JPH0310310B2 - - Google Patents

Info

Publication number
JPH0310310B2
JPH0310310B2 JP59127541A JP12754184A JPH0310310B2 JP H0310310 B2 JPH0310310 B2 JP H0310310B2 JP 59127541 A JP59127541 A JP 59127541A JP 12754184 A JP12754184 A JP 12754184A JP H0310310 B2 JPH0310310 B2 JP H0310310B2
Authority
JP
Japan
Prior art keywords
toner
manufactured
oil
acid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59127541A
Other languages
Japanese (ja)
Other versions
JPS617845A (en
Inventor
Hiroshi Yamazaki
Tatsuro Nagai
Shinichi Suzuki
Sota Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP59127541A priority Critical patent/JPS617845A/en
Publication of JPS617845A publication Critical patent/JPS617845A/en
Publication of JPH0310310B2 publication Critical patent/JPH0310310B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09378Non-macromolecular organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09357Macromolecular compounds
    • G03G9/09371Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔技術分野〕 本発明は、静電荷像珟像甚のトナヌに関するも
のであり、曎に詳しくは圧力定着型のものずしお
奜適に甚いるこずのできるマむクロカプセル型ト
ナヌに関するものである。 〔埓来技術〕 近幎においお、電子写真法、静電印刷法、静電
蚘録法等により画像情報に基いお静電荷像を圢成
し、これを像珟剀のトナヌにより珟像しおトナヌ
像ずし、通垞はこのトナヌ像を転写玙等に転写せ
しめた䞊で定着せしめるこずにより可芖画像を圢
成するこずが広く行なわれおいる。 埓来、静電荷像珟像甚トナヌずしおは、熱可塑
性暹脂を結着剀ずしおこれにカヌボンブラツク等
の着色剀を分散含有せしめたものを埮粉砕しお埗
られる粉末状のトナヌが広く甚いられおおり、そ
れが二成分トナヌであれば、鉄粉、ガラスビヌズ
等のキダリアず混合撹拌するこずにより、又それ
が磁性䜓埮粉末を含有しお成る䞀成分トナヌであ
ればそれ自䜓を撹拌するこずにより、摩擊垯電せ
しめおその静電力を利甚しお静電荷像を珟像せし
め、埗られたトナヌ像を䟋えば転写せしめた埌、
加熱ロヌラ等により加熱しお定着せしめるように
しおいる。 しかし、このようなトナヌにおいおは、摩擊垯
電のための撹拌時にトナヌ粒子が砎砕されお埮粉
トナヌが生成され、その結果可芖画像の質が䜎い
ものずなり、或いはトナヌを早期に新しいものず
亀換するこずが必芁ずなるのみならず、定着を加
熱定着方匏によ぀お達成するため定着噚の枩床が
所芁の蚭定枩床にたで䞊昇するたでの間に長い埅
機時間が必芁であり、たた加熱のために倚倧の゚
ネルギヌを必芁ずし、曎に玙詰りが起こ぀たずき
には火灜の原因ずもなり、しかも確実な定着を達
成するためには、枩床条件等においお盞圓に厳し
い条件を満足するこずが必芁である。 斯かる状況䞋においお、最近、いわゆるマむク
ロカプセルを静電荷像珟像甚トナヌずしお甚いる
こずの研究が行なわれるようにな぀おきおいる。
このマむクロカプセル型トナヌは、埮粒子状の暹
脂カプセル倖壁内に、液状物質若しくは軟質
の固䜓物質より成る芯材を封入した着色粒子より
成る粉末状のものである。このトナヌを甚いる堎
合には、抌圧ロヌラ等により圧力を印加しお、カ
プセルをいわば砎裂せしめお、内郚の芯材を攟出
せしめるこずにより、定着せしめるこずができ
る。埓぀お加熱が䞍芁であるために、䞊述の劂き
加熱定着における問題点を倧幅に軜枛せしめるこ
ずができるずいう利点がある。 この様な加圧定着可胜なマむクロカプセル型ト
ナヌに関しおは、特開昭51−91724号、同52−
119937号、同54−118249号及び同55−64251号各
公報等に蚘茉の技術が知られおいる。しかし、䞊
蚘技術においおは、加圧ロヌラヌぞのオフセツト
珟象、耐久性、安定性及び保存性等の問題を残し
おおり、特に普通玙等ぞの加圧定着性においお問
題があり、マむクロカプセル型トナヌ䞭の定着性
成分が剛盎であ぀たり、逆に過床の塑性倉圢を起
し、いずれも定着性が䞍充分であ぀た。 そこで本発明者は加圧定着性の向䞊を図るため
に鋭意怜蚎を重ねた結果、定着性を向䞊させるに
は玙等ずの接着性を向䞊させただけでは䞍充分で
あり、定着埌玙等から剥離しないようにするため
には、加えられる倖力を小さくするこず、すなわ
ち滑るようにするこずが重芁であるこずが刀぀
た。 埓来、滑剀的効果を䞎えるものずしおは、䟋え
ば離型剀であるゞメチルシロキサンがある。この
ゞメチルシロキサンは滑剀的効果は倧きいが、反
面、暹脂等に察する盞溶性が悪いためにトナヌ䞭
に添加した堎合に析出し易くなり、か぀トナヌの
粉䜓特性特に流動性が䜎䞋するずいう欠点があ
る。このためゞメチルシロキサンを含有するマむ
クロカプセル型トナヌを甚いお画像圢成を行な぀
た堎合特開昭58−150968号公報参照、流動性
の䜎䞋に起因しおカブリ等が発生し、たたトナヌ
の補絊性が悪くな぀お画質が䜎䞋するずいう問題
があり、さらにトナヌ䞭から倖郚ぞ析出し易いた
めに、トナヌの衚面状態が倉化しやすく、垯電特
性が安定しないずいう問題がある。 〔発明の目的〕 そこで本発明の目的は、粒䜓特性が良奜な圧力
定着性マむクロカプセル型トナヌを提䟛するにあ
る。 本発明の他の目的は、定着性、オフセツト性が
良奜な圧力定着性マむクロカプセル型トナヌを提
䟛するにある。 本発明の他の目的は、カブリのない良奜な画像
を埗るこずができる圧力定着性マむクロカプセル
型トナヌを提䟛するにある。 本発明の他の目的は、定着埌の画像の耐久性が
良奜な圧力定着性マむクロカプセル型トナヌを提
䟛するこずにある。 〔発明の構成〕 本発明者は鋭意研究を重ねた結果、倖壁ず芯材
ずからなる圧力定着性マむクロカプセル型トナヌ
においお、少なくずも前蚘芯材䞭に䞋蚘䞀般匏で
瀺されるアルコヌル倉性シリコヌン化合物及び
又はシリコヌンゞアミンずカルナバロりずの反応
によ぀お埗られるカルナバ倉性シリコヌン化合物
以䞋、本発明の化合物ず略す。を含有するこず
を特城ずする圧力定着性マむクロカプセル型トナ
ヌによ぀お䞊蚘目的を達成し埗るこずを芋い出し
た。 〔匏䞭は−OH基、−NH2基から遞ばれるも
のであり、は〜の敎数、は〜100の敎
数を衚す。〕 本発明の化合物は、カルナバロりを䞻成分ずす
るワツクスをシリコヌン化合物で凊理し、䞡者を
化孊的に結合させた化合物である。カルナバロり
自䜓は圧力定着性を有しおおり、たたシリコヌン
化合物には特有の離型効果があるため、圧力定着
性胜を向䞊させ、本発明の効果を発揮するこずが
可胜ずなる。 本発明の化合物は、䟋えば−22−3500信越
化孊工業瀟補などの垂販品ずしお容易に入手す
るこずができる。 たた、この化合物を合成するには䟋えばカルナ
バロりずアルコヌル倉性シリコヌン化合物、シリ
コヌンゞアミンなどず反応させ゚ステル化するこ
ずにより埗られる。 アルコヌル倉性シリコヌン化合物の垂販品ずし
おは、SF−8427トヌレ・シリコヌン瀟補、
−22−160AS1000、−22−160A
1800、−22−160B3200、−22−160C
5600以䞊信越化孊工業瀟補などが挙げ
られる。 たたシリコヌンゞアミン化合物の垂販品ずしお
は、−22−161A1680、−22−161C
3880以䞊信越化孊工業瀟補などが挙げら
れる。 本発明の化合物は、芯材に含有せしめられ、必
芁に応じお芯材及び倖壁に含有せしめられ、その
添加量はマむクロカプセル型トナヌ䞭に0.5〜
10wt、奜たしくは1.0〜5.0wtの範囲である。 本発明のマむクロカプセル型トナヌを補造する
方法は皮々の公知のカプセル化技術を利甚するこ
ずができる。䟋えばスプレヌドラむ法、界面重合
法懞濁分散粒子の界面で圓該粒子䞭の成分ず分
散媒䞭の成分ずが重合反応しお暹脂膜を圢成する
方法、コアセルベヌシペン法、in−situ重合法、
盞分離法などや米囜特蚱第3338991号、同第
3326848号及び同第3502582号各明现曞などに蚘茉
されおいる方法などを利甚できる。なかでも、界
面重合法を効果的に利甚できる。倖壁の圢成が容
易で、芯材ず壁材の機胜分離が容易であるためで
ある。 たたマむクロカプセル型トナヌを構成する倖壁
物質は、特に制限されるものではないが、゚ポキ
シ暹脂、ポリアミド暹脂、ポリりレタン暹脂、ポ
リりレア暹脂、ビニル系暹脂及びその他の暹脂が
実甚䞊奜たしく甚いられ、保存安定性や補造䞊反
応時間が速やかな点においおはポリりレタン暹
脂、ポリりレア暹脂を甚いるこずが特に奜たし
い。 さらに、゚ポキシ暹脂ずりレタン又はりレア暹
脂の共重合䜓である゚ポキシりレタン暹脂又ぱ
ポキシりレア暹脂も奜適に甚いられる。 ゚ポキシ暹脂は、゚ポキシ暹脂あるいぱポキ
シ基を含有する化合物ず硬化剀ずの反応で生成す
る暹脂である。これらの゚ポキシ暹脂あるいぱ
ポキシ基を含有する化合物の䟋ずしおは、䞋蚘の
ものが挙げられるが、分子䞭にケ以䞊の゚ポキ
シ基を有するものであれば特に限定されない。
[Technical Field] The present invention relates to a toner for developing electrostatic images, and more particularly to a microcapsule type toner that can be suitably used as a pressure fixing type toner. [Prior art] In recent years, an electrostatic charge image is formed based on image information by electrophotography, electrostatic printing, electrostatic recording, etc., and this is developed with toner of a developer to form a toner image. It is widely practiced to form a visible image by transferring this toner image onto a transfer paper or the like and then fixing it. Conventionally, toner for developing electrostatic images has been widely used in powder form, which is obtained by finely pulverizing thermoplastic resin as a binder and colorant such as carbon black dispersed therein. If it is a two-component toner, it is mixed and stirred with a carrier such as iron powder or glass beads, or if it is a one-component toner containing fine magnetic powder, it is stirred itself. , after being triboelectrified and developing an electrostatic charge image using the electrostatic force, and transferring the obtained toner image, for example,
The image is fixed by heating with a heating roller or the like. However, in such toners, the toner particles are crushed during agitation for triboelectric charging, producing fine powder toner, resulting in poor visible image quality or the need to replace the toner with a new one prematurely. In addition, since fixing is achieved by a heat fixing method, a long waiting time is required until the temperature of the fixing device rises to the required set temperature, and a large amount of time is required for heating. In addition, it can cause a fire if a paper jam occurs, and in order to achieve reliable fixing, it is necessary to satisfy fairly strict conditions such as temperature conditions. Under such circumstances, research has recently begun on the use of so-called microcapsules as toners for developing electrostatic images.
This microcapsule type toner is in the form of a powder consisting of colored particles in which a core material made of a liquid substance or a soft solid substance is enclosed in a fine resin capsule (outer wall). When using this toner, fixation can be achieved by applying pressure with a pressure roller or the like to burst the capsule and release the core material inside. Therefore, since no heating is required, there is an advantage that the above-mentioned problems in heat fixing can be significantly alleviated. Regarding such microcapsule type toner that can be fixed under pressure, Japanese Patent Application Laid-Open Nos. 51-91724 and 52-
