉体
A,Bの比表面積が上記の領域であるのは、その
範囲をはずれると、上記の効果が低下するためで
ある。 微粉体Aとしては高温高湿の環境下においても
トナーの帯電性を低下させない難水溶性のチタン
酸ストロンチウムが使用される。 又、微粉体Bとしては、難水溶性のシリカ微粉
体が使用される。 さらに微粉体Aとしては感光体表面の硬度より
も硬いことが好適であるが特にモース硬度におけ
るタルクよりも硬いことが好ましい。またケイ酸
微粉体Bとしてはケイ酸微粉体が好ましい。ケイ
酸微粉体としては、乾式法及び湿式法で製造した
ケイ酸微粉体が使用できる。 ここで言う乾式法とは、ケイ素ハロゲン化合物
の蒸気相酸化により生成するシリカ微粉体の製造
法である。例えば、四塩化ケイ素ガスの酸水素焔
中における熱分解酸化応を利用する方法で、基礎
となる反応式は次の様なものである。 SiCl4+2H2+O2→SiO2+4HCl 又、この製造工程において例えば、塩化アルミ
ニウム又は、塩化チタンなどの他の金属ハロゲン
化合物をケイ素ハロゲン化合物と共に用いること
によつてシリカと他の金属酸化物の複合微粉体を
えることも可能であり、それらも包含する。 一方、湿式法で製造する方法は、従来公知であ
る種々の方法が適用できる。たとえば、ケイ酸ナ
トリウムの酸による分解、一般反応式で示せば
(以下反応式は略す)、 Na2O・XSiO2+HCl+H2O→SiO2・nH2O
+NaCl その他、ケイ酸ナトリウムのアンモニア塩類また
はアルカリ塩類による分解、ケイ酸ナトリウムよ
りアルカリ土類金属ケイ酸塩を生成せしめた後、
酸で分解しケイ酸とする方法、ケイ酸ナトリウム
溶液をイオン交換樹脂によりケイ酸ナトリウム溶
液をイオン交換樹脂によりケイ酸とする方法、天
然ケイ酸またはケイ酸塩を利用する方法などがあ
る。 ここでいうケイ酸微粉体には、無水二酸化ケイ
素(シリカ)、その他、ケイ酸アルミニウム、ケ
イ酸ナトリウム、ケイ酸カリウム、ケイ酸マグネ
シウム、ケイ酸亜鉛などのケイ酸塩をいずれも適
用できる。 これらのケイ酸微粉体は、その表面が、カツプ
リング処理、オイル処理、脂肪酸又はその金属塩
による処理等の有機処理をされていることが好ま
しい。 これら微粉体A,Bはトナー粒子表面に付着し
て存在すれば良いが、トナー粒子と混合されて用
いるのが好ましい。微粉体A(すなわち、チタン
酸ストロンチウム微粉体)の添加量はトナー全量
に対して0.2〜10重量%にするのが、そして微粉
体B(すなわち、シリカ微粉体)の添加量はトナ
ー重量に対して0.03〜5重量%にするのがトナー
の現像性、クリーニング特性及び環境安定性の点
で良い結果をもたらす。特に、後述の実施例に示
す如く、微粉体Bよりも微粉体Aを多く使用する
ことが好ましい。 これら微粉体A,Bは周知のカツプリング剤等
で表面を有機処理しても良い。 本発明において、窒素吸着によるBET比表面
積の測定は市販の装置(マイクロメリテイツク社
製2200型)を用いて適正な条件下で行なつた。た
だし比表面積が200m2/gを越える場合にはサン
プル量を減らして行なつた。 本発明に使用する結着物質としては、ポリスチ
レン、ポリ−p−クロルスチレン、ポリビニルト
ルエン、スチレン−p−クロルスチレン共重合
体、スチレンビニルトルエン共重合体、等のスチ
レン及びその置換体の単独重合体及びそれらの共
重工体;スチレン−アクリル酸メチル共重合体、
スチレン−アクリル酸エチル共重合体、スチレン
−アクリル酸nブチル共重合体等のスチレンとア
クリル酸エステルとの共重合体;スチレン−メタ
クリル酸メチル共重合体、スチレン−メタクリル
酸エチル共重合体、スチレン−メタクリル酸nブ
チル共重合体等のスチレンとメタクリルエステル
との共重合体;スチレンとアクリル酸エステル及
びメタクリル酸エステルとの多元共重合体;その
他スチレン−アクリロニトリル共重合体、スチレ
ン−ビニルメチルエーテル共重合体、スチレン−
ブタジエン共重合体、スチレン−ビニルメチルケ
トン共重合体、スチレン−アクリルニトリルイン
デン共重合体、スチレン−マレイン酸エステル共
重合体、等のスチレンと他のビニル系モノマーと
のスチレン系共重合体;ポリメチルメタクリレー
ト、ポリブチルメタクリレート、ポリ酢酸ビニ
ル、ポリエステル、ポリアミド、エポキシ樹脂、
ポリビニルブチラール、ポリアクリル酸、フエノ
ール樹脂、脂肪酸又は脂環族炭化水素樹脂、石油
樹脂、塩素化パラフイン、等が単独または混合し
て使用できる。特に圧力定着方式に供せられるト
