JPH03103061A - Brushless motor - Google Patents

Brushless motor

Info

Publication number
JPH03103061A
JPH03103061A JP23908889A JP23908889A JPH03103061A JP H03103061 A JPH03103061 A JP H03103061A JP 23908889 A JP23908889 A JP 23908889A JP 23908889 A JP23908889 A JP 23908889A JP H03103061 A JPH03103061 A JP H03103061A
Authority
JP
Japan
Prior art keywords
magnetically sensitive
sensitive element
magnetic pole
magnetic
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23908889A
Other languages
Japanese (ja)
Inventor
Koji Soshin
耕児 宗進
Shinichi Okamoto
真一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP23908889A priority Critical patent/JPH03103061A/en
Publication of JPH03103061A publication Critical patent/JPH03103061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)

Abstract

PURPOSE:To suppress irregularities in operating characteristics and speed by providing one magnetic sensitive element, and controlling exciting currents of phases of electromagnets by an origin detector and a position detector. CONSTITUTION:A magnetic sensitive element 32 is provided, and exciting currents to be conducted in phases of an electromagnet 21 are controlled by an origin detector and a position detector of an outer driving circuit. Even if the position of the element 32 is irregular, the timings of the exciting currents to the phases of the electromagnet 21 are not irregular. Therefore, operating characteristics are stabilized. Since one element 32 is provided, the irregularity in the characteristics of the elements 32 do not become a problem as compared with the case of a plurality to improve its reliability. Further, since one element 32 is provided, a speed signal depends only on the magnetizing position of a position detecting magnet 31. Therefore, speed signals of an accurate interval is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、回転軸とともに回転する位置検出用磁石を設
け、位置検出用磁石の磁極の位置を磁気感応素子により
検知し、その位置に基づいて電磁石への励磁電流を制御
するようにしたブラシレスモータに関するものである。
The present invention provides a brushless motor that is provided with a position detection magnet that rotates together with a rotating shaft, the position of the magnetic pole of the position detection magnet is detected by a magnetic sensing element, and the excitation current to the electromagnet is controlled based on the position. It is related to.

【従来の技術】[Conventional technology]

一般にこの種のブラシレスモータは、第12図に示すよ
うに、回転軸11にスリーブ12を介して円筒状の回転
磁石13を固定した回転子1と、回転磁石13を囲むよ
うに配設された複数相の電磁石21よりなる円筒状の固
定子2とを備えている。電磁石21は、回転磁石13と
の対向面に複数の磁極歯を突設した鉄芯22に、絶縁部
材23を介してコイル24を巻回することにより形成さ
れる.回転11flllには、回転磁石13とは別体の
位置検出用磁石31が固着され、位置検出用磁石31の
磁極に対向するようにホール素子のような磁気感応素子
32が定位置に配設されている。したがって、回転子1
が回転すると、位置検出用磁石31より発生し磁気感応
素子32を通過する磁束量の変化に対応した出力電圧が
、磁気感応素子32より出力されることになる。この磁
気感応素子32の出力電圧に基づいて駆動回路では、固
定子2が回転磁界を発生するようにコイル24への励磁
電流を制御するのである。 この構成において、たとえば、回転子1の回転磁石13
が4極、固定子2の電磁石21が3相であるものとし、
コイル24に対して複極の励磁電流を通電してバイボー
ラ駆動を行うものとする。 この場合、磁気感応素子32は、回転子1の回転方向に
おいて120゜毎に3個配置され、四転子1の回転に伴
ってそれぞれ第13図(a)〜(e)に示すような電圧
を出力する.駆動回路では、各磁気感応素子32の出力
電圧のゼロ点を検出して第13図(d)〜(f)のよう
なタイミング信号を作威し、さらに、タイミング信号に
基づいて第13図(g)〜(i)のように、各相のコイ
ル24への励磁電流を作或するのである.また、第13
図(j)のように、タイミング信号に基づいて速度信号
を作成する。
Generally, this type of brushless motor includes a rotor 1 having a cylindrical rotating magnet 13 fixed to a rotating shaft 11 via a sleeve 12, and a rotor 1 arranged to surround the rotating magnet 13, as shown in FIG. It includes a cylindrical stator 2 made of electromagnets 21 of multiple phases. The electromagnet 21 is formed by winding a coil 24 through an insulating member 23 around an iron core 22 having a plurality of magnetic pole teeth protruding from the surface facing the rotating magnet 13. A position detection magnet 31 separate from the rotation magnet 13 is fixed to the rotation 11flll, and a magnetically sensitive element 32 such as a Hall element is arranged at a fixed position so as to face the magnetic pole of the position detection magnet 31. ing. Therefore, rotor 1
When the position detection magnet 31 rotates, the magnetic sensing element 32 outputs an output voltage corresponding to a change in the amount of magnetic flux generated by the position detection magnet 31 and passing through the magnetic sensing element 32. Based on the output voltage of the magnetically sensitive element 32, the drive circuit controls the excitation current to the coil 24 so that the stator 2 generates a rotating magnetic field. In this configuration, for example, the rotating magnet 13 of the rotor 1
Assume that the electromagnet 21 of the stator 2 has 4 poles, and the electromagnet 21 of the stator 2 has 3 phases.
It is assumed that a bipolar drive is performed by applying a bipolar excitation current to the coil 24. In this case, three magnetic sensing elements 32 are arranged at every 120° in the rotational direction of the rotor 1, and as the quadrotor 1 rotates, the magnetic sensing elements 32 generate voltages as shown in FIGS. 13(a) to 13(e). Outputs . The drive circuit detects the zero point of the output voltage of each magnetic sensing element 32 and generates timing signals as shown in FIGS. 13(d) to (f), and further generates timing signals as shown in FIG. As shown in g) to (i), an excitation current is generated to the coil 24 of each phase. Also, the 13th
As shown in Figure (j), a speed signal is created based on the timing signal.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上述したように、従来構戒では、電磁石21の相数に等
しい数の磁気感応素子32を必要としていたから、磁気
感応素子32の位置にばらつきがあると、コイル24へ
の励磁電流のタイミングがばらつくことになり、製品の
特性にばらつきが発生することになる。また、磁気感応
素子32が複数個必要であるから、各磁気感応素子32
の特性のばらつきなどにより信頼性の低下につながるこ
とがある.さらに、上述したようにして速度信号を得る
ことにより、速度制御を行う場合には、磁気感応素子3
2の位置にばらつきがあると、速度信号の間隔がばらつ
くことになる。 本発明は上記問題点の解決を目的とするものであり、磁
気感応素子を1個として磁気感応素子の位置のばらつき
による動作特性や速度のばらつきを抑制したブラシレス
モータを提供しようとするものである。
As mentioned above, in the conventional structure, the number of magnetically sensitive elements 32 equal to the number of phases of the electromagnet 21 is required. Therefore, if the positions of the magnetically sensitive elements 32 vary, the timing of the excitation current to the coil 24 varies. This results in variations in product characteristics. Moreover, since a plurality of magnetically sensitive elements 32 are required, each magnetically sensitive element 32
This may lead to a decrease in reliability due to variations in characteristics. Furthermore, when performing speed control by obtaining a speed signal as described above, the magnetic sensing element 3
If there are variations in the positions of 2, the intervals between the speed signals will vary. The present invention aims to solve the above-mentioned problems, and provides a brushless motor that uses one magnetically sensitive element and suppresses variations in operating characteristics and speed due to variations in the position of the magnetically sensitive element. .