Techniques described in publications such as No. 119937, No. 54-118249, and No. 55-64251 are known. However, the above technology still has problems such as an offset phenomenon to the pressure roller, durability, stability, and storage stability.In particular, there are problems with pressure fixing properties on plain paper, etc., and microcapsule type toner The fixing component therein was either rigid or excessively plastically deformed, resulting in insufficient fixing properties. Therefore, the inventor of the present invention has conducted intensive studies to improve the pressure fixing properties, and has found that it is insufficient to improve the fixing properties by simply improving the adhesion to paper, etc. It has been found that in order to prevent the film from peeling off from the surface, it is important to reduce the applied external force, that is, to make it slip. Conventionally, as a lubricant-like effect, there is, for example, dimethylsiloxane, which is a mold release agent. This dimethylsiloxane has a great lubricant effect, but on the other hand, it has poor compatibility with resins, etc., so it tends to precipitate when added to a toner, and has the disadvantage that the powder properties of the toner, especially its fluidity, deteriorate. . For this reason, when images are formed using microcapsule toner containing dimethylsiloxane (see Japanese Patent Application Laid-open No. 150968/1983), fogging occurs due to decreased fluidity, and toner There is a problem that the replenishment property becomes poor and the image quality deteriorates.Furthermore, there is a problem that the surface condition of the toner changes easily because it is easily deposited from inside the toner to the outside, and the charging characteristics are unstable. [Object of the Invention] Therefore, an object of the present invention is to provide a pressure fixable microcapsule toner having good particle properties. Another object of the present invention is to provide a pressure fixable microcapsule type toner having good fixing properties and offset properties. Another object of the present invention is to provide a pressure-fixable microcapsule toner that can provide good images without fogging. Another object of the present invention is to provide a pressure-fixable microcapsule toner that provides an image with good durability after fixing. [Structure of the Invention] As a result of extensive research, the present inventor has found that in a pressure-fixable microcapsule toner consisting of an outer wall and a core material, at least the core material contains an alcohol-modified silicone compound represented by the following general formula and/or
Alternatively, the above object is achieved by a pressure fixable microcapsule toner characterized by containing a carnauba-modified silicone compound (hereinafter abbreviated as the compound of the present invention) obtained by the reaction of silicone diamine and carnauba wax. I found out what I can do. [In the formula, X is selected from -OH group and -NH2 group, m is an integer of 1 to 6, and n is an integer of 0 to 100. ] The compound of the present invention is a compound obtained by treating a wax whose main component is carnauba wax with a silicone compound and chemically bonding the two. Carnauba wax itself has pressure fixing properties, and since silicone compounds have a unique release effect, it is possible to improve pressure fixing performance and exhibit the effects of the present invention. The compound of the present invention can be easily obtained as a commercial product such as X-22-3500 (manufactured by Shin-Etsu Chemical Co., Ltd.). In addition, this compound can be synthesized by, for example, reacting carnauba wax with an alcohol-modified silicone compound, silicone diamine, etc. and esterifying it. Commercially available alcohol-modified silicone compounds include SF-8427 (manufactured by Torre Silicone) and X
-22-160AS (=1000), X-22-160A (=
1800), X-22-160B (=3200), X-22-160C
(=5600) (manufactured by Shin-Etsu Chemical Co., Ltd.), etc. In addition, commercially available silicone diamine compounds include X-22-161A (=1680) and X-22-161C (
= 3880) (manufactured by Shin-Etsu Chemical Co., Ltd.). The compound of the present invention is contained in the core material, and if necessary, in the core material and outer wall, and the amount added is 0.5 to 0.5 to
10wt%, preferably in the range of 1.0 to 5.0wt%. The method for manufacturing the microcapsule toner of the present invention can utilize various known encapsulation techniques. For example, spray drying method, interfacial polymerization method (a method in which components in the suspended and dispersed particles polymerize and react with components in the dispersion medium at the interface of the particles to form a resin film), coacelvation method, in-situ polymerization method,
Phase separation method, U.S. Patent No. 3338991,
The methods described in the specifications of No. 3326848 and No. 3502582 can be used. Among them, interfacial polymerization method can be effectively used. This is because it is easy to form the outer wall and it is easy to separate the functions of the core material and wall material. Furthermore, the outer wall material constituting the microcapsule toner is not particularly limited, but epoxy resins, polyamide resins, polyurethane resins, polyurea resins, vinyl resins, and other resins are preferably used for practical purposes, and have excellent storage stability. It is particularly preferable to use polyurethane resins and polyurea resins from the viewpoint of quick reaction times in production. Furthermore, epoxyurethane resin or epoxyurea resin, which is a copolymer of epoxy resin and urethane or urea resin, is also suitably used. Epoxy resin is a resin produced by a reaction between an epoxy resin or a compound containing an epoxy group and a curing agent. Examples of these epoxy resins or compounds containing epoxy groups include the following, but are not particularly limited as long as they have two or more epoxy groups in the molecule.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 なお、䞊蚘硬化剀ずしおは、゚チレンゞアミ
ン、ゞ゚チレントリアミン、トリ゚チレントリア
ミン、テトラ゚チレンペンタミン、ヘキサメチレ
ンゞアミン、むミノビスプロピルアミン、その他
の脂肪族ポリアミン化合物、キシリレンゞアミ
ン、プニレンゞアミン、その他の芳銙族ポリア
ミン化合物が代衚的であり、又、垂販品ずしお
は、゚ピキナア、゚ピキナア、゚ピキナア
103、゚ポメヌト−001、゚ポメヌトLX−IN、
゚ポメヌトPX−以䞊、油化シ゚ル゚ポキシ瀟
補等、その他䞀般に゚ポキシ硬化剀ずしお知ら
れおいるものを挙げるこずができる。 ポリアミド暹脂ずしおは、セバシン酞クロラむ
ド、テレフタル酞クロラむド、アゞピン酞クロラ
むド等のカルボン酞塩化物ず、䞊蚘゚ポキシ暹脂
の硬化剀ずしお䟋瀺した脂肪族ポリアミン、芳銙
族ポリアミン等の反応によ぀お埗られる、いわゆ
るポリアミド暹脂を甚いるこずができる。 ポリりレタン暹脂はポリむ゜シアネヌトずポリ
オヌルずの反応によ぀お埗られ、ポリりレア暹脂
はポリむ゜シアネヌトずポリアミンずの反応によ
぀お埗られる。ここにポリむ゜シアネヌトの具䜓
[Table] The above curing agents include ethylenediamine, diethylenetriamine, triethylenetriamine, tetraethylenepentamine, hexamethylenediamine, iminobispropylamine, other aliphatic polyamine compounds, xylylenediamine, phenylenediamine, and other Aromatic polyamine compounds are typical, and commercially available products include Epiqure T, Epiqure U, and Epiqure
103, Epomate B-001, Epomate LX-IN,
Epomate PX-3 (manufactured by Yuka Ciel Epoxy Co., Ltd.) and other commonly known epoxy curing agents can be used. Examples of polyamide resins include so-called polyamide resins obtained by the reaction of carboxylic acid chlorides such as sebacyl chloride, terephthalic acid chloride, and adipic acid chloride with aliphatic polyamines and aromatic polyamines exemplified as curing agents for the above-mentioned epoxy resins. Polyamide resin can be used. Polyurethane resins are obtained by reacting polyisocyanates with polyols, and polyurea resins are obtained by reacting polyisocyanates with polyamines. Here are the specifics of polyisocyanate

