JPH03102820A - Vacuum treating apparatus - Google Patents

Vacuum treating apparatus

Info

Publication number
JPH03102820A
JPH03102820A JP1241036A JP24103689A JPH03102820A JP H03102820 A JPH03102820 A JP H03102820A JP 1241036 A JP1241036 A JP 1241036A JP 24103689 A JP24103689 A JP 24103689A JP H03102820 A JPH03102820 A JP H03102820A
Authority
JP
Japan
Prior art keywords
electrode
cooling gas
gas
unit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1241036A
Other languages
Japanese (ja)
Inventor
Masashi Tezuka
雅士 手塚
Koji Takeishi
武石 浩司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuda Seisakusho Co Ltd
Original Assignee
Tokuda Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuda Seisakusho Co Ltd filed Critical Tokuda Seisakusho Co Ltd
Priority to JP1241036A priority Critical patent/JPH03102820A/en
Publication of JPH03102820A publication Critical patent/JPH03102820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To obtain thermal conduction of ten times or higher as compared with a conventional method by providing an electrostatic attraction unit and a cooling gas pipe for introducing pressure controlled cooling gas between a first electrode and a substrate. CONSTITUTION:An electrostatic attraction unit 7 is formed of an insulator 9 and electrostatic attraction electrodes 10, and a DC power source 11 for applying a high voltage is connected to the electrodes 10. The upper end of a cooling gas pipe 12 passing through the center between a first electrode 1 and the unit 7 is opened between the contact faces of the electrodes 10 and a material 8 to be treated. The unit 7 is operated by the source 11 to electrostatically attract the material 8, reactive gas is introduced into a vacuum vessel 3 through a gas introduction tube 5, and cooling gas controlled at its temperature is introduced between the contact faces of the unit 7 and the material 8 through the pipe 12. When an AC power source 4 is energized in this state, reactive gas existing between the first electrode 1 and a second electrode 2 is excited to produce plasma for etching the surface of the material 8. The temperature of the material 8 is extremely lowered, and its temperature control is improved by about ten times.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、高真空内で半導体ウェーハ褪板などの被処理
物を温度制御しながらエッチング処理などを行う真空処
理装置に係わり、特に静電吸着法とガスの熱伝導を利用
したガス冷却怯を兼ねた温度制御機構を有する真空処理
装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a vacuum processing apparatus that performs etching processing, etc. on a processing target such as a semiconductor wafer board in a high vacuum while controlling the temperature. In particular, the present invention relates to a vacuum processing apparatus having a temperature control mechanism that combines an electrostatic adsorption method and a gas cooling system using heat conduction of gas.

(従来の技術) 例えばドライエッチングに用いられる真空処理装置では
、シリコンウエーハなどの基板上に反応性ガスを供給し
、化学反応あるいは物理的反応を利用してエッチングを
行う。
(Prior Art) For example, in a vacuum processing apparatus used for dry etching, a reactive gas is supplied onto a substrate such as a silicon wafer, and etching is performed using a chemical reaction or a physical reaction.

このドライエッチング法では、基板温度がエッチング形
状や選択比等に大きく影響するので、高精度な温度制御
が必要であるが、従来方法では、基板の温度制御は基板
を設置する電極ステージの加熱、冷却によって行ってい
たにすぎない。
In this dry etching method, the substrate temperature greatly affects the etched shape and selectivity, so highly accurate temperature control is required. However, in conventional methods, substrate temperature control involves heating the electrode stage on which the substrate is placed, This was simply done by cooling.

(発明が解決しようとする課題) 上記した電極ステージの加熱、冷却による基板温度制御
方法では、基板温度が電極ステージと基板との接触部の
熱伝導に依存しているため、温度制御特性が悪く、エッ
チング形状や選択比などに問題が発生していた。
(Problems to be Solved by the Invention) In the substrate temperature control method by heating and cooling the electrode stage described above, the temperature control characteristics are poor because the substrate temperature depends on the heat conduction at the contact portion between the electrode stage and the substrate. However, there were problems with the etching shape and selectivity.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の真空処理装置は、上記目的を達成するため、真
空容器内に対向配置された第17l5極および第2電極
と、前記真空容器内に反応性ガスを洪給する反応性ガス
供給装置と、前記真空容器内を真空排気する真空排気装
置とを備えた真空処理装置において、前記第1電極に被
処理物(基板)を静電吸着する静電吸着装置と、前記第
1電極と前記基板との間に圧力制御された冷却ガスを導
入する冷却ガス配管とを具備することを特徴とするもの
である。
(Means for Solving the Problems) In order to achieve the above object, the vacuum processing apparatus of the present invention includes a 17l5 pole and a second electrode arranged oppositely in a vacuum container, and a reactive gas injected into the vacuum container. An electrostatic adsorption device that electrostatically adsorbs a workpiece (substrate) to the first electrode in a vacuum processing apparatus comprising a reactive gas supply device that supplies a flood of reactive gas, and a vacuum evacuation device that evacuates the inside of the vacuum container. and a cooling gas pipe for introducing pressure-controlled cooling gas between the first electrode and the substrate.