【課題を解決するための手段】[Means to solve the problem]

本発明では、上記.目的を達成するために、回転方向に
おいて交互に異極に着磁された回転磁石を回転軸に固定
した四転子と、回転磁石の磁極に対向して配設され回転
磁界を形或する複数相の電磁石よりなる固定子と、上記
回転磁石とは別体であって回転軸に固定され回転方向に
おいて交互に異極に着磁された位置検出用磁石と、位置
検出用磁石の磁極に対向して定位置に配設された1個の
磁気感応素子と、磁気感応素子の出力に基づいて各相の
電磁石に通電する励磁電流を制御する駆動回路とを設け
、駆動回路に、磁気感応素子の出力に基づいて回転子の
回転原点を検出する原点検出部と、磁気感応素子の出力
に基づいて回転原点からの回転子の回転位置を検出する
位置検出部とを設け、回転原点と回転位置とに基づいて
電磁石の各相に通電する励磁電流を制御するようにして
いるのである. 位置検出用磁石を、回転磁石の磁極数と電磁石の相数と
の積に等しい磁極数に着磁するとともに一磁極に対する
磁気感応素子の出力が他磁極に対する出力とは区別され
るように構戒し、上記一磁極に対向する位置での磁気感
応素子の出力に基づいて回転原点を決定するとよい。 位置検出用磁石の一磁極を他磁極と区別するには、位置
検出用磁石に、一端部が上記一磁極に対向するヨークの
他端部を結合し、上記一磁極が磁気感応素子の一面に対
向する位置においてヨークの上記一端部を磁気感応素子
の他面に対向させるのが望ましい。 また、位置検出用磁石を、上記一磁極が上記他磁極より
も磁束密度が大きくなるように着磁してもよい. あるいはまた、位置検出用磁石を、上記一磁極が磁気感
応素子に対向する位置における磁気感応素子との距離が
、上記他磁極に対向する位置における磁気感応素子との
距離よりも小さくなる形状に形成してもよい.
In the present invention, the above. In order to achieve this purpose, we have developed a quadruple rotor in which rotating magnets magnetized with different polarities alternately in the rotation direction are fixed to a rotating shaft, and a plurality of rotors arranged opposite to the magnetic poles of the rotating magnets to form a rotating magnetic field. A stator consisting of a phase electromagnet, a position detection magnet that is separate from the rotating magnet and fixed to the rotating shaft and magnetized with different polarities alternately in the rotation direction, and a position detection magnet that faces the magnetic poles of the position detection magnet. A magnetically sensitive element is provided at a fixed position, and a drive circuit that controls the excitation current that flows through the electromagnets of each phase based on the output of the magnetically sensitive element. An origin detection section that detects the rotational origin of the rotor based on the output of the rotor, and a position detection section that detects the rotational position of the rotor from the rotational origin based on the output of the magnetically sensitive element are provided. The excitation current applied to each phase of the electromagnet is controlled based on this. The position detection magnet is magnetized to a number of magnetic poles equal to the product of the number of magnetic poles of the rotating magnet and the number of phases of the electromagnet, and is arranged so that the output of the magnetic sensing element for one magnetic pole is distinguished from the output for other magnetic poles. However, it is preferable that the rotation origin is determined based on the output of the magnetically sensitive element at a position facing the one magnetic pole. In order to distinguish one magnetic pole of the position detection magnet from the other magnetic poles, the other end of the yoke, one end of which is opposite to the one magnetic pole, is coupled to the position detection magnet, and the one magnetic pole is connected to one surface of the magnetic sensing element. It is desirable that the one end of the yoke faces the other surface of the magnetically sensitive element at the opposing position. Further, the position detection magnet may be magnetized so that the one magnetic pole has a larger magnetic flux density than the other magnetic pole. Alternatively, the position detection magnet is formed in such a shape that the distance from the magnetically sensitive element at the position where the one magnetic pole faces the magnetically sensitive element is smaller than the distance from the magnetically sensitive element at the position where the one magnetic pole faces the other magnetically sensitive element. You may do so.