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 以䞊の劂きポリむ゜シアネヌトず反応しおポリ
りレタン暹脂若しくはポリりレア暹脂を䞎えるポ
リオヌル又はポリアミンの具䜓䟋ずしおは、次の
ものを挙げるこずができる。  ポリオヌル ゚チレングリコヌル、プロピレングリコヌル、
ブチレングリコヌル、ヘキサメチレングリコヌル
等のゞオヌル類、グリセリン、トリメチロヌルプ
ロパン、トリメチロヌル゚タン、−ヘ
キサントリオヌル等のトリオヌル類、ペンタ゚リ
スリトヌル、及び氎、その他。  ポリアミン ゚チレンゞアミン、ヘキサメチレンゞアミン、
ゞ゚チレントリアミン、むミノビスプロピルアミ
ン、プニレンゞアミン、キシレンゞアミン、ト
リ゚チレンテトラミン、その他。 たた゚ポキシりレタン暹脂又ぱポキシりレア
暹脂を埗るためには、前述の゚ポキシ暹脂ず倚䟡
む゜シアネヌトずを䜵甚し、ポリオヌル又はポリ
アミンを甚いるこずにより埗られる。 曎にビニル系暹脂を埗るためのビニル系重合性
モノマヌずしおは、スチレン、パラクロロスチレ
ン、α−メチルスチレン、−ブチルスチレンな
どのスチレン類、アクリル酞メチル、アクリル酞
゚チル、アクリル酞−プロピル、アクリル酞ス
テアリル、アクリル酞−゚チルヘキシル、アク
リル酞プニル、メタクリル酞メチル、メタクリ
ル酞゚チル、メタクリル酞−ブチル、メタクリ
ル酞−゚チルヘキシル、メタクリル酞プニル
などのα−メチレン脂肪族モノカルボン酞゚ステ
ル、アクリロニトリル、メタクリロニトリルなど
のビニルニトリル類、ビニルメチル゚ヌテル、ビ
ニルむ゜ブチル゚ヌテルなどのビニル゚ヌテル
類、−ビニルピリゞン、−ビニルピリゞンな
どのビニルピリゞン類、−ビニルピロリドンな
どの−ビニル環状化合物類、ビニルメチルケト
ン、ビニル゚チルケトン、メチルむ゜プロペニル
ケトンなどのビニルケトン類、゚チレン、プロピ
レン、む゜ブチレン、ブタゞ゚ン、む゜プレンな
どの䞍飜和炭化氎玠類、クロロプレンなどのハロ
ゲン含有䞍飜和炭化氎玠類、その他の単官胜ビニ
ル系モノマヌを単独で或いは組合せお甚いるこず
ができる。 以䞊の単官胜モノマヌのほか、倚官胜ビニル系
モノマヌを甚いるこずもでき、この倚官胜モノマ
ヌずしおは、゚チレングリコヌルゞメタクリレヌ
ト、ゞ゚チレングリコヌルゞメタクリレヌト、ト
リ゚チレングリコヌルゞメタクリレヌト、テトラ
゚チレングリコヌルゞメタクリレヌト、ネオペン
チルグリコヌルゞメタクリレヌト、ゞプロピレン
グリコヌルゞメタクリレヌト、トリメチロヌルプ
ロパントリメタクリレヌト、トリメチロヌル゚タ
ントリメタクリレヌト、ペンタ゚リスリトヌルテ
トラメタクリレヌトなどの倚䟡アルコヌルメタク
リレヌト類、ゞ゚チレングリコヌルゞアクリレヌ
ト、トリ゚チレングリコヌルゞアクリレヌト、テ
トラ゚チレングリコヌルゞアクリレヌト、ネオペ
ンチルグリコヌルゞアクリレヌト、トリメチロヌ
ルプロパントリアクリレヌト、トリメチロヌル゚
タントリアクリレヌト、ペンタ゚リスリトヌルテ
トラアクリレヌトなどの倚䟡アルコヌルアクリレ
ヌト類、ゞビニルベンれンなどの倚官胜ビニルベ
ンれン類、その他を単独で或いは組合せお甚いる
こずができ、曎にこれらの倚官胜モノマヌを既述
の単官胜モノマヌず組合せお甚いおもよい。 本発明のマむクロカプセル型トナヌを構成する
芯材には圧力定着性物質が含有され、該物質ずし
おは液状ポリブテン、液状ポリフロロプレン、ア
ゞピン酞系ポリ゚ステル、液状ポリ゚ステル、ゞ
ブチルフタレヌト、ゞオクチルフタレヌト、塩玠
化パラフむン等の可塑剀類、リノヌル酞、リノレ
ン酞、オレむン酞、゚ラむゞン酞、゚レオステア
リン酞、リノレン゚ラむゞン酞、ガドレン酞、゚
ルシン酞、アラキドン酞、クルパノドン酞、α−
リカン酞などの䞍飜和脂肪酞の゚ステル類、アマ
ニ油、゚ノ油、桐油、ヒマシ油、アサ実油、カポ
ツク油、ケシ実油、ゎマ油、米ヌカ油、サフラワ
ヌ油、倧豆油、トりモロコシ油、ナタネ油、ヒマ
ワリ油、綿実油、オリヌブ油等の怍物油類、むカ
油、むワシ油、サンマ油、鯚油、牛脂、豚脂、矊
脂等の動物油類、ミネラルオむル等の鉱油類、ア
クリル酞メチル、アクリル酞ブチル、アクリル酞
−−゚チルヘキシルなどのアクリル酞゚ステル
類の重合䜓及びそれらのオリゎマヌ、メタクリル
酞メチル、メタクリル酞ラりリル、メタクリル酞
ブチル、メタクリル酞プロピル、メタクリル酞−
−゚チルヘキシル等のメタクリル酞゚ステル類
の重合䜓及びそれらのオリゎマヌ、スチレン、α
−メチルスチレン等のスチレン類の重合䜓及びそ
れらのオリゎマヌ、酢酞ビニル、酪酞ビニル等の
ビニル゚ステル類の重合䜓及びそれらのオリゎマ
ヌ、゚チレン、プロピレン、ブタゞ゚ン等の䞍飜
和炭化氎玠類の重合䜓及びそれらのオリゎマヌ、
スチレンずアクリル酞゚ステル類ずの共重合䜓及
びそれらのオリゎマヌ、スチレンずメタクリル酞
゚ステル類ずの共重合䜓及びそれらのオリゎマ
ヌ、゚チレン酢酞ビニル共重合䜓、スチレンブタ
ゞ゚ン共重合䜓、スチレンむ゜プレン共重合䜓、
アクリロニトリルスチレンブタゞ゚ン共重合䜓、
アスフアルト、ギル゜ナむド等の石油系残枣、ア
セチレンずブタゞ゚ンの共重合䜓、ゞシクロペン
タゞ゚ンオリゎマヌ等の合成也性油類、カルナバ
ロり、オりキナリヌロり、チダンデリラロり、砂
糖ロり、朚ロり、スカロり等の怍物ロり類、ミツ
ロり、サラシミツロり、鯚ロり、セラツクロり、
ラノリン等の動物ロり類、モンタンロり、オゟケ
ラむト、セレシン等の鉱物ロり類を挙げるこずが
でき、これらを単独もしくは二皮以䞊組合せお甚
いるこずができる。 たた工業的に補造され埗る次のワツクスも奜適
に甚いるこずができる。䟋えば゚ステルワツク
スヘキスト瀟補Hoechst Wax KP
KPSBJOPOMX22および等の合
成゚ステルワツクス等、酞化ワツクスパラ
フむンワツクス、マむクロクリスタリンワツクス
等のワツクスを酞化しお埗られるワツクス、日本
粟蝋瀟補のNPS−9210NPS−6115、東掋ペト
ロラむト瀟補PETRONABA・CARDIS314
や、ヘキスト瀟補Hoechst Wax および
LP等、䜎分子量ポリ゚チレンワツクス特に
分子量300〜1000のもので、東掋ペトロラむト瀟
補POLYWAX500および655等等を挙げるこず
ができ、曎に、マむクロワツクス日石マむクロ
ワツクス155180日本石油瀟補、HI−MIC−
1080HI−MIC−2065HI−MIC−2095HI−
MIC−1070HI−MIC−1045HI−MIC−2045
日本粟蝋瀟補、STAR WAX100BE
SQUARE175185VICTORY
ULTRAFLEX東掋ペトロラむト瀟補等、ス
テアリン酞、ベヘン酞、ステアリルアルコヌル、
ステアリン酞ドデシル、ステアロン、゜ルビタン
モノステアレヌト、ポリオキシ゚チレンモノステ
アレヌト等を挙げるこずができる。 たた、前蚘芯材に含有される圧力定着性物質の
トナヌ䞭の含有量は、〜45wt、奜たしくは
15〜35wtである。 又、芯材䞭には、奜たしくは着色剀が含有され
るが、䟋えば䞀成分トナヌずしお甚いられる磁性
トナヌずしお奜適なマむクロカプセル型トナヌを
埗るためには、圓該着色剀の䞀郚又は党郚ずしお
磁性䜓の埮粉末が含有される。 着色剀ずしおは、カヌボンブラツク、ニグロシ
ン染料C.I.No.50415B、アニリンブルヌC.I.No.
50405、カルコオむルブルヌC.I.No.azoic
Blue3、クロムむ゚ロヌC.I.No.14090、りルト
ラマリンブルヌC.I.No.77103、デナポンオむル
レツドC.I.No.26105、キノリンむ゚ロヌC.I.
No.47005、メチレンブルヌクロラむドC.I.No.
52015、フタロシアニンブルヌC.I.No.74160、
マラカむトグリヌンオクサレヌトC.I.No.
42000、ランプブラツクC.I.No.77266、ロヌズ
ベンガルC.I.No.45435、これらの混合物、その
他を挙げるこずができる。これら着色剀は、高濃
床の可芖像が圢成されるに十分な割合で含有され
るこずが必芁であり、通垞圧力定着性物質100重
量郚に察しお〜20重量郚皋床の割合ずされる。 前蚘磁性䜓ずしおは、プラむト、マグネタむ
トを始めずする鉄、コバルト、ニツケルなどの匷
磁性を瀺す金属若しくは合金又はこれらの元玠を
含む化合物、或いは匷磁性元玠を含たないが適圓
な熱凊理を斜すこずによ぀お匷磁性を瀺すように
なる合金、䟋えばマンガン−銅−アルミニりム、
マンガン−銅−錫などのマンガンず銅ずを含むホ
むスラヌ合金ず呌ばれる皮類の合金、又は二酞化
クロム、その他を挙げるこずができる。 具䜓的には、マグネタむトずしお、EPT−
1000EPT−500MRMB−450以䞊、戞田工
業瀟補BL−100BL−120BL−200BL−
220BL−500BL−520BL−SPRB−BL
RB−20以䞊、チタン工業瀟補などが奜適に
甚いられる。 これらの磁性䜓は平均粒埄0.1〜1Όの埮粉末
の圢で圧力定着性物質の䞭に均䞀に分散される。
そしおその含有量は、トナヌ100重量郚圓り20〜
70重量郚、奜たしくは40〜70重量郚である。 なお、磁性トナヌずするために磁性䜓埮粉末を
含有せしめる堎合には、着色剀の堎合ず同様に凊
理すればよいが、そのたたでは、芯材材料、単量
䜓等の有機物質に察する芪和性が䜎いので、磁性
䜓埮粉末をチタンカツプリング剀、シランカツプ
リング剀、レシチン等のいわゆるカツプリング剀
ず共に或いはカツプリング剀により凊理した䞊で
甚いるず、磁性䜓埮粉末を均䞀に分散せしめるこ
ずができる。 本発明のマむクロカプセル型トナヌの各構成材
料の混合量比は䞋蚘衚に瀺す比率が奜適である。
[Table] Specific examples of polyols or polyamines that react with the above polyisocyanates to yield polyurethane resins or polyurea resins include the following. 1 Polyol ethylene glycol, propylene glycol,
Diols such as butylene glycol and hexamethylene glycol, triols such as glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, pentaerythritol, water, and others. 2 Polyamine ethylene diamine, hexamethylene diamine,
Diethylenetriamine, iminobispropylamine, phenylenediamine, xylenediamine, triethylenetetramine, and others. Moreover, in order to obtain an epoxyurethane resin or an epoxyurea resin, it can be obtained by using the above-mentioned epoxy resin and a polyvalent isocyanate in combination, and using a polyol or a polyamine. Furthermore, vinyl polymerizable monomers for obtaining vinyl resins include styrenes such as styrene, parachlorostyrene, α-methylstyrene, and t-butylstyrene, methyl acrylate, ethyl acrylate, n-propyl acrylate, α-methylene aliphatic monocarboxylic acid esters such as stearyl acrylate, 2-ethylhexyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, and phenyl methacrylate, acrylonitrile , vinyl nitriles such as methacrylonitrile, vinyl ethers such as vinyl methyl ether and vinyl isobutyl ether, vinyl pyridines such as 2-vinylpyridine and 4-vinylpyridine, N-vinyl cyclic compounds such as N-vinylpyrrolidone, Vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone, and methyl isopropenyl ketone, unsaturated hydrocarbons such as ethylene, propylene, isobutylene, butadiene, and isoprene, halogen-containing unsaturated hydrocarbons such as chloroprene, and other monofunctional vinyls. These monomers can be used alone or in combination. In addition to the above monofunctional monomers, polyfunctional vinyl monomers can also be used, and these polyfunctional monomers include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, and neopentyl glycol. Polyhydric alcohol methacrylates such as dimethacrylate, dipropylene glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, pentaerythritol tetramethacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, neo Polyhydric alcohol acrylates such as pentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and pentaerythritol tetraacrylate, polyfunctional vinylbenzenes such as divinylbenzene, and others can be used alone or in combination. Furthermore, these polyfunctional monomers may be used in combination with the monofunctional monomers described above. The core material constituting the microcapsule type toner of the present invention contains a pressure fixing substance, and the substances include liquid polybutene, liquid polyfluoroprene, adipic acid polyester, liquid polyester, dibutyl phthalate, dioctyl phthalate, chlorinated Plasticizers such as paraffin, linoleic acid, linolenic acid, oleic acid, elaidic acid, eleostearic acid, linolenic acid, gadolenic acid, erucic acid, arachidonic acid, culpanodonic acid, α-