ナー用の結着樹脂として低分子ポリエチレン、低
分子量ポリプロピレン、エチレン−酢酸ビニル共
重合体、エチレン−アクリル酸エステル共重合
体、高級脂肪酸、ポリアミド樹脂、ポリエステル
樹脂等が単独または混合して使用できる。 本発明のトナーには必要に応じてトナーの特性
を損ねない範囲で添加剤を混合しても良いが、そ
のような添加剤としては例えばテフロン、ステア
リン酸亜鉛ポリフツ化ビニリデンの如き滑剤、あ
るいは定着助剤(例えば低分子量ポリエチレン、
低子量ポリプロピレンなど)、さらに導電性付与
剤として酸化スズ等が適宜に用いられる。 本発明の磁性トナーに含有される磁性粉として
は、磁場の中に置かれて磁化される物質が用いら
れ、鉄、コバルト、ニツケルなどの強磁性金属の
粉末もしくはマグネタイト、γ−酸化鉄、フエラ
イトなどの合金や化合物がある。この磁性粉の含
有量はトナー重量に対して15〜70重量%が好まし
い。 本発明のトナーはいずれの感光体上の潜像の現
像にも用いうるが、例えば、表面に有機重合体層
を有するもの、有機光導電体(OPC)、無定形
Se、無定形Si、酸化亜鉛等の感光体があるが、
特に表面に有機重合体を有する層を持つものが好
ましい。 本発明のトナーは種々の現像方法に適用しう
る。たとえば、特開昭54−42121号公報、同55−
18656号公報、同54−43027号公報などに記載され
た現像法などがある。 本発明で使用する無機微粉体Aは例えば焼結法
によつて生成するものであり、以下にその製造例
を示す。 〔製造例 1〕 炭酸ストロンチウム147.6gと酸化チタン79.9
gをボールミルにて8時間湿式混合した後過、
乾燥した。この混合物20gを5Kg/cm2の圧力で成
型し1100℃温度で8時間仮焼した。その後機械粉
砕によりBET比表面積で2.4m2/gのチタン酸ス
トロンチウム微粉体を得た。 〔製造例 2〕 炭酸バリウム197.3gと酸化チタン79.9gをボ
ールミルにて8時間湿式混合した後、過、乾燥
した。この混合物20gを5Kg/cm2の圧力で成型
し、1200℃の温度で8時間仮焼した。その後機械
粉砕によつてBET比表面積で3.0m2/gのチタン
酸バリウムを得た。 本発明トナーの製造にあたつては、熱ロール、
ニーダー、エクストルーダー等の熱混練機によつ
て構成材料を良く混練した後、機械的な粉砕、分
級によつて得る方法、あるいは結着樹脂溶液中に
磁性粉等の材料を分散した後、噴霧乾燥すること
により得る方法、あるいは、結着樹脂を構成すべ
き単量体に所定材料を混合した後、この乳化懸濁
液を重合させることによりトナーを得る重合法ト
ナー製造法等それぞれの方法が応用できる。 以下本発明を実施例により具体的に説明する
が、これは本発明を何等限定するものではない。
なお、以下の配合における部数はすべて重量部で
ある。 〔実施例〕 スチレン−ブタジエン共重合体 90重量部 (重量比84:16) スチレン−ジメチルアミノエチル共重合体 (重量比90:10) 10重量部 低子量ポリエチレン 5重量部 マグネタイト 60重量部 を混合し、ロールミルにて溶融混練する。冷却後
ハンマーミルにて粗粉砕し、さらにジエツト微砕
機にて微粉砕する。次いで風力分級機にて分級
し、5〜20μのマグネタイトで着色されている磁
性を有する着色微粉体を得る。この着色微粉体
100部に製造例1で生成した比表面積が2.4m2/g
のチタン酸ストロンチウム微粉体1.5部とコロイ
ダルシリカ(比表面積90m2/g)0.5部を混合し
磁性トナーとした。 一方、OPC感光体上に静電潜像を形成し、図
面に示すような現像装置に上記トナーを適用して
現像した。現像剤担持体は外径500mmのステンレ
ス製円筒スリーブ2とした。スリーブ2表面磁束
密度700ガウス、穂切りブレード5−スリーブ表
面間処理0.25mmである。このスリーブ回転マグネ
ツト3固定(スリーブ周速はドラムのそれと同じ
で回転方向逆)型現像器を前記感光ドラム1表面
−スリーブ2表面間距離0.25mmに設定し、スリー
ブに1600Hz、1400Vの交流及び−150〜−300Vの
直流バイアスを印加した。 この現像器に前記トナー4を適用して、前記潜
像を現像し次いで転写紙の背面より−7kVの直流
コロナを照射しつつ粉像を転写し、複写画像を得
た。定着は市販の普通紙複写機(商品名、NP−
200J、キヤノン製)の定着器を用いて行なつた。
また感光体上の残余のトナーはブレードクリーニ
ング方式を用いて除去した。 以上の実施結果カブリのない鮮明な画像が得ら