【作用】[Effect]

上記構成によれば、磁気感応素子をl個設け、駆動回路
に、磁気感応素子の出力に基づいて回転子の回転原点を
検出.する原点検出部と、磁気感応素子の出力に基づい
て回転原点からの回転子の回転位置を検出する位置検出
部とを設け、回転原点と回転位置とに基づいて電磁石の
各相に通電する励磁電流を制御するようにしているので
、磁気感応素子の位置にばらつきがあっても電磁石の各
相に通電する励磁電流のタイミングにはばらつきが発生
しないのであり、製品の動作特性が安定するという利点
がある.また、磁気感応素子が1個であるから、磁気感
応素子を複数個設けていた従来構成に比較すれば、各磁
気感応素子の特性のばらつきが問題になることがなく、
信頼性が向上するのである.さらに、磁気感応素子が1
個であるがら速度信号は位置検出用磁石の着磁位置のみ
に依存することになり、正確な間隔の速度信号が得られ
ることになる. 位置検出用磁石を、回転磁石の磁極数と電磁石の相数と
の積に等しい磁極数に着磁するとともに一磁極に対する
磁気感応素子の出力が他磁極に対する出力とは区別され
るように構成し、上記一磁極に対向する位置での磁気感
応素子の出力に基づいて回転原点を決定すれば、原点位
置の検出が容易になるのである。 位置検出用磁石の一磁極を他磁極と区別するには、位置
検出用磁石に、一端部が上記一磁極に対向するヨークの
他端部を結合し、上記一磁極が磁気感応素子の一面に対
向する位置においてヨークの上記一端部を磁気感応素子
の他面に対向させれば、上記一磁極とヨークとの間に磁
気感応素子が存在する位置では、他の位置よりも磁気感
応素子を通過する磁束量が増加するから、磁気感応素子
が他磁極に対向するときとは異なる出力が得られるので
ある。 また、位置検出用磁石を、上記一磁極が上記他磁極より
も磁束密度が大きくなるように着磁した場合も、上記一
磁極が磁気感応素子に対向する位置では、他磁極に対向
する位置とは異なる出力が得られることになる. あるいはまた、位置検出用磁石を、上記一磁極が磁気感
応素子に対向する位置における磁気感応素子との距離が
、上記他磁極に対向する位置における磁気感応素子との
距離よりも小さくなる形状に形成した場合にも、上記一
磁極と磁気感応素子とが対向するときに他磁極と対向す
るときとは異なる出力が得られるのである。
According to the above configuration, l magnetically sensitive elements are provided, and the drive circuit detects the rotation origin of the rotor based on the output of the magnetically sensitive elements. and a position detection section that detects the rotational position of the rotor from the rotational origin based on the output of the magnetically sensitive element, and excitation that energizes each phase of the electromagnet based on the rotational origin and the rotational position. Since the current is controlled, even if there are variations in the position of the magnetic sensing elements, there will be no variations in the timing of the excitation current that flows through each phase of the electromagnet, which has the advantage of stabilizing the operating characteristics of the product. There is. In addition, because there is only one magnetically sensitive element, variations in the characteristics of each magnetically sensitive element do not become a problem compared to the conventional configuration in which multiple magnetically sensitive elements are provided.
This improves reliability. Furthermore, the magnetically sensitive element is 1
Although the speed signal is small, the speed signal depends only on the magnetized position of the position detection magnet, so speed signals with accurate intervals can be obtained. The position detection magnet is magnetized to have a number of magnetic poles equal to the product of the number of magnetic poles of the rotating magnet and the number of phases of the electromagnet, and is configured so that the output of the magnetic sensing element for one magnetic pole is distinguished from the output for other magnetic poles. If the rotation origin is determined based on the output of the magnetically sensitive element at the position facing the one magnetic pole, the origin position can be easily detected. In order to distinguish one magnetic pole of the position detection magnet from the other magnetic poles, the other end of the yoke, one end of which is opposite to the one magnetic pole, is coupled to the position detection magnet, and the one magnetic pole is connected to one surface of the magnetic sensing element. If the one end of the yoke is made to face the other surface of the magnetically sensitive element at opposing positions, the magnetically sensitive element will pass through the magnetically sensitive element more at the position where the magnetically sensitive element exists between the one magnetic pole and the yoke than at other positions. Since the amount of magnetic flux increases, a different output can be obtained than when the magnetically sensitive element faces another magnetic pole. Furthermore, even if the position detection magnet is magnetized so that the one magnetic pole has a higher magnetic flux density than the other magnetic pole, the position where the one magnetic pole faces the magnetic sensing element is different from the position where it faces the other magnetic pole. will give different outputs. Alternatively, the position detection magnet is formed in such a shape that the distance from the magnetically sensitive element at the position where the one magnetic pole faces the magnetically sensitive element is smaller than the distance from the magnetically sensitive element at the position where the one magnetic pole faces the other magnetically sensitive element. Even in this case, when one magnetic pole and the magnetic sensing element face each other, a different output can be obtained than when they face the other magnetic pole.