Esters of unsaturated fatty acids such as lycanic acid, linseed oil, eno oil, tung oil, castor oil, hemp seed oil, kapotsk oil, poppy seed oil, sesame oil, rice bran oil, safflower oil, soybean oil, corn oil, rapeseed oil Vegetable oils such as oil, sunflower oil, cottonseed oil, olive oil, animal oils such as squid oil, sardine oil, saury oil, whale oil, beef tallow, lard, mutton tallow, mineral oils such as mineral oil, methyl acrylate, butyl acrylate , polymers of acrylic esters such as 2-ethylhexyl acrylate and oligomers thereof, methyl methacrylate, lauryl methacrylate, butyl methacrylate, propyl methacrylate, methacrylate
Polymers of methacrylic acid esters such as 2-ethylhexyl and their oligomers, styrene, α
- Polymers of styrenes such as methylstyrene and oligomers thereof, polymers of vinyl esters such as vinyl acetate and vinyl butyrate and oligomers thereof, polymers of unsaturated hydrocarbons such as ethylene, propylene, butadiene, etc. oligomers,
Copolymers of styrene and acrylic esters and oligomers thereof, copolymers of styrene and methacrylic esters and oligomers thereof, ethylene-vinyl acetate copolymers, styrene-butadiene copolymers, styrene-isoprene copolymers ,
acrylonitrile styrene butadiene copolymer,
Petroleum residues such as asphalt and gilsonide, synthetic drying oils such as copolymers of acetylene and butadiene, and dicyclopentadiene oligomers, vegetable waxes such as carnauba wax, oak lily wax, chandelilla wax, sugar wax, wood wax, and scarlet, beeswax, and salami. Beeswax, spermaceti wax, serrata wax,
Examples include animal waxes such as lanolin, and mineral waxes such as montan wax, ozokerite, and ceresin, and these may be used alone or in combination of two or more. The following waxes that can be produced industrially can also be suitably used. For example, ester wax (Hoechst Wax E, F, KP,
Synthetic ester waxes such as KPS, BJ, OP, OM, NPS-9210, NPS-6115, PETRONABA・C manufactured by Toyo Petrolite Co., Ltd., CARDIS314
, Hoechst Wax S, L and
LP, etc.), low molecular weight polyethylene waxes (particularly those with a molecular weight of 300 to 1000, such as POLYWAX 500 and 655 manufactured by Toyo Petrolite Co., Ltd.), and micro waxes (Nisseki Micro Wax 155, 180, etc.). (manufactured by Nippon Oil Co., Ltd.), HI−MIC−
1080, HI-MIC-2065, HI-MIC-2095, HI-
MIC-1070, HI-MIC-1045, HI-MIC-2045
(manufactured by Nippon Seirosha), STAR WAX100, BE
SQUARE175, 185, VICTORY,
ULTRAFLEX (manufactured by Toyo Petrolite Co., Ltd.), stearic acid, behenic acid, stearyl alcohol,
Examples include dodecyl stearate, stearon, sorbitan monostearate, polyoxyethylene monostearate, and the like. Further, the content of the pressure fixing substance contained in the core material in the toner is 5 to 45 wt%, preferably
It is 15-35wt%. In addition, the core material preferably contains a colorant, but in order to obtain a microcapsule toner suitable as a magnetic toner used as a one-component toner, for example, magnetic toner may be included as part or all of the colorant. Contains fine body powder. Coloring agents include carbon black, nigrosine dye (CI No. 50415B), and aniline blue (CI No.
50405), Calco Oil Blue (CINo.azoic
Blue3), Chrome Yellow (CINo.14090), Ultramarine Blue (CINo.77103), DuPont Oil Red (CINo.26105), Quinoline Yellow (CI
No.47005), methylene blue chloride (CINo.
52015), Phthalocyanine Blue (CINo.74160),
Malachite Green Oxalate (CINo.
42000), lampblack (CI No. 77266), rose bengal (CI No. 45435), mixtures thereof, and others. These colorants need to be contained in a sufficient proportion to form a high-density visible image, and are usually contained in a proportion of 0 to 20 parts by weight per 100 parts by weight of the pressure fixing material. Ru. The magnetic material may be a ferromagnetic metal or alloy such as iron, cobalt, or nickel, including ferrite and magnetite, or a compound containing these elements, or a material that does not contain a ferromagnetic element but is subjected to appropriate heat treatment. Alloys that become ferromagnetic, such as manganese-copper-aluminum,
Mention may be made of a type of alloy called Heusler alloy containing manganese and copper, such as manganese-copper-tin, or chromium dioxide, among others. Specifically, as magnetite, EPT-
1000, EPT-500, MRMB-450 (manufactured by Toda Kogyo Co., Ltd.), BL-100, BL-120, BL-200, BL-
220, BL-500, BL-520, BL-SP, RB-BL,
RB-20 (manufactured by Titanium Kogyo Co., Ltd.) and the like are preferably used. These magnetic substances are uniformly dispersed in the pressure fixing material in the form of fine powder with an average particle size of 0.1 to 1 ÎŒm.
The content is 20 to 100 parts by weight of toner.
70 parts by weight, preferably 40 to 70 parts by weight. In addition, when containing magnetic fine powder to make a magnetic toner, it can be treated in the same way as the colorant, but if it is left as it is, the affinity for organic substances such as core materials and monomers will be reduced. Therefore, if the magnetic fine powder is used together with a so-called coupling agent such as a titanium coupling agent, a silane coupling agent, or lecithin, or after being treated with a coupling agent, the magnetic fine powder can be uniformly dispersed. The mixing ratio of each constituent material of the microcapsule type toner of the present invention is preferably as shown in the table below.