れた。又3000枚のランニングテストを常温常湿
(20℃、60%)低温低湿(15℃、10%)高温高湿
(30℃、90%)の各環境下において行なつたがい
ずれの環境においても良好な画像が得られ、画像
の乱れ、感光体表面へのトナー固着によるカブリ
等は生じなかつた。 また、製造例1と同様にして生成した比表面積
が0.9m2/g,1.5m2/g,5.8m2/gまたは14.3
m2/gのチタン酸ストロンチウム微粉体及び有機
処理されたコロイダルシリカ(比表面積200m2
g)を使用して上記と同様に磁性トナーを調製
し、画出し試験をおこなつたところ良好な結果が
得られた。特に、比表面積1.0〜6.0m2/gの範囲
のチタン酸ストロンチウム微粉体を使用すると良
好な現像性、クリーニング性及び環境安定性を有
する磁性トナーが得られた。 〔比較例 1〕 製造例1で得られたチタン酸ストロンチウムを
使用しないこと以外は実施例と同様にして磁性ト
ナーを調製し、高温高湿下でランニングテストを
行なつた所1000枚で画像に傷状の乱れが生じ使用
に耐えなかつた。 〔比較例 2〕 製造例2で生成した比表面積3.0m2/gのチタ
ン酸バリウムを使用することを除いて上記実施例
と同様にして磁性トナーを得た。 得られた磁性トナーを使用して実施例と同様に
して画出し試験をおこなつたところ、実施例の場
合と比較して若干カブリのあるトナー画像が生成
し、画像濃度も実施例のトナーよりは低かつた。 また、比較例2の磁性トナーを使用して、高温
高湿環境下で3000枚のランニングテストを実施例
と同様におこなつたところ、実施例のトナー画像
品質と比較して、トナー画像の乱れ(画像流れ)
が若干みられるトナー画像が得られた。 実施例、比較例1及び2の磁性トナーの各環境
下における画像濃度を下記表に示す。下記表から
明らかな如く、本発明の磁性トナーは、現像特性
及び環境安定性に優れている。
The present invention relates to a novel magnetic toner for use in electrophotography, electrostatic recording, magnetic recording, etc. In electrophotography, an electrostatic latent image is first formed using the properties of photoconductors such as cadmium sulfide, polyvinylcarbazole, selenium, and zinc oxide.
Next, the electrostatic latent image is developed with a powder charged with a polarity opposite to that of the electrostatic latent image, and if necessary, is transferred and fixed onto a transfer sheet. Among these, in the case of a device that has a transfer process,
Usually, residual toner on the photoreceptor that has not been transferred to the transfer sheet is removed and the photoreceptor is used repeatedly. The remaining toner on the photoreceptor is generally removed by bringing a cleaning member into contact with the photoreceptor, such as a blade cleaning method, a fur brush cleaning method, or a magnetic brush cleaning method. In this case, since the cleaning member is pressed against the photoreceptor with appropriate pressure, the photoreceptor may be scratched or damaged during repeated use.