(作 用) 上記のように構成した本発明の真空処理装置においては
、温度:J3節された電極ステージ(第1電極)に設置
された基板は電極ステージと静電吸着によって接触部を
増やし、かつ非接触部にガスを供給することによって従
来の方法に比べ10倍以上の熱伝導が得られる。また、
電極ステージと基板の間に供給される冷却ガスをリング
状突起でガスシールする場合には、冷却ガスが処理雰囲
気中に漏れることを肋止できる。
(Function) In the vacuum processing apparatus of the present invention configured as described above, the substrate placed on the electrode stage (first electrode) at a temperature of J3 increases the number of contact parts with the electrode stage by electrostatic adsorption. Furthermore, by supplying gas to the non-contact portion, heat conduction that is 10 times or more can be obtained compared to conventional methods. Also,
When the cooling gas supplied between the electrode stage and the substrate is gas-sealed by the ring-shaped protrusion, it is possible to prevent the cooling gas from leaking into the processing atmosphere.

(実施例) 以下、図面を参照して本発明の実施例を説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の真空処理装置の主要部の概略を示すも
ので、第1電極1と第2電極2が、上下方向に所定間隔
をおいて、真空容器3内に対向して配置されている。
FIG. 1 schematically shows the main parts of the vacuum processing apparatus of the present invention, in which a first electrode 1 and a second electrode 2 are arranged facing each other in a vacuum container 3 with a predetermined interval in the vertical direction. ing.

第1電極1は交流電源4を介して接地され、また第2’
m極2は直接接地されている。
The first electrode 1 is grounded via an AC power source 4, and the second electrode 1 is grounded via an AC power source 4.
m-pole 2 is directly grounded.

真空容器3の側壁には、反応性ガスを導入するガス導入
管5と、反応性ガスを真空排気するガス排出管6とが取
付けられている。ガス導入管5には反応性ガス供給装置
(図示せず)か連桔され、またガス排出管6には真空容
器3内を真空排気する真空排気装置(図示せず)が連結
されている。
A gas introduction pipe 5 for introducing a reactive gas and a gas exhaust pipe 6 for evacuating the reactive gas are attached to the side wall of the vacuum container 3. A reactive gas supply device (not shown) is connected to the gas introduction pipe 5, and a vacuum evacuation device (not shown) for evacuating the inside of the vacuum container 3 is connected to the gas exhaust pipe 6.

第1電極1内には、図示を省略した配管系を介して、一
定温度に保たれた冷却水が流れており、第1電極1は所
定の温度に保たれている。
Cooling water maintained at a constant temperature flows through the first electrode 1 via a piping system (not shown), and the first electrode 1 is maintained at a predetermined temperature.

第1電極1の上面には、静電吸着装置7を介しア、ウェ
ー7、基板などの被処理物8が静電吸着されている。
A workpiece 8 such as a wafer 7 or a substrate is electrostatically attracted to the upper surface of the first electrode 1 via an electrostatic attraction device 7 .

静電吸着装置7は、その詳細を第2図に示すように、高
分子利料からなる絶縁物9と、これに覆われた静電吸着
用電極10とからなり、この静電吸着用電極には高電圧
を印加する直f?t電源〕1か接続されている。
As the details of the electrostatic adsorption device 7 are shown in FIG. A high voltage is applied to the direct f? tPower supply] 1 is connected.

静電吸着用電極10と被処理物8との接触面間には、第
1電極1と静電吸着装置7の中心部を貫通する冷却ガス
配管12の上端が開口している。
The upper end of a cooling gas pipe 12 that penetrates through the center of the first electrode 1 and the electrostatic chucking device 7 is open between the contact surface between the electrostatic chucking electrode 10 and the object to be processed 8 .

この冷却ガス配管には、ガス導入管13を介して圧力制
御された冷却ガスが供給される。
A pressure-controlled cooling gas is supplied to this cooling gas pipe through a gas introduction pipe 13.