〔実斜䟋〕〔Example〕

以䞋、本発明の実斜䟋に぀いお説明するが、こ
れらによ぀お本発明が限定されるものではない。 実斜䟋 in situ重合法の䟋 液状ポリブテン 128 カルナバ倉性シリコヌン化合物垂販品名
−22−3500、信越化孊工業瀟補 12 ゚チレングリコヌルゞメタクリレヌト 60 ラりロむルパヌオキサむド 2.4 磁性材 BL−520チタン工業瀟補 200 䞊蚘物質を混合し、サンドグラむンダヌを甚
い、玄30分間均䞀に混合分散し、磁性むンクを埗
た。次いで、分散安定剀ずしおコロむド状リン酞
䞉カルシりム20ずドデシルベンれンスルホン酞
ナトリりム0.08を含有する氎2000ml䞭にホモゞ
゚ツタヌ特殊機化工業瀟補を甚いお回転数
7000〜8000rpmの条件で䞊蚘磁性むンクを平均粒
埄が15Όずなるように懞濁分散した。この懞濁
分散液を四぀口フラスコぞ移し、200rpmの撹拌
速床で、75℃時間反応した。反応埌塩酞により
分散安定剀を分解陀去し、過・氎掗・也燥しお
本発明のトナヌを埗た。本トナヌを「トナヌ」
ずする。 実斜䟋 in situ重合法の䟋 ポリ酢酞ビニルMw35000 MwMn3.5
118 カルナバ倉性シリコヌン化合物垂販品名
−22−3500 12 ゚ピコヌト819油化シ゚ル゚ポキシ瀟補 60 ゚ポメヌト−001油化シ゚ル゚ポキシ瀟補
゚ピコヌト819硬化剀 10 磁性粉BL−500チタン工業瀟補 200 レシチン磁性粉分散及び流動化促進剀
0.6 以䞊を混合し、サンドグラむンダヌを甚い、均
䞀に分散混合し、磁性むンクを埗る。次いで、分
散安定剀ずしお、コロむド状リン酞䞉カルシりム
20ずドデシルベンれンスルホン酞ナトリりム
0.08を含有する氎䞭にホモゞ゚ツタヌ特
殊機化工業瀟補を甚い、回転数9000rpmの条件
で䞊蚘磁性むンクを平均粒埄が10〜15Όになる
ように懞濁分散した。この懞濁分散液を四぀口フ
ラスコを甚い、200rpmの撹拌速床で80℃10時間
反応し、゚ピコヌト819ず゚ポメヌト−001ずを
反応せしめお圢成される゚ポキシ暹脂皮膜を有す
るマむクロカプセルずした。反応埌、塩酞によ
り、分散安定剀を分解陀去し、過・氎掗・也燥
しお本発明トナヌを埗た。本トナヌを「トナヌ
」ずする。 実斜䟋 界面重合法の䟋 芯材物質ずしお、゚チレン・酢酞ビニル共重合
䜓108、カルナバ倉性シリコヌン化合物垂販
品名−22−350012に塩化メチレン100ml
を加え、均䞀に溶解した溶液ずする。次いで倖壁
材料ずしおポリメチレンプニルむ゜シア
ネヌト「ミリオネヌトMR」日本ポリりレタン
工業瀟補80を加えおサンドグラむンダヌにお
均䞀溶解物ずした埌、磁性粉BL−120チタン工
業瀟補200を加え、サンドグラむンダヌにお、
玄時間均䞀に混合分散し、磁性むンクを埗る。
次いで、分散安定剀ずしおコロむド状リン酞䞉カ
ルシりム20ずドデシルベンれンスルホン酞ナト
リりム0.2を含む氎溶液䞭に、ホモゞ゚ツ
タヌ特殊機化工業瀟補を甚いお、䞊蚘の均䞀
混合分散物を平均粒埄が15Όずなるようにホモ
ゞ゚ツタヌの回転数を調敎し、氎䞭に懞濁分散せ
しめた。 懞濁分散液を四぀口フラスコに移し、液枩を35
℃〜40℃に保ち、塩化メチレンを蒞留・留去す
る。次いでこの分散液䞭に倖壁材料ずしお
キシリレンゞアミン20を滎䞋し、玄時間分散
液を撹拌しお、「ミリオネヌトMR」ずキシリレ
ンゞアミンを分散液滎界面にお反応せしめ、分散
液滎衚面にポリりレアの倖壁を圢成せしめた。反
応埌塩酞により、分散安定剀を分解陀去し、
過・氎掗を行な぀た埌、也燥しお、本発明トナヌ
を埗た。本トナヌを「トナヌ」ずする。 実斜䟋 界面重合法の䟋 芯材物質甚単量䜓ずしおラりリルメタクリレヌ
ト108、カルナバ倉性シリコヌン化合物−
22−350012、倖壁材料ずしおゞプニ
ルメタン−4′−ゞむ゜シアネヌトスミゞナ
ヌル・44V−10、䜏友バむ゚ルりレタン瀟補56
、゚ピコヌト819油化シ゚ル゚ポキシ瀟補24
、芯材物質甚単量䜓重合開始剀「−65」4.3
、磁性粉「BL−520」200を均䞀に混合し、
サンドグラむンダヌを甚い、玄時間混合・分散
し、磁性むンクを埗る。 次いで、分散安定剀ずしおコロむド状リン酞䞉
カルシりム20ずドデシルベンれンスルホン酞ナ
トリりム0.2を含む氎溶液䞭に、ホモゞ゚
ツタヌ特殊機化工業瀟補を甚いお、䞊蚘の均
䞀混合分散物を平均粒埄が15Όずなるようにホ
モゞ゚ツタヌの回転数を調敎し、氎䞭に懞濁分散
せしめた。分散液を四぀口フラスコに移し、この
分散液䞭に倖壁材料ずしおキシリレンゞア
ミン40を滎䞋し、宀枩にお時間反応させる。
次いで、60℃に枩床を䞊げ、時間反応し、芯材
を重合せしめる。この埌、塩酞により分散安定剀
を分解陀去し、過・氎掗を行぀た埌、也燥し、
本発明トナヌを埗た。本トナヌを「トナヌ」ず
する。 実斜䟋 コアセルベヌト法及びスプレヌドラ
む法による䟋 芯材物質ずしお、ポリ酢酞ビニル20、カルナ
バ倉性シリコヌン化合物−22−3500を
塩化メチレン40に分散したものに、磁性粉
「BL−520」40を加え、サンドグラむンダヌに
お均䞀に混合・分散せしめた。 別に尿玠15ず37ホルムアルデヒド氎溶液40
を混合し、10゚タノヌルアミン氎溶液を加え
お、PHをに調敎し、これを70℃に保぀お玄時
間撹拌し、尿玠ホルムアルデヒド初期瞮合物を埗
た。次いで、この初期瞮合物30を含む氎溶液
250ml䞭にホモゞ゚ツタヌを甚いお、䞊蚘の均䞀
混合分散物を平均粒埄が15Όずなる様にホモゞ
゚ツタヌの回転数を調敎しお、懞濁分散せしめ
た。この分散液を四぀口フラスコに移し撹拌しな
がら、ク゚ン酞を陀々に滎䞋しおPHをにし、枩
床を50℃に保぀お、時間撹拌するこの間に芯
材材料を溶解した塩化メチレンは蒞発する。。さ
らに、ク゚ン酞でPHをに䞋げお、曎に50℃に
時間保ち、分散液滎衚面に尿玠−ホルムアルデヒ
ド瞮合物の倖壁を圢成せしめた。この様にしお埗
られたカプセル粒子を氎掗・過した埌、カプセ
ル100郚に察しお20郚の暹脂分を含んだ別調敎の
スチレン・アクリル系共重合䜓の゚マルゞペンず
混合し、スプレヌドラむダヌにより噎霧也燥し
お、䞊蚘カプセルの倖偎にスチレン・アクリル共
重合䜓の倖壁を蚭けた。このようにしお本発明の
トナヌを埗た。本トナヌを「トナヌ」ずする。 実斜䟋  実斜䟋においお磁性粉「BL−520」200の
代わりにカヌボンブラツクMonarch 880、キ
ダボツト瀟補20を甚いた他は同様にしお本発
明トナヌを埗た。本トナヌを「トナヌ」ずす
る。 比范䟋  実斜䟋においお、カルナバ倉性シリコヌン化
合物を陀いた他は同様にしおトナヌを埗た。本ト
ナヌを「比范トナヌ」ずする。 比范䟋  実斜䟋においおカルナバ倉性シリコヌン化合
物を陀いた他は同様にしおトナヌを埗た。本トナ
ヌを「比范トナヌ」ずする。 比范䟋  実斜䟋においおカルナバ倉性シリコヌン化合
物の代わりにポリゞメチルシロキサンSH−200
10000cs、トヌレ・シリコン瀟補を甚いた他は
同様にしおトナヌを埗た。本トナヌを「比范トナ
ヌ」ずする。 比范䟋  ゚チレン−酢ビ共重合䜓100に、磁性粉「BL
−520」100を加え、緎肉・混合・粉砕し、トナ
ヌを埗た。本トナヌを「比范トナヌ」ずする。 実隓䟋  本発明のトナヌ「トナヌ」〜「トナヌ」を
甚い、電子写真性胜の評䟡を行぀た。粉䜓特性の
評䟡を衚−に瀺す。粉䜓特性評䟡ずしお、静カ
サ密床により粉䜓の流動性を評䟡し、ブロヌオフ
法による垯電量枬定により摩擊垯電性を評䟡し
た。静カサ密床は、シリカ粉末をトナヌ䞭に0.4
重量加え、型混合噚を甚い均䞀に混合し
た埌、タツプデンサヌKYT−2000セむシン䌁業
瀟補を甚い枬定した。垯電量は導電性鉄粉キダ
リアず混合し、珟像剀ずしトナヌ濃床そ
の詊料を「NEW−Ys振ずう機」ダペむ瀟補
により所定時間振ずうせしめお摩擊垯電せしめた
もののを350メツシナのスクリヌンメツシナ
を匵蚭した金属補の容噚内に入れお吹き蟌み口よ
り窒玠ガスを0.2Kgcm2の圧力で秒間吹き蟌ん
でトナヌをスクリヌンメツシナより飛散させお残
留したキダリアの電荷を電圧蚈によ぀お枬定する
ブロヌオフ法によ぀お枬定した。枬定の環境条件
は枩床20℃、盞察湿床60である。
Examples of the present invention will be described below, but the present invention is not limited thereto. Example 1 (Example of in situ polymerization method) Liquid polybutene 128g Carnauba-modified silicone compound (commercial product name:
-22-3500, manufactured by Shin-Etsu Chemical Co., Ltd.) 12 g Ethylene glycol dimethacrylate 60 g Lauroyl peroxide 2.4 g Magnetic material BL-520 (manufactured by Titanium Kogyo Co., Ltd.) 200 g Mix the above substances and use a sand grinder to uniformly grind for about 30 minutes. The mixture was mixed and dispersed to obtain a magnetic ink. Next, the rotation speed was reduced using a homogeator (manufactured by Tokushu Kika Kogyo Co., Ltd.) in 2000 ml of water containing 20 g of colloidal tricalcium phosphate and 0.08 g of sodium dodecylbenzenesulfonate as a dispersion stabilizer.
The above magnetic ink was suspended and dispersed under conditions of 7000 to 8000 rpm so that the average particle size was 15 ÎŒm. This suspended dispersion was transferred to a four-necked flask and reacted at 75° C. for 8 hours at a stirring speed of 200 rpm. After the reaction, the dispersion stabilizer was decomposed and removed with hydrochloric acid, filtered, washed with water, and dried to obtain the toner of the present invention. This toner is called “Toner 1”
shall be. Example 2 (Example of in situ polymerization method) Polyvinyl acetate (Mw=35000 Mw/Mn=3.5)
118g Carnauba modified silicone compound (commercial product name:
-22-3500) 12g Epicote 819 (manufactured by Yuka Ciel Epoxy Co., Ltd.) 60 g Epomate B-001 (manufactured by Yuka Ciel Epoxy Co., Ltd.)
(Epicote 819 hardening agent) 10g Magnetic powder BL-500 (manufactured by Titanium Industries) 200g Lecithin (magnetic powder dispersion and fluidization promoter)
Mix 0.6g or more and use a sand grinder to uniformly disperse and mix to obtain magnetic ink. Then, colloidal tricalcium phosphate was used as a dispersion stabilizer.
20g and sodium dodecylbenzenesulfonate
The above magnetic ink was suspended and dispersed in water 2 containing 0.08 g at a rotation speed of 9000 rpm using a homogeator (manufactured by Tokushu Kika Kogyo Co., Ltd.) so that the average particle size was 10 to 15 Όm. This suspension dispersion was reacted at 80° C. for 10 hours using a four-necked flask at a stirring speed of 200 rpm to form microcapsules having an epoxy resin film formed by reacting Epicote 819 and Epomate B-001. After the reaction, the dispersion stabilizer was decomposed and removed with hydrochloric acid, filtered, washed with water, and dried to obtain the toner of the present invention. This toner will be referred to as "toner 2." Example 3 (Example of interfacial polymerization method) As a core material, 108 g of ethylene/vinyl acetate copolymer, 12 g of carnauba-modified silicone compound (commercial product name: X-22-3500), and 100 ml of methylene chloride were added.
Add to make a uniformly dissolved solution. Next, 80 g of polymethylene phenyl isocyanate "Millionate MR" (manufactured by Nippon Polyurethane Kogyo Co., Ltd.) was added as an outer wall material (), and the mixture was made into a homogeneous solution using a sand grinder, followed by 200 g of magnetic powder BL-120 (manufactured by Titan Kogyo Co., Ltd.). In addition, with a sand grinder,