【実施例1】 基本構成は従来楕戒と同様であって、第1図に示すよう
に、回転軸11にスリーブ12を介して円筒状の回転磁
石13を固定した回転子1と、回転磁石13を囲むよう
に配設された複数相の電磁石21よりなる円筒状の固定
子2とを備えているのである. スリーブ12は、磁性材料により形成されており、回転
軸l1に対して圧入などにより固着されている.回転磁
石13は、回転子1の回転方向において交互に異極とな
るように複数極が着磁されており、スリーブ12の外周
面に接着剤などにより固着される.また、回転磁石l3
は等間隔で複数極(ここでは4極〉に着磁されている。 固定子2の電磁石21は、珪素鋼板のような磁性材料を
打ち抜いて積層した鉄芯22を備え、鉄芯22は円筒状
に形成されるとともに、鉄芯22の内周面には回転磁石
13に対向して複数極の磁極歯(ここでは6極)が突設
される。鉄芯22の周囲には絶縁部材23を介してコイ
ル24が巻回される。コイル24は複数相(ここでは3
相)となるように巻回されている。 固定子2は、有底円筒状に形成されたハウジング4の内
周面に固定され、底壁には回転軸11の一端部を軸支す
る軸受41が配設される。ハウジング4の開口面は、回
転軸11の他端部を軸支する軸受42を備えた軸受台4
3により閉塞されている。また、軸受台43の外側面に
は検知部ハウジング44が取着され、軸受台43と検知
部ハウジング44とに囲まれた空間内には、位置検出用
磁石31と、ホール素子よりなる磁気感応素子32と、
磁気感応素子32を実装した結線用の基板33とが納装
される.位置検出用磁石31は、回転磁石11とは別体
であって円盤状ε一形威されており、回転軸11に圧入
または接着により固着されている。また、位.置検出用
磁石31は、回転子1の回転方向において交互に異極に
着磁される.位置検出用磁石31の極数は、回転磁石1
3の磁極数と電磁石21の相数との積に等しく設定され
ている(すなわち、4極×3相=12極)。磁気感応素
子32は、基板33に半田付けなどにより取り付けられ
ている.また、位置検出用磁石31と磁気感応素子32
とは、所定距N(たとえば、0.511)だけ離間して
いる。基板33からは信号線34が引き出され、磁気感
応素子32の出力が後述する駆動回路に入力される。 ところで、位置検出用磁石31は、第2図に示すように
、ヨーク35を備えている.ヨーク35の一端部である
取付片35aは、位置検出用磁石31の一磁極に対応す
る部位で位置検出用磁石31の厚み方向の一面に重複し
た形で固着される.また、ヨーク35の他端部は略L形
に折曲されて磁極片35bが形成され、磁極片35bは
位置検出用磁石31の上記一磁極に対向する。ヨーク3
5を設けた上記一磁極が磁気感応素子32に対向すると
きには、第3図に示すように、位置検出用磁石31の磁
極とヨーク35の磁極片35bとの間に磁気感応素子3
2が位置するように、位置検出用磁石31と磁極片35
bとの距離が設定されている。したがって、磁気感応素
子32が、ヨーク35を設けた磁極と対向するときには
他の磁極と対向するときに比較すれば、磁気感応素子3
2内を通過する磁束量が増加することになる。第4図(
a)(b)のような形状にヨーク35を形或しても同じ
目的が達或できる。 次に、磁気感応素子32の出力に応じてコイル24への
励磁電流を制御する駆動回路について説明する。3相の
コイル24a〜24cの一端は、第5図に示すように、
共通接続されてスター結線になっているものとする。各
コイル24a〜24Cの他端は、それぞれトランジスタ
やMOSFETよりなるスイッチング素子Q,〜Q6を
2個ずつ直列接続した直列回路の接続点に接続される.
また、各直列回路の両端は直流電源Eの両端に接続され
る。 各スイッチング素子Q,〜QGの導通タイミングは、第
6図に示すタイミング回路により制御される.すなわち
、各スイッチング素子Q,〜Q,の導通タイミングは、
磁気感応素子32の出力に基づいて制御されるのであっ
て、磁気感応素子32の出力はく第7図(a)参照)、
位置検出部である位置検知用コンパレータ51と、原点
検出部である原点検知用コンパレータ52とに入力され
る.位置検知用コンパレータ51は、磁気感応素子32
の出力のゼロクロス点を検出するように設定され(第7
図(b)参照)、また、原点検知用コンパレータ52は
、磁気感応素子32の出力レベルが所定レベル以上であ
るときに出力が得られるように設定される.このレベル
は基準値設定用の可変抵抗器VRにより調節される。位
置検知用コンパレータ51の出力は、切換スイッチ53
を介して6進カウン,タ54に入力され3ビットのアド
レス信号に変換される(第7図(c)〜(e)参照)。 このアドレス信号は、ROM55へのアドレス信号であ
って、ROM55内の対応するアドレスに書き込まれた
制御データが読み出され、この制御データに対応して上
述した各スイッチング素子Q,〜Q6が制御されるので
ある(第7図(f)〜(k>参照)。すなわち、ROM
55には、制御データとして各コイル24a〜24cへ
の通電パターンが書き込まれており、上述したアドレス
信号に応じて通電パターンが読み出されて各スイッチン
グ素子Q,〜Q6が制御されるのである。 ところで、上述の構成のみでは、回転子1の絶対位置が
不明であるから、起動時にどの通電パターンでコイル2
4a〜24cを励磁すればよいのかが不明である。そこ
で、起動時には切換スイッチ53を切り換えることによ
り6進カウンタ54に発振器56の出力が入力されるよ
うにする。この段階では、ROM55のアドレスが順次
インクリメントされるのであり、当初回転できない状態
であっても、やがて回転子lが回転できる通電バターン
に達することになる。こうして回転子1が回転し始める
と、原点検出用コンパレータ52に出力が得られるよう
になる.すなわち、回転子1が回転し始めると、.第8
図(a)に示すように、磁気感応素子32の出力信号が
得られるから、磁気感応素子32の出力が原点検出用コ
ンパレータ52で設定された基準電圧V refを越え
たときに、原点検出用コンパレータ52は、第8図(b
)に示すような原点検出信号を出力する。この位置が回
転子1の回転原点となるから、原点検出信号はフリップ
フロップ57(R−Sフリップフロップ〉に入力され、
第8図(c)に示すように、クリップフロップ57の出
力が立ち上がることにより切換スイッチ53が切り換え
られる。すなわち、6進力ウンタ54は発振器56から
切り離されて位置検出用コンパレータ51に接続される
のであり、以後は上述したように動作して回転を継続す
るのである.
[Embodiment 1] The basic configuration is the same as that of the conventional elliptical, and as shown in FIG. 13 and a cylindrical stator 2 consisting of multi-phase electromagnets 21 arranged so as to surround the stator 13. The sleeve 12 is made of a magnetic material and is fixed to the rotating shaft l1 by press fitting or the like. The rotating magnet 13 has a plurality of poles magnetized so as to alternately have different poles in the rotational direction of the rotor 1, and is fixed to the outer peripheral surface of the sleeve 12 with an adhesive or the like. In addition, rotating magnet l3
is magnetized into a plurality of poles (four poles in this case) at equal intervals.The electromagnet 21 of the stator 2 includes an iron core 22 made by punching and laminating a magnetic material such as a silicon steel plate, and the iron core 22 has a cylindrical shape. A plurality of magnetic pole teeth (six poles in this case) are provided on the inner circumferential surface of the iron core 22 so as to face the rotating magnet 13. Around the iron core 22, an insulating member 23 is formed. The coil 24 is wound through the coil 24.The coil 24 has multiple phases (here, 3 phases).
It is wound so that it becomes (phase). The stator 2 is fixed to the inner circumferential surface of a housing 4 formed in a cylindrical shape with a bottom, and a bearing 41 that pivotally supports one end of the rotating shaft 11 is disposed on the bottom wall. The opening surface of the housing 4 has a bearing stand 4 equipped with a bearing 42 that pivotally supports the other end of the rotating shaft 11.
It is blocked by 3. Further, a detection unit housing 44 is attached to the outer surface of the bearing pedestal 43, and in a space surrounded by the bearing pedestal 43 and the detection unit housing 44, there is a position detection magnet 31 and a magnetically sensitive sensor consisting of a Hall element. element 32;
A wiring board 33 on which a magnetically sensitive element 32 is mounted is delivered. The position detection magnet 31 is separate from the rotating magnet 11, has a disk shape ε, and is fixed to the rotating shaft 11 by press-fitting or adhesive. Also, place. The position detection magnets 31 are magnetized with different polarities alternately in the rotational direction of the rotor 1. The number of poles of the position detection magnet 31 is the same as that of the rotating magnet 1.