Development occurs where toner sticks. In order to avoid development in which this toner sticks to the photoreceptor,
No. 48-47345 proposes adding both a friction-reducing developer material and an abrasive material to the toner. Although this method is certainly effective in avoiding toner fixation development, it has the following drawbacks. In other words, if a friction-reducing substance is added to an extent that can avoid toner fixation development, it becomes difficult to remove low electrical resistance substances such as paper dust and ozone adducts that are generated or adhered to the surface of the photoreceptor due to repeated use. However, there is a drawback that the latent image on the photoreceptor is significantly damaged by the low electrical resistance material, especially in a high temperature and high humidity environment. Another disadvantage is that the amounts of the friction-reducing substance and the abrasive substance added are delicate, making it difficult to obtain a toner with stable characteristics. It is therefore an object of the present invention to provide a toner which overcomes the above-mentioned drawbacks. Specifically, the present invention reduces the toner weight by 15
Magnetic toner particles containing ~70% by weight of magnetic powder and BET specific surface area due to nitrogen adsorption of 0.8~ 15m2 /
0.2-10% by weight of strontium titanate fine powder and a BET specific surface area of 40-400 due to nitrogen adsorption.
The present invention relates to a magnetic toner containing 0.03 to 5% by weight of fine silica powder of m 2 /g. The BET specific surface area due to nitrogen adsorption used in the present invention is 0.8 to 15 m 2 /g (preferably 1.0 to 6.0 m 2 / g).
g) strontium titanate fine powder (hereinafter referred to as fine powder A) has a BET specific surface area of 40 to 400 m 2 /g (preferably 50 to 350 m 2 /g) by nitrogen adsorption method.
The fine silica powder (hereinafter referred to as fine powder B) of 70 to 300 m 2 /g (especially preferably 70 to 300 m 2 /g) is used to scrape off low electrical resistance substances such as paper powder, ozone adducts, and toner that adhere to the surface of the photoreceptor. have a function. especially
Fine powder A, which has a small BET specific surface area, creates fine irregularities on the surface of the photoconductor and effectively acts to reduce the frictional resistance between the photoconductor surface and the cleaning member, preventing toner from sticking, and also has a BET specific surface area of It is thought that the fine powder B having a large particle diameter is effective in removing fine deposits on the surface of the photoreceptor. According to the invention, friction-reducing substances are essentially not necessary and toners with stable properties can be obtained. The reason why the specific surface areas of the fine powders A and B are within the above range is that the above effects are degraded when the specific surface areas are out of this range. As the fine powder A, strontium titanate, which is sparingly water-soluble and does not reduce the chargeability of the toner even in a high-temperature, high-humidity environment, is used. Further, as the fine powder B, a hardly water-soluble silica fine powder is used. Further, the fine powder A is preferably harder than the surface of the photoreceptor, and particularly preferably harder than talc on the Mohs hardness scale. Further, as the silicic acid fine powder B, a silicic acid fine powder is preferable. As the silicic acid fine powder, silicic acid fine powder manufactured by a dry method or a wet method can be used. The dry method mentioned here is a method for producing fine silica powder produced by vapor phase oxidation of a silicon halide compound. For example, this method utilizes the thermal decomposition oxidation reaction of silicon tetrachloride gas in an oxyhydrogen flame, and the basic reaction formula is as follows. SiCl 4 +2H 2 +O 2 →SiO 2 +4HCl Also, in this manufacturing process, for example, by using other metal halogen compounds such as aluminum chloride or titanium chloride together with silicon halogen compounds, composites of silica and other metal oxides can be formed. It is also possible to obtain fine powders, and these are also included. On the other hand, various conventionally known methods can be applied to the wet manufacturing method. For example, the decomposition of sodium silicate by acid can be expressed using the general reaction formula (the reaction formula is omitted below): Na 2 O・XSiO 2 +HCl+H 2 O→SiO 2・nH 2 O
+NaCl In addition, after decomposing sodium silicate with ammonia salts or alkali salts, and producing alkaline earth metal silicate from sodium silicate,