Mix and disperse uniformly for about 1 hour to obtain magnetic ink.
Next, using a homogeator (manufactured by Tokushu Kika Kogyo Co., Ltd.), the above homogeneous mixed dispersion was dispersed into an aqueous solution 3 containing 20 g of colloidal tricalcium phosphate and 0.2 g of sodium dodecylbenzenesulfonate as a dispersion stabilizer. The rotation speed of the homogenizer was adjusted so that the diameter was 15 ÎŒm, and the particles were suspended and dispersed in water. Transfer the suspension dispersion to a four-necked flask and lower the temperature to 35
Keep the temperature between ℃ and 40℃ and distill off methylene chloride. Next, 20 g of xylylene diamine was dropped into this dispersion as an outer wall material (2), and the dispersion was stirred for about 3 hours to cause "Millionate MR" and xylylene diamine to react at the interface of the dispersion droplets, forming dispersed droplets. A polyurea outer wall was formed on the surface. After the reaction, the dispersion stabilizer is decomposed and removed using hydrochloric acid.
After filtering and washing with water, the toner of the present invention was obtained by drying. This toner will be referred to as "Toner 3." Example 4 (Example of interfacial polymerization method) 108 g of lauryl methacrylate and carnauba-modified silicone compound (X-
22-3500) 12g, diphenylmethane-4,4'-diisocyanate (Sumidyur 44V-10, manufactured by Sumitomo Bayer Urethane) 56 as outer wall material ()
g, Epicote 819 (manufactured by Yuka Ciel Epoxy Co., Ltd.) 24
g. Monomeric polymerization initiator for core material "V-65" 4.3
g, 200 g of magnetic powder "BL-520" were mixed uniformly,
Mix and disperse for about 1 hour using a sand grinder to obtain magnetic ink. Next, using a homogeator (manufactured by Tokushu Kika Kogyo Co., Ltd.), the above homogeneous mixed dispersion was dispersed into an aqueous solution 3 containing 20 g of colloidal tricalcium phosphate and 0.2 g of sodium dodecylbenzenesulfonate as a dispersion stabilizer. The rotation speed of the homogenizer was adjusted so that the diameter was 15 ÎŒm, and the particles were suspended and dispersed in water. The dispersion was transferred to a four-necked flask, and 40 g of xylylenediamine was added dropwise to the dispersion as an outer wall material (2), and the mixture was allowed to react at room temperature for 1 hour.
Next, the temperature is raised to 60°C and the reaction is carried out for 6 hours to polymerize the core material. After this, the dispersion stabilizer is decomposed and removed with hydrochloric acid, washed with filtration and water, and then dried.
A toner of the present invention was obtained. This toner will be referred to as "Toner 4". Example 5 (Example using coacervate method and spray drying method) Magnetic powder "BL- 520'' was added and uniformly mixed and dispersed using a sand grinder. Separately, 15 g of urea and 40 g of 37% formaldehyde aqueous solution
10% ethanolamine aqueous solution was added to adjust the pH to 8, and the mixture was kept at 70°C and stirred for about 3 hours to obtain a urea formaldehyde initial condensate. Next, an aqueous solution containing 30 g of this initial condensate
The homogeneous mixed dispersion was suspended and dispersed in a 250 ml volume by adjusting the rotational speed of the homogeator so that the average particle size was 15 ÎŒm. Transfer this dispersion liquid to a four-necked flask, and while stirring, gradually add citric acid dropwise to bring the pH to 5, maintain the temperature at 50°C, and stir for 2 hours (during this time, methylene chloride in which the core material has been dissolved is used). evaporates). Furthermore, lower the pH to 3 with citric acid and further heat to 50℃ for 55 minutes.
This was maintained for a period of time to form an outer wall of the urea-formaldehyde condensate on the surface of the dispersed droplets. After washing and filtering the capsule particles thus obtained, they are mixed with a separately prepared emulsion of styrene-acrylic copolymer containing 20 parts of resin per 100 parts of capsules, and then sprayed with a spray dryer. After drying, an outer wall of styrene-acrylic copolymer was provided on the outside of the capsule. In this way, the toner of the present invention was obtained. This toner will be referred to as "Toner 5." Example 6 A toner of the present invention was obtained in the same manner as in Example 4 except that 20 g of carbon black (Monarch 880, manufactured by Cabot Co., Ltd.) was used instead of 200 g of the magnetic powder "BL-520". This toner will be referred to as "Toner 6". Comparative Example 1 A toner was obtained in the same manner as in Example 4 except that the carnauba-modified silicone compound was removed. This toner is referred to as "comparison toner 1." Comparative Example 2 A toner was obtained in the same manner as in Example 6 except that the carnauba-modified silicone compound was removed. This toner is referred to as "comparison toner 2." Comparative Example 3 In Example 4, polydimethylsiloxane SH-200 was used instead of the carnauba-modified silicone compound.
A toner was obtained in the same manner except that (10000cs, manufactured by Toray Silicone Co., Ltd.) was used. This toner will be referred to as "Comparison Toner 3." Comparative Example 4 Magnetic powder “BL” was added to 100 g of ethylene-vinyl acetate copolymer.
100 g of "-520" was added, kneaded, mixed and crushed to obtain a toner. This toner will be referred to as "Comparison Toner 4." Experimental Example 1 Using the toners "Toner 1" to "Toner 6" of the present invention, electrophotographic performance was evaluated. Evaluation of powder properties is shown in Table-1. To evaluate the powder characteristics, the fluidity of the powder was evaluated based on the static bulk density, and the triboelectric charging property was evaluated by measuring the amount of charge using the blow-off method. Static bulk density is 0.4 with silica powder in toner.
% (weight) and mixed uniformly using a V-type mixer, and then measured using a tapdenser KYT-2000 (manufactured by Seishin Enterprise Co., Ltd.). The amount of charge is determined by mixing the sample with a conductive iron powder carrier and using it as a developer (toner concentration 3%) using a "NEW-Ys shaker" (made by Yayoi).
2g of the triboelectrically charged product was shaken for a predetermined period of time and placed in a metal container lined with a 350-mesh screen mesh, and nitrogen gas was blown into the container at a pressure of 0.2kg/ cm2 for 3 seconds through the nozzle. The measurement was carried out by a blow-off method in which the toner was scattered from the screen mesh and the residual carrier charge was measured using a voltmeter. The environmental conditions for measurement were a temperature of 20°C and a relative humidity of 60%.