It is set equal to the product of the number of magnetic poles of 3 and the number of phases of the electromagnet 21 (that is, 4 poles x 3 phases = 12 poles). The magnetically sensitive element 32 is attached to a substrate 33 by soldering or the like. In addition, a position detection magnet 31 and a magnetic sensing element 32
are separated by a predetermined distance N (for example, 0.511). A signal line 34 is drawn out from the substrate 33, and the output of the magnetically sensitive element 32 is input to a drive circuit described later. By the way, the position detection magnet 31 includes a yoke 35, as shown in FIG. The mounting piece 35a, which is one end of the yoke 35, is fixed to one surface of the position detection magnet 31 in the thickness direction at a portion corresponding to one magnetic pole of the position detection magnet 31 in an overlapping manner. Further, the other end of the yoke 35 is bent into a substantially L shape to form a magnetic pole piece 35b, and the magnetic pole piece 35b faces the one magnetic pole of the position detection magnet 31. York 3
When the one magnetic pole provided with the magnetic pole 5 faces the magnetically sensitive element 32, the magnetically sensitive element 3 is placed between the magnetic pole of the position detection magnet 31 and the magnetic pole piece 35b of the yoke 35, as shown in FIG.
position detection magnet 31 and magnetic pole piece 35 so that
The distance from b is set. Therefore, when the magnetically sensitive element 32 faces the magnetic pole provided with the yoke 35, compared to when it faces another magnetic pole, the magnetically sensitive element 32 faces the magnetic pole provided with the yoke 35.
The amount of magnetic flux passing through 2 will increase. Figure 4 (
The same purpose can be achieved by forming the yoke 35 in the shapes shown in a) and (b). Next, a drive circuit that controls the excitation current to the coil 24 according to the output of the magnetically sensitive element 32 will be described. As shown in FIG. 5, one end of the three-phase coils 24a to 24c is
It is assumed that they are commonly connected to form a star connection. The other end of each of the coils 24a to 24C is connected to a connection point of a series circuit in which two switching elements Q, to Q6, each consisting of a transistor or a MOSFET, are connected in series.
Further, both ends of each series circuit are connected to both ends of a DC power supply E. The conduction timing of each switching element Q, -QG is controlled by a timing circuit shown in FIG. That is, the conduction timing of each switching element Q, ~Q, is
The output of the magnetically sensitive element 32 is controlled based on the output of the magnetically sensitive element 32 (see FIG. 7(a)),
The signal is input to a position detection comparator 51, which is a position detection section, and an origin detection comparator 52, which is an origin detection section. The position detection comparator 51 is a magnetically sensitive element 32
is set to detect the zero crossing point of the output of (7th
(See Figure (b)), and the origin detection comparator 52 is set so that an output is obtained when the output level of the magnetically sensitive element 32 is equal to or higher than a predetermined level. This level is adjusted by a variable resistor VR for setting a reference value. The output of the position detection comparator 51 is output from the selector switch 53.
The signal is input to the hexadecimal counter 54 via the hexadecimal counter 54 and converted into a 3-bit address signal (see FIGS. 7(c) to 7(e)). This address signal is an address signal to the ROM 55, and the control data written in the corresponding address in the ROM 55 is read out, and the above-mentioned switching elements Q, to Q6 are controlled in accordance with this control data. (See Figure 7(f) to (k>). In other words, the ROM
The energization pattern for each of the coils 24a to 24c is written in 55 as control data, and the energization pattern is read out in accordance with the above-mentioned address signal to control each switching element Q, to Q6. By the way, with only the above configuration, the absolute position of the rotor 1 is unknown.
It is unclear whether 4a to 24c should be excited. Therefore, at startup, the changeover switch 53 is switched so that the output of the oscillator 56 is input to the hexadecimal counter 54. At this stage, the addresses in the ROM 55 are sequentially incremented, and even if the rotor 1 is initially unable to rotate, it will eventually reach a current pattern that allows the rotor I to rotate. When the rotor 1 begins to rotate in this manner, an output is provided to the origin detection comparator 52. That is, when the rotor 1 starts rotating, . 8th
As shown in FIG. The comparator 52 is shown in FIG.
) Outputs the origin detection signal as shown in (). Since this position becomes the rotation origin of the rotor 1, the origin detection signal is input to the flip-flop 57 (R-S flip-flop).
As shown in FIG. 8(c), the selector switch 53 is switched as the output of the clip-flop 57 rises. That is, the hexadecimal force counter 54 is separated from the oscillator 56 and connected to the position detection comparator 51, and thereafter operates as described above to continue rotation.