There are methods such as decomposing with an acid to produce silicic acid, using an ion exchange resin to convert a sodium silicate solution into silicic acid, and using natural silicic acid or silicate. As the silicic acid fine powder referred to herein, any of anhydrous silicon dioxide (silica) and other silicates such as aluminum silicate, sodium silicate, potassium silicate, magnesium silicate, and zinc silicate can be used. The surface of these silicic acid fine powders is preferably subjected to an organic treatment such as a coupling treatment, an oil treatment, or a treatment with a fatty acid or a metal salt thereof. It is sufficient that these fine powders A and B exist attached to the surface of the toner particles, but it is preferable that they are mixed with the toner particles before use. The amount of fine powder A (i.e., strontium titanate fine powder) added should be 0.2 to 10% by weight based on the total amount of toner, and the amount of fine powder B (i.e., silica fine powder) added should be 0.2 to 10% by weight based on the total amount of toner. A content of 0.03 to 5% by weight gives good results in terms of toner developability, cleaning properties, and environmental stability. In particular, as shown in Examples below, it is preferable to use more fine powder A than fine powder B. The surfaces of these fine powders A and B may be organically treated with a well-known coupling agent or the like. In the present invention, the measurement of BET specific surface area by nitrogen adsorption was carried out under appropriate conditions using a commercially available device (Model 2200 manufactured by Micromeritics). However, when the specific surface area exceeded 200 m 2 /g, the amount of sample was reduced. The binder used in the present invention includes homopolymers of styrene and its substituted products, such as polystyrene, poly-p-chlorostyrene, polyvinyltoluene, styrene-p-chlorostyrene copolymer, and styrene-vinyltoluene copolymer. Coalescence and copolymers thereof; styrene-methyl acrylate copolymer,
Copolymers of styrene and acrylic esters such as styrene-ethyl acrylate copolymer, styrene-n-butyl acrylate copolymer; styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene - Copolymers of styrene and methacrylic esters such as n-butyl methacrylate copolymers; multi-component copolymers of styrene and acrylic esters and methacrylic esters; other styrene-acrylonitrile copolymers, styrene-vinyl methyl ether copolymers, etc. Polymer, styrene
Styrenic copolymers of styrene and other vinyl monomers, such as butadiene copolymers, styrene-vinyl methyl ketone copolymers, styrene-acrylonitrile indene copolymers, styrene-maleic acid ester copolymers; Methyl methacrylate, polybutyl methacrylate, polyvinyl acetate, polyester, polyamide, epoxy resin,
Polyvinyl butyral, polyacrylic acid, phenolic resin, fatty acid or alicyclic hydrocarbon resin, petroleum resin, chlorinated paraffin, etc. can be used alone or in combination. In particular, low molecular weight polyethylene, low molecular weight polypropylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer, higher fatty acid, polyamide resin, polyester resin, etc. are used as binder resins for toners used in pressure fixing systems. Can be used alone or in combination. If necessary, additives may be mixed into the toner of the present invention within a range that does not impair the properties of the toner. Examples of such additives include lubricants such as Teflon, zinc stearate, and polyvinylidene fluoride; Auxiliary agents (e.g. low molecular weight polyethylene,
(low molecular weight polypropylene, etc.), tin oxide, etc. are appropriately used as a conductivity imparting agent. The magnetic powder contained in the magnetic toner of the present invention is a substance that is magnetized by being placed in a magnetic field, such as powder of ferromagnetic metal such as iron, cobalt, or nickel, or magnetite, γ-iron oxide, or ferrite. There are alloys and compounds such as The content of this magnetic powder is preferably 15 to 70% by weight based on the weight of the toner. The toner of the present invention can be used to develop a latent image on any photoreceptor, including those having an organic polymer layer on the surface, organic photoconductors (OPC), amorphous
There are photoreceptors such as Se, amorphous Si, and zinc oxide.
Particularly preferred are those having a layer containing an organic polymer on the surface. The toner of the present invention can be applied to various developing methods. For example, JP-A-54-42121, JP-A-55-
There are development methods such as those described in Publications No. 18656 and No. 54-43027. The inorganic fine powder A used in the present invention is produced, for example, by a sintering method, and an example of its production will be shown below. [Production example 1] Strontium carbonate 147.6g and titanium oxide 79.9g
Wet-mix g in a ball mill for 8 hours, then filtrate.
Dry. 20 g of this mixture was molded at a pressure of 5 kg/cm 2 and calcined at 1100° C. for 8 hours. Thereafter, strontium titanate fine powder having a BET specific surface area of 2.4 m 2 /g was obtained by mechanical pulverization. [Production Example 2] 197.3 g of barium carbonate and 79.9 g of titanium oxide were wet mixed in a ball mill for 8 hours, and then filtered and dried. 20 g of this mixture was molded at a pressure of 5 kg/cm 2 and calcined at a temperature of 1200° C. for 8 hours. Thereafter, barium titanate having a BET specific surface area of 3.0 m 2 /g was obtained by mechanical pulverization. In producing the toner of the present invention, a hot roll,
After thoroughly kneading the constituent materials using a thermal kneader such as a kneader or extruder, mechanical pulverization or classification can be used, or after dispersing materials such as magnetic powder in a binder resin solution, spraying. There are various methods for producing toner, such as a drying method, a polymerization method and toner production method for obtaining a toner by mixing specified materials with the monomers that constitute the binder resin and then polymerizing this emulsified suspension. Can be applied. EXAMPLES The present invention will be specifically explained below with reference to Examples, but these are not intended to limit the present invention in any way.