【衚】 このように、本発明トナヌは、比范トナヌず
比べ、粉䜓特性がより良奜であるこずが刀る。 次に、本発明トナヌ及び比范トナヌを甚いお、
珟像・定着を行ない、定着性、オフセツト性を評
䟡した。 「トナヌ」〜「トナヌ」及び、「比范トナ
ヌ」、「比范トナヌ」、「比范トナヌ」は、
−Bix TEN小西六写真工業瀟補の定着機を、
圧力定着機20Kgcmのものに改造した機械を
甚い評䟡した。さらに、「トナヌ」、「比范トナ
ヌ」は、導電性鉄粉キダリア平均粒埄100ÎŒ
ず混合し、トナヌ濃床の珟像剀ずする。
次いで、−Bix V3R小西六写真工業瀟補の
感光䜓を有機半導䜓に代え、さらに定着装眮を圧
力定着装眮に代えた機械を甚い評䟡した。 本発明トナヌでは、カブリのない鮮明な画像が
埗られたが、比范トナヌでは流動性が䜎いた
め、画質が䜎䞋し、カブリが倚く、ムラのある画
像ずな぀た。この原因は比范トナヌでは、非盞
溶性のゞメチルシロキサンを甚いおいるため、粒
子の衚面にシロキサンが析出し、粉䜓の衚面特性
を䜎䞋させたためであるず考えられる。 定着性の評䟡は次のように行な぀た。ベタ黒郚
反射濃床1.0の郚分を甚い、染色物摩擊けん
ろう床詊隓機−3010倧栄科孊粟密補䜜所補
を甚いお、荷重がKgになるように調敎し、−
Bix Paper55Kg玚小西六写真工業瀟補により
所定回数回摩擊し、反射濃床の倉化を癟分
率で評䟡した。 オフセツト性は、20cm四方のベタ黒郚を10枚コ
ピヌした時点での定着ロヌラヌぞの付着量を枬定
し、評䟡を行な぀た。 以䞊の評䟡結果を衚−に瀺す。
[Table] Thus, it can be seen that the toner of the present invention has better powder characteristics than Comparative Toner 2. Next, using the toner of the present invention and the comparative toner,
Developing and fixing were performed, and fixing properties and offset properties were evaluated. "Toner 1" to "Toner 5", "Comparison Toner 1", "Comparison Toner 3", and "Comparison Toner 4" are U
−Bix TEN (manufactured by Konishiroku Photo Industry Co., Ltd.) fixing machine,
Evaluation was performed using a machine modified to a pressure fixing machine (20 kg/cm). Furthermore, "Toner 6" and "Comparison Toner 2" are made of conductive iron powder carrier (average particle size 100 ÎŒm).
m) to form a developer with a toner concentration of 3%.
Next, an evaluation was performed using a U-Bix V 3 R (manufactured by Konishiroku Photo Industries Co., Ltd.) machine in which the photoreceptor was replaced with an organic semiconductor and the fixing device was replaced with a pressure fixing device. With the toner of the present invention, a clear image without fogging was obtained, but with Comparative Toner 3, the fluidity was low, so the image quality deteriorated, there was a lot of fogging, and the image was uneven. This is considered to be because Comparative Toner 3 uses incompatible dimethylsiloxane, so siloxane precipitates on the surface of the particles and deteriorates the surface characteristics of the powder. The fixability was evaluated as follows. Using the solid black part (reflection density = 1.0), dyeing friction resistance tester A-3010 (manufactured by Daiei Scientific Precision Manufacturing Co., Ltd.)
Adjust the load to 2 kg using
It was rubbed a predetermined number of times (twice) using Bix Paper 55Kg grade (manufactured by Konishiroku Photo Industry Co., Ltd.), and the change in reflection density was evaluated as a percentage. Offset property was evaluated by measuring the amount of the solid black area adhered to the fixing roller after copying 10 sheets of 20 cm square solid black area. The above evaluation results are shown in Table-2.