【実施例2】 本実施例では、第9図に示すように、位置検出用磁石3
1の磁極のうちの一磁極のみを強く着磁している。この
構或ではヨーク35を設けていないが、強く着磁された
磁極に磁気感応素子32が対向すると、他の磁極よりも
大きい出力が得られるから、ヨーク35を設けた場合と
同様に作用するのである。
[Embodiment 2] In this embodiment, as shown in FIG.
Only one of the magnetic poles is strongly magnetized. Although the yoke 35 is not provided in this structure, when the magnetic sensing element 32 faces a strongly magnetized magnetic pole, a larger output can be obtained than other magnetic poles, so it works in the same way as when the yoke 35 is provided. It is.

【実施例3】 本実施例では、第10図に示すように、位置検出用磁石
31の磁極のうちの一磁極のみを他の磁極よりも突出さ
せているのである。したがって、この磁極が磁気感応素
子32に対向すると、他の磁極よりも磁気感応素子32
との距離が近付くことになり、ヨーク35を設けた場合
と同様に、磁気感応素子32から他の磁極よりも大きい
出力が得られることになるのである。 また、上記各実施例では位置検出用磁石31の周面に磁
気感応素子32を対向させていたが、第11図に示すよ
うに、位置検出用磁石31の厚み方向の一面に磁気感応
素子32を対向させるようにしてもよい。この場合には
、位置検出用磁石31の厚み方向に着磁し、原点位置を
決定する磁極を厚み方向に突出させるようにする。
Embodiment 3 In this embodiment, as shown in FIG. 10, only one of the magnetic poles of the position detection magnet 31 is made to protrude more than the other magnetic poles. Therefore, when this magnetic pole faces the magnetically sensitive element 32, the magnetically sensitive element 32
As a result, as in the case where the yoke 35 is provided, a larger output can be obtained from the magnetically sensitive element 32 than the other magnetic poles. Furthermore, in each of the above embodiments, the magnetically sensitive element 32 was placed opposite the circumferential surface of the position detecting magnet 31, but as shown in FIG. may be made to face each other. In this case, the position detection magnet 31 is magnetized in the thickness direction so that the magnetic pole that determines the origin position protrudes in the thickness direction.