Note that all parts in the following formulations are parts by weight. [Example] Styrene-butadiene copolymer 90 parts by weight (weight ratio 84:16) Styrene-dimethylaminoethyl copolymer (weight ratio 90:10) 10 parts by weight Low molecular weight polyethylene 5 parts by weight Magnetite 60 parts by weight Mix and melt-knead using a roll mill. After cooling, it is coarsely ground in a hammer mill, and then finely ground in a jet pulverizer. Next, the mixture is classified using an air classifier to obtain a magnetic colored fine powder colored with 5 to 20 μm of magnetite. This colored fine powder
The specific surface area generated in Production Example 1 per 100 parts is 2.4 m 2 /g
A magnetic toner was prepared by mixing 1.5 parts of strontium titanate fine powder and 0.5 parts of colloidal silica (specific surface area 90 m 2 /g). On the other hand, an electrostatic latent image was formed on an OPC photoreceptor, and developed by applying the above toner to a developing device as shown in the drawings. The developer carrier was a stainless steel cylindrical sleeve 2 with an outer diameter of 500 mm. The magnetic flux density on the surface of the sleeve 2 is 700 Gauss, and the distance between the ear cutting blade 5 and the sleeve surface is 0.25 mm. This sleeve rotating magnet 3 fixed (sleeve circumferential speed is the same as that of the drum, rotation direction is opposite) type developing device is set at a distance of 0.25 mm between the surface of the photosensitive drum 1 and the surface of the sleeve 2, and the sleeve is connected to an alternating current of 1600 Hz, 1400 V and - A DC bias of 150 to -300V was applied. The toner 4 was applied to this developing device to develop the latent image, and then the powder image was transferred while irradiating -7 kV direct current corona from the back side of the transfer paper to obtain a copied image. For fixing, use a commercially available plain paper copier (product name, NP-
200J (manufactured by Canon) was used.
Further, residual toner on the photoreceptor was removed using a blade cleaning method. As a result of the above implementation, a clear image without fogging was obtained. In addition, we conducted a running test on 3,000 sheets in various environments: room temperature and humidity (20℃, 60%), low temperature and low humidity (15℃, 10%), and high temperature and high humidity (30℃, 90%). A good image was obtained, and no image disturbance or fog due to toner adhesion to the photoreceptor surface occurred. Further, the specific surface area produced in the same manner as in Production Example 1 is 0.9 m 2 /g, 1.5 m 2 /g, 5.8 m 2 /g or 14.3
m 2 /g of strontium titanate fine powder and organically treated colloidal silica (specific surface area 200m 2 /g)
A magnetic toner was prepared in the same manner as above using g), and when an image printing test was conducted, good results were obtained. In particular, when fine strontium titanate powder having a specific surface area of 1.0 to 6.0 m 2 /g was used, a magnetic toner having good developability, cleanability, and environmental stability was obtained. [Comparative Example 1] A magnetic toner was prepared in the same manner as in the example except that the strontium titanate obtained in Production Example 1 was not used, and a running test was conducted under high temperature and high humidity. It was unusable due to the appearance of scratches. [Comparative Example 2] A magnetic toner was obtained in the same manner as in the above Example except that barium titanate having a specific surface area of 3.0 m 2 /g produced in Production Example 2 was used. When an image reproduction test was conducted using the obtained magnetic toner in the same manner as in the example, a toner image with a slight fog was generated compared to the case of the example, and the image density was also the same as that of the toner of the example. It was lower than that. Furthermore, using the magnetic toner of Comparative Example 2, a running test of 3,000 sheets was conducted in a high temperature and high humidity environment in the same manner as in the example, and as a result, the toner image quality was found to be distorted compared to the toner image quality of the example. (Image flow)
A toner image was obtained in which some blemishes were observed. The image density of the magnetic toners of Examples and Comparative Examples 1 and 2 under each environment is shown in the table below. As is clear from the table below, the magnetic toner of the present invention has excellent development characteristics and environmental stability.

〔比較例 3〕[Comparative example 3]

製造例2と同様にして平均粒径0.1μmであり、
BET比表面積が17m2/gのチタン酸バリウム粉
体を調製し、実施例と同様にして着色微粉体100
部と調製したチタン酸バリウム粉体1.5部及びコ
ロイダルシリカ(比表面積90m2/g)1.5部を混
合して磁性トナーを調製した。 調製した磁性トナーを使用して高温高湿環境下
で、ランニングテストをおこなつたところ、上記
比較例2よりもさらにトナー画像の乱れ(画像流
れ)が生じた。
The average particle size was 0.1 μm in the same manner as in Production Example 2,
Barium titanate powder with a BET specific surface area of 17 m 2 /g was prepared, and 100% of colored fine powder was prepared in the same manner as in the example.