【衚】 このように、本発明トナヌは、定着性が良奜で
あるこずが刀る。
[Table] As described above, it can be seen that the toner of the present invention has good fixing properties.

Claims (1)

【特蚱請求の範囲】  倖壁ず芯材ずからなる圧力定着性マむクロカ
プセル型トナヌにおいお、少なくずも前蚘芯材䞭
に䞋蚘䞀般匏で瀺されるアルコヌル倉性シリコヌ
ン化合物及び又はシリコヌンゞアミンずカルナ
バロりずの反応によ぀お埗られるカルナバ倉性シ
リコヌン化合物を含有するこずを特城ずする圧力
定着性マむクロカプセル型トナヌ。 匏䞭は−OH基、−NH2基から遞ばれるも
のであり、は〜の敎数、は〜100の敎
数を衚す。
[Scope of Claims] 1. A pressure-fixable microcapsule toner comprising an outer wall and a core material, at least the core material containing an alcohol-modified silicone compound represented by the following general formula and/or a silicone diamine and carnauba wax. A pressure-fixable microcapsule toner comprising a carnauba-modified silicone compound obtained as described above. (In the formula, X is selected from -OH group and -NH2 group, m is an integer of 1 to 6, and n is an integer of 0 to 100.)
JP59127541A 1984-06-22 1984-06-22 Pressure fixable microencapsulated toner Granted JPS617845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127541A JPS617845A (en) 1984-06-22 1984-06-22 Pressure fixable microencapsulated toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127541A JPS617845A (en) 1984-06-22 1984-06-22 Pressure fixable microencapsulated toner

Publications (2)

Publication Number Publication Date
JPS617845A JPS617845A (en) 1986-01-14
JPH0310310B2 true JPH0310310B2 (en) 1991-02-13

Family

ID=14962559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127541A Granted JPS617845A (en) 1984-06-22 1984-06-22 Pressure fixable microencapsulated toner

Country Status (1)

Country Link
JP (1) JPS617845A (en)

Also Published As

Publication number Publication date
JPS617845A (en) 1986-01-14

Similar Documents

Publication Publication Date Title
US4708924A (en) Pressure fixable microcapsule type toner
US4904562A (en) Process for producing encapsulated toner
JPS59148066A (en) Microcapsule type toner
JPS59162562A (en) Manufacture of pressure fixable microencapsulated toner
JPS63177148A (en) Toner for electrophotography
JPH0310310B2 (en)
JPH0310307B2 (en)
JPH0310308B2 (en)
JPH0310306B2 (en)
JPS60184259A (en) Pressure-fixable microencapsulated toner
JPH0334062B2 (en)
JPH0418299B2 (en)
JPS60186870A (en) Pressure fixable microcapsule type toner
JP3216916B2 (en) Magnetic particles and method for producing the same
JPH0664358B2 (en) toner
JPS60186873A (en) Pressure fixable microcapsule type toner
JPS5919950A (en) Manufacture of microencapsulated toner
JPS61118763A (en) Pressure fixing method
JPH05100493A (en) Production of magnetic particles
JPS63191153A (en) Electrophotographic toner
JPS60222870A (en) Microcapsule type toner
JPS59159177A (en) Pressure fixable microcapsule type toner
JPS61120162A (en) Microencapsulated toner
JPS61118764A (en) Production of microcapsule type toner
JPS61120632A (en) Production of microcapsule