【発明の効果】【Effect of the invention】

本発明は上述のように、磁気感応素子を1個設け、駆動
回路に、磁気感応素子の出力に基づいて回転子の回転原
点を検出する原点検出部と、磁気感応素子の出力に基づ
いて回転原点からの回転子の回転位置を検出する位置検
出部とを設け、回転原点と回転位置とに基づいて電磁石
の各相に通電する励磁電流を制御するようにしているの
で、磁気感応素子の位置のばらつきがあっても電磁石の
各相に通電する励磁電流のタイミングにはばらつきが発
生しないのであり、製品の動作特性が安定するという利
点がある。また、磁気感応素子が1個であるから、磁気
感応素子を複数個設けていた従来構戒に比較すれば、各
磁気感応素子の特性のばらつきが問題になることがなく
、信頼性が向上するのである。さらに、磁気感応素子が
1個であるから速度信号は位置検出用磁石の着磁位置の
みに依存することになり、正確な間隔の速度信号が得ら
れることになる.しかも部品数が少なくなり製造コスト
が低減されるという利点がある.位置検出用磁石を、回
転磁石の磁極数と電磁石の相数との積に等しい磁極数に
着磁するとともに一磁極に対する磁気感応素子の出力が
他磁極に対する出力とは区別されるように構成し、上記
一磁極に対向する位置での磁気感応素子の出力に基づい
て回転原点を決定すれば、原点位置の検出が容易になる
という効果がある。 位置検出用磁石の一磁極を他磁極と区別するには、位置
検出用磁石に、一端部が上記一磁極に対向するヨークの
他端部を結合し、上記一磁極が磁気感応素子の一面に対
向する位置においてヨークの上記一端部を磁気感応素子
の他面に対向させれば、上記一磁極とヨークとの間に磁
気感応素子が存在する位置では、他の位置よりも磁気感
応素子を通過する磁束量が増加するから、磁気感応素子
が他磁極に対向するときとは異なる出力が得られるので
ある。 また、位置検出用磁石を、上記一磁極が上記他磁極より
も磁束密度が大きくなるように着磁した場合も、上記一
磁極が磁気感応素子に対向する位置では、他磁極に対向
する位置とは異なる出力が得られることになる.。 あるいはまた、位置検出用磁石を、上記一磁極が磁気感
応素子に対向する位置における磁気感応素子との距離が
、上記他磁極に対向する位置における磁気感応素子との
距離よりも小さくなる形状に形成した場合にも、上記一
磁極と磁気感応素子とが対向するときに他磁極と対向す
るときとは異なる出力が得られるのである。
As described above, the present invention includes one magnetically sensitive element, and the drive circuit includes an origin detection section that detects the rotation origin of the rotor based on the output of the magnetically sensitive element, and a drive circuit that detects the rotation origin of the rotor based on the output of the magnetically sensitive element. A position detector is provided to detect the rotational position of the rotor from the origin, and the excitation current applied to each phase of the electromagnet is controlled based on the rotational origin and the rotational position, so the position of the magnetic sensing element can be controlled. Even if there is a variation in the timing of the excitation current flowing through each phase of the electromagnet, there is no variation in the timing of the excitation current, which has the advantage of stabilizing the operating characteristics of the product. In addition, because there is only one magnetically sensitive element, compared to conventional structures that have multiple magnetically sensitive elements, variations in the characteristics of each magnetically sensitive element do not become a problem, improving reliability. It is. Furthermore, since there is only one magnetic sensing element, the speed signal depends only on the magnetized position of the position detection magnet, so speed signals with accurate intervals can be obtained. Moreover, it has the advantage of reducing the number of parts and manufacturing costs. The position detection magnet is magnetized to have a number of magnetic poles equal to the product of the number of magnetic poles of the rotating magnet and the number of phases of the electromagnet, and is configured so that the output of the magnetic sensing element for one magnetic pole is distinguished from the output for other magnetic poles. If the rotation origin is determined based on the output of the magnetically sensitive element at the position facing the one magnetic pole, the origin position can be easily detected. In order to distinguish one magnetic pole of the position detection magnet from the other magnetic poles, the other end of the yoke, one end of which is opposite to the one magnetic pole, is coupled to the position detection magnet, and the one magnetic pole is connected to one surface of the magnetic sensing element. If the one end of the yoke is made to face the other surface of the magnetically sensitive element at opposing positions, the magnetically sensitive element will pass through the magnetically sensitive element more at the position where the magnetically sensitive element exists between the one magnetic pole and the yoke than at other positions. Since the amount of magnetic flux increases, a different output can be obtained than when the magnetically sensitive element faces another magnetic pole. Furthermore, even if the position detection magnet is magnetized so that the one magnetic pole has a higher magnetic flux density than the other magnetic pole, the position where the one magnetic pole faces the magnetic sensing element is different from the position where it faces the other magnetic pole. will give different outputs. . Alternatively, the position detection magnet is formed in such a shape that the distance from the magnetically sensitive element at the position where the one magnetic pole faces the magnetically sensitive element is smaller than the distance from the magnetically sensitive element at the position where the one magnetic pole faces the other magnetically sensitive element. Even in this case, when one magnetic pole and the magnetic sensing element face each other, a different output can be obtained than when they face the other magnetic pole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1を示す断面図、第2図は同上
に用いる位置検出用磁石の斜視図、第3図は同上に用い
る位置検出用磁石と磁気感応素子との位置関係を示す側
面図、第4図(n)(b)はそれぞれ位置検出用磁石の
他例を示す斜視図、第5図は同上に用いる駆動回路の一
部を示す回路図、第6図は同上に用いる駆動回路のタイ
ミングを制御する部分のブロック図、第7図および第8
1は同上の動作説明図、第9図は本発明の実施例2に用
いる位置検出用磁石の着磁例を示す説明図、第10図(
a)(b)および第11図(aHb)はそれぞれ本発明
の実施例3に用いる位置検出用磁石を示す斜視図、第1
2図は従来例を示す断面図、第13図は同上の動作説明
図である。 1・・・回転子、2・・・固定子、11・・・回転軸、
13・・・回転磁石、21・・・電磁石、31・・・位
置検出用磁石、32・・・磁気感応素子、35・・・ヨ
ーク、51・・・位置検出用コンバレー夕、52・・・
原点検出用コンパレー夕。 1・・回転子
FIG. 1 is a sectional view showing Embodiment 1 of the present invention, FIG. 2 is a perspective view of a position detection magnet used in the above, and FIG. 3 shows the positional relationship between the position detection magnet and the magnetically sensitive element used in the above. 4(n) and 4(b) are respectively perspective views showing other examples of the position detection magnet, FIG. 5 is a circuit diagram showing a part of the drive circuit used in the above, and FIG. 6 is the same as the above. Block diagrams of the part that controls the timing of the drive circuit used, FIGS. 7 and 8
1 is an explanatory diagram of the same operation as above, FIG. 9 is an explanatory diagram showing an example of magnetization of the position detection magnet used in Embodiment 2 of the present invention, and FIG. 10 (
a) (b) and FIG. 11 (aHb) are perspective views showing a position detection magnet used in Example 3 of the present invention, and FIG. 11 (aHb), respectively.
FIG. 2 is a sectional view showing a conventional example, and FIG. 13 is an explanatory diagram of the same operation. 1... Rotor, 2... Stator, 11... Rotating shaft,
DESCRIPTION OF SYMBOLS 13... Rotating magnet, 21... Electromagnet, 31... Magnet for position detection, 32... Magnetic sensing element, 35... Yoke, 51... Combare plate for position detection, 52...
Comparator for origin detection. 1...Rotor

Claims (5)