A magnetic toner was prepared by mixing 1.5 parts of barium titanate powder and 1.5 parts of colloidal silica (specific surface area: 90 m 2 /g). When a running test was conducted using the prepared magnetic toner in a high temperature and high humidity environment, more disturbance of the toner image (image deletion) occurred than in Comparative Example 2 above.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明現像剤を適用する現像工程の一
実施形態を示す断面図である。 1……感光ドラム、2……スリーブ、3……マ
グネツト、4……トナー、5……穂切ブレード。
The drawing is a sectional view showing an embodiment of a developing process using the developer of the present invention. 1... Photosensitive drum, 2... Sleeve, 3... Magnet, 4... Toner, 5... Spear cutting blade.

Claims (1)

【特許請求の範囲】 1 トナー重量に対して15〜70重量%の磁性粉を
含有する磁性トナー粒子と、窒素吸着による
BET比表面積が0.8〜15m2/gのチタン酸ストロ
ンチウム微粉体0.2〜10重量%と、窒素吸着によ
るBET比表面積が40〜400m2/gのシリカ微粉体
0.03〜5重量%とを含有することを特徴とする磁
性トナー。 2 磁性トナー粒子が、低分子量ポリエチレンま
たは低分子量ポリプロピレンを含有する特許請求
の範囲第1項記載の磁性トナー。 3 潜像支持体上の残余のトナーをブレードクリ
ーニングにより除去する現像方法に使用される特
許請求の範囲第1項または第2項記載の磁性トナ
ー。 4 チタン酸ストロンチウム微粉体のBET比表
面積が1.0〜6.0m2/gである特許請求の範囲第1
項記載の磁性トナー。
[Scope of Claims] 1. Magnetic toner particles containing 15 to 70% by weight of magnetic powder based on the weight of the toner, and
Strontium titanate fine powder with a BET specific surface area of 0.8 to 15 m 2 /g 0.2 to 10% by weight and silica fine powder with a BET specific surface area of 40 to 400 m 2 /g due to nitrogen adsorption
A magnetic toner characterized by containing 0.03 to 5% by weight. 2. The magnetic toner according to claim 1, wherein the magnetic toner particles contain low molecular weight polyethylene or low molecular weight polypropylene. 3. The magnetic toner according to claim 1 or 2, which is used in a developing method in which residual toner on a latent image support is removed by blade cleaning. 4. Claim 1, in which the BET specific surface area of the strontium titanate fine powder is 1.0 to 6.0 m 2 /g.
Magnetic toner as described in section.
JP58142061A 1983-08-03 1983-08-03 Toner and formation of image Granted JPS6032060A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58142061A JPS6032060A (en) 1983-08-03 1983-08-03 Toner and formation of image
US06/634,060 US4626487A (en) 1983-08-03 1984-07-25 Particulate developer containing inorganic scraper particles and image forming method using the same
DE3428433A DE3428433C3 (en) 1983-08-03 1984-08-01 Developer and method for generating an image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142061A JPS6032060A (en) 1983-08-03 1983-08-03 Toner and formation of image

Publications (2)

Publication Number Publication Date
JPS6032060A JPS6032060A (en) 1985-02-19
JPH0310311B2 true JPH0310311B2 (en) 1991-02-13

Family

ID=15306509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142061A Granted JPS6032060A (en) 1983-08-03 1983-08-03 Toner and formation of image

Country Status (1)

Country Link
JP (1) JPS6032060A (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081521B2 (en) * 1985-06-27 1996-01-10 三菱化学株式会社 Toner for electrostatic charge development
JP2742258B2 (en) * 1986-05-01 1998-04-22 シャープ株式会社 Developer for developing electrostatic latent images
JP2627497B2 (en) * 1986-09-30 1997-07-09 京セラ株式会社 Electrophotographic developer
US4758493A (en) * 1986-11-24 1988-07-19 Xerox Corporation Magnetic single component toner compositions
JPS63271472A (en) * 1987-04-30 1988-11-09 Konica Corp Developer for negative charge latent image
JPS63271469A (en) * 1987-04-30 1988-11-09 Konica Corp Developer for negative charge latent image
JPH0827550B2 (en) * 1987-04-30 1996-03-21 コニカ株式会社 Negative charge latent image developer
JPS6449052A (en) * 1987-08-19 1989-02-23 Konishiroku Photo Ind Developer for electrostatic latent image
JP2636303B2 (en) * 1988-03-03 1997-07-30 コニカ株式会社 Electrostatic image developer
US5547796A (en) * 1992-05-27 1996-08-20 Canon Kabushiki Kaisha Developer containing insulating magnetic toner flowability-improving agent and inorganic fine powder