【特許請求の範囲】[Claims] (1)回転方向において交互に異極に着磁された回転磁
石を回転軸に固定した回転子と、回転磁石の磁極に対向
して配設され回転磁界を形成する複数相の電磁石よりな
る固定子と、上記回転磁石とは別体であって回転軸に固
定され回転方向において交互に異極に着磁された位置検
出用磁石と、位置検出用磁石の磁極に対向して定位置に
配設された1個の磁気感応素子と、磁気感応素子の出力
に基づいて各相の電磁石に通電する励磁電流を制御する
駆動回路とを具備し、駆動回路は、磁気感応素子の出力
に基づいて回転子の回転原点を検出する原点検出部と、
磁気感応素子の出力に基づいて回転原点からの回転子の
回転位置を検出する位置検出部とを備え、回転原点と回
転位置とに基づいて電磁石の各相に通電する励磁電流を
制御することを特徴とするブラシレスモータ。
(1) A fixing device consisting of a rotor in which rotating magnets that are alternately magnetized with different polarities in the rotational direction are fixed to a rotating shaft, and multi-phase electromagnets that are arranged to face the magnetic poles of the rotating magnets and form a rotating magnetic field. a position detection magnet which is separate from the rotating magnet and which is fixed to the rotating shaft and magnetized with different polarities alternately in the direction of rotation; The drive circuit includes one magnetically sensitive element installed in the magnetically sensitive element, and a drive circuit that controls excitation current flowing through the electromagnets of each phase based on the output of the magnetically sensitive element. an origin detection unit that detects the rotation origin of the rotor;
and a position detection unit that detects the rotational position of the rotor from the rotational origin based on the output of the magnetically sensitive element, and controls the excitation current flowing through each phase of the electromagnet based on the rotational origin and the rotational position. Features a brushless motor.
(2)位置検出用磁石は、回転磁石の磁極数と電磁石の
相数との積に等しい磁極数に着磁されるとともに、一磁
極に対する磁気感応素子の出力が他磁極に対する出力と
は区別されるように構成され、上記一磁極に対向する位
置での磁気感応素子の出力に基づいて回転原点を決定す
ることを特徴とする請求項1記載のブラシレスモータ。
(2) The position detection magnet is magnetized to a number of magnetic poles equal to the product of the number of magnetic poles of the rotating magnet and the number of phases of the electromagnet, and the output of the magnetic sensing element for one magnetic pole is distinguished from the output for other magnetic poles. 2. The brushless motor according to claim 1, wherein the rotation origin is determined based on an output of a magnetically sensitive element at a position facing the one magnetic pole.
(3)位置検出用磁石には、一端部が上記一磁極に対向
するヨークの他端部が結合され、上記一磁極が磁気感応
素子の一面に対向する位置においてヨークの上記一端部
が磁気感応素子の他面に対向することを特徴とする請求
項2記載のブラシレスモータ。
(3) The other end of a yoke whose one end faces the one magnetic pole is coupled to the position detection magnet, and the one end of the yoke is magnetically sensitive at a position where the one magnetic pole faces one surface of the magnetically sensitive element. 3. The brushless motor according to claim 2, wherein the brushless motor faces the other surface of the element.
(4)位置検出用磁石は、上記一磁極が上記他磁極より
も磁束密度が大きくなるように着磁されて成ることを特
徴とする請求項2記載のブラシレスモータ。
(4) The brushless motor according to claim 2, wherein the position detection magnet is magnetized so that the one magnetic pole has a larger magnetic flux density than the other magnetic pole.
(5)位置検出用磁石は、上記一磁極が磁気感応素子に
対向する位置における磁気感応素子との距離が、上記他
磁極に対向する位置における磁気感応素子との距離より
も小さくなる形状に形成されて成る請求項2記載のブラ
シレスモータ。
(5) The position detection magnet is formed in a shape such that the distance from the magnetically sensitive element at the position where the one magnetic pole faces the magnetically sensitive element is smaller than the distance from the magnetically sensitive element at the position where the above magnetic pole faces the other magnetically sensitive element. The brushless motor according to claim 2, comprising:
JP23908889A 1989-09-14 1989-09-14 Brushless motor Pending JPH03103061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23908889A JPH03103061A (en) 1989-09-14 1989-09-14 Brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23908889A JPH03103061A (en) 1989-09-14 1989-09-14 Brushless motor

Publications (1)

Publication Number Publication Date
JPH03103061A true JPH03103061A (en) 1991-04-30

Family

ID=17039643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23908889A Pending JPH03103061A (en) 1989-09-14 1989-09-14 Brushless motor

Country Status (1)

Country Link
JP (1) JPH03103061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715935A (en) * 1993-06-24 1995-01-17 Japan Servo Co Ltd Outer rotor type brushless spindle motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715935A (en) * 1993-06-24 1995-01-17 Japan Servo Co Ltd Outer rotor type brushless spindle motor

Similar Documents

Publication Publication Date Title
US5598071A (en) Method for starting and commutating a permanent-magnet direct current motor having a single phase winding
JPS61189162A (en) Wave winding brushless type dc motor
JPH11318067A (en) Electronic commutation type motor
US4733119A (en) 1-Phase self-starting disk-type brushless motor with cogging-producing element
JP3490783B2 (en) Magnetic sensor and motor using the same
US4472665A (en) Motor
JPH03103061A (en) Brushless motor
JPS5855747B2 (en) Brushless rotary motor
JPH10341590A (en) Brushless dc motor device equipped with retaining brake function
JPH02214455A (en) Core type single phase brushless motor
JPS61280753A (en) Variable speed permanent magnet motor
JPH01308153A (en) Brushless motor
US6876110B2 (en) Electric motor stator current controller
JPH0428215Y2 (en)
JPH06245461A (en) Brushless motor
JP4418045B2 (en) Electric motor
JPH0347436Y2 (en)
KR200145824Y1 (en) Disk type brushless fan motor turned on electricity by one phase
JPS6142262A (en) Brushless motor
JPS60141156A (en) Brushless motor for controlling and energizing drive coil with induced output of coil in magnetic field as position sensing signal
JPH0870562A (en) Brushless motor
JPS608554Y2 (en) position detection device
JP3372972B2 (en) Flat type brushless DC motor
JPS62189960A (en) Brushless motor
JPS60180468A (en) Position controlling axial air gap type coreless brushless motor