US5637432A (en) * 1992-06-01 1997-06-10 Canon Kabushiki Kaisha Toner for developing electrostatic image comprising titanium oxide particles
US5702858A (en) * 1994-04-22 1997-12-30 Matsushita Electric Industrial Co., Ltd. Toner
US5561019A (en) * 1994-04-22 1996-10-01 Matsushita Electric Industrial Co., Ltd. Magnetic toner
EP0762223B1 (en) * 1995-09-04 2001-06-13 Canon Kabushiki Kaisha Toner for developing electrostatic image
JP3470473B2 (en) * 1995-10-23 2003-11-25 富士ゼロックス株式会社 Electrostatic image developing toner, electrostatic image developer, and image forming method
US5695902A (en) 1995-11-20 1997-12-09 Canon Kabushiki Kaisha Toner for developing electrostatic image, image forming method and process-cartridge
CN1144097C (en) * 1997-06-18 2004-03-31 佳能株式会社 Toner, two-component developer and image forming method
JP3684074B2 (en) * 1997-06-18 2005-08-17 キヤノン株式会社 Toner, two-component developer and image forming method
DE69932388T2 (en) 1998-08-31 2007-07-19 Canon K.K. Yellow toner, manufacturing method and image forming method
JP4343378B2 (en) 1999-02-22 2009-10-14 キヤノン株式会社 Toner manufacturing method and image forming method
JP3919381B2 (en) 1999-05-14 2007-05-23 キヤノン株式会社 Developing device, developing cartridge, process cartridge, and image forming apparatus
JP3767846B2 (en) 1999-05-28 2006-04-19 株式会社リコー Toner for developing electrostatic image and image forming method
JP4189923B2 (en) 2004-06-25 2008-12-03 株式会社リコー Image forming method, image forming apparatus using the same, and process cartridge
JP4853465B2 (en) * 2007-11-30 2012-01-11 コニカミノルタビジネステクノロジーズ株式会社 toner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381127A (en) * 1976-12-25 1978-07-18 Canon Inc Electrostatic developing process and its daveloping agent
JPS5394933A (en) * 1977-01-31 1978-08-19 Hitachi Metals Ltd Magnetic toner
JPS5416220A (en) * 1977-07-06 1979-02-06 Suwa Seikosha Kk Compact printer
JPS57179866A (en) * 1981-04-30 1982-11-05 Canon Inc Developing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381127A (en) * 1976-12-25 1978-07-18 Canon Inc Electrostatic developing process and its daveloping agent
JPS5394933A (en) * 1977-01-31 1978-08-19 Hitachi Metals Ltd Magnetic toner
JPS5416220A (en) * 1977-07-06 1979-02-06 Suwa Seikosha Kk Compact printer
JPS57179866A (en) * 1981-04-30 1982-11-05 Canon Inc Developing method

Also Published As

Publication number Publication date
JPS6032060A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
JPH0310311B2 (en)
US4626487A (en) Particulate developer containing inorganic scraper particles and image forming method using the same
US5112714A (en) Dry magnetic electrostatic developer
US5378572A (en) Electrophotographic dry toner and process for producing the same
JPS59201063A (en) Developer
JPH0774910B2 (en) Dry toner
JPS63139367A (en) Developer
JPH0695426A (en) Dry toner for developing electrostatic charge image
JPS60136752A (en) Developer and image forming method using developer
JPH0251504B2 (en)
JPS61277964A (en) Developer
JP3225610B2 (en) Particles for coating electrostatic latent image holder and / or cleaning member surface
JPH02135368A (en) Positively chargeable magnetic toner
JPH083651B2 (en) Method for producing electrophotographic developer
JPH026055B2 (en)
JPH07239571A (en) Magnetic toner
JP2985534B2 (en) Positively chargeable magnetic one-component toner
JPH09319135A (en) Toner composition for developing electrostatic charge image, electrostatic charge developer and image forming method
JP2001255692A (en) Developer, and method of manufacturing the same
JP2720353B2 (en) Image forming method
JP2675974B2 (en) Magnetic toner for developing electrostatic images
JPS63139368A (en) Developer and cleaning method
JPH049861A (en) Nonmagnetic toner
JPH05224451A (en) Coating particle for surface of photosensitive body and picture image forming method
JP2854331B2 (en) Electrostatic latent image developing developer, image forming apparatus unit, and image forming method