上述のように構成した本発明の真空処裡装置において、
直流電源11により静電吸着装置7を作動させて彼処理
物8を静電吸着させ、ガス導入n゛5を介して真空容器
3内に反応性ガスを導入した後、冷却ガス配管12を介
して、温度制御された冷却ガスを静電吸着装置7−と披
処理物8との接触面間に導入する。
In the vacuum processing apparatus of the present invention configured as described above,
The electrostatic adsorption device 7 is operated by the DC power source 11 to electrostatically adsorb the object 8 to be processed, and after introducing a reactive gas into the vacuum container 3 via the gas introduction n5, the reactive gas is introduced into the vacuum container 3 via the cooling gas pipe 12. Then, a temperature-controlled cooling gas is introduced between the contact surface between the electrostatic adsorption device 7- and the workpiece 8.

この状態で、交流電源4を投入すると、第1電極1と第
2電極2との間に介在する反応性ガスは励起され、プラ
ズマとなって被処理物8の表面をエッチングする。
In this state, when the AC power source 4 is turned on, the reactive gas interposed between the first electrode 1 and the second electrode 2 is excited, turns into plasma, and etches the surface of the object 8 to be processed.

第3図は上記構成の本発明装置によるプラズマ処理中の
披処理物(ウエーハ基板)8の温度を示すもので、曲線
Aは被処理物8を静電吸着装置7上に置いただけの場合
を示し、曲線Bは被処理物8を静電吸着装置7により吸
着させただけの場合を示す。また、曲線Cは被処理物8
を静電吸着装置7により吸着させると共にガス冷却を併
用した場合を示す。この図から明らかなように、本発明
によれば、被処理物8の温度は著しく低下し、その温度
制御も10倍程度改善されている。
FIG. 3 shows the temperature of the object to be processed (wafer substrate) 8 during plasma processing by the apparatus of the present invention having the above configuration, and curve A shows the temperature of the object to be processed (wafer substrate) 8 when the object to be processed 8 is simply placed on the electrostatic adsorption device 7. Curve B shows the case where the object to be processed 8 is simply adsorbed by the electrostatic adsorption device 7. In addition, curve C represents the object to be processed 8.
A case is shown in which the electrostatic adsorption device 7 adsorbs the liquid and gas cooling is used in combination. As is clear from this figure, according to the present invention, the temperature of the object to be processed 8 is significantly lowered, and the temperature control is also improved by about 10 times.

第4図は本発明の他の実施例を示すもので、静電吸着装
置7の絶縁物9の上面に肢処理物の直径よりやや小径の
リング状突起9aを形或したものである。
FIG. 4 shows another embodiment of the present invention, in which a ring-shaped protrusion 9a having a diameter slightly smaller than the diameter of the limb treatment object is formed on the upper surface of the insulator 9 of the electrostatic adsorption device 7.

このようにすれば、静電吸着装置7と彼処理物8との間
のシール機能が向上するので、冷却ガスの漏れ量を大幅
に減少させることかできる。
In this way, the sealing function between the electrostatic adsorption device 7 and the object to be processed 8 is improved, so that the amount of leakage of cooling gas can be significantly reduced.

即ち、第2図の場合、冷却ガスの漏れ量は5.OX10
**pam*/see 程度であるが、第3図の場合には、 3.2X10**pam*/sec 程度となり、約1/100以下に減少させることが可能
となる。
That is, in the case of FIG. 2, the amount of cooling gas leakage is 5. OX10
It is about **pam*/see, but in the case of FIG. 3, it is about 3.2X10**pam*/sec, which makes it possible to reduce it to about 1/100 or less.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明の真空処理装置によれば、温度調節
された第1電極に設置された披処理物は静電吸着によっ
て第1電極との接触部を増大せしめられ、しかも非接触
部に圧力制御された冷却ガスを供給することによって従
来の方法に比べ10倍以上の熱伝導が得られる。また、
電極ステージと基板の間に供給された冷却ガスをリング
状突起でガスシールした場合には、冷却ガスが処理雰囲
気中に漏れることを防止できる。
As described above, according to the vacuum processing apparatus of the present invention, the object to be processed placed on the temperature-controlled first electrode can increase the contact area with the first electrode by electrostatic adsorption, and moreover, the non-contact area can be increased. By supplying a pressure-controlled cooling gas, more than 10 times the heat transfer can be obtained compared to conventional methods. Also,
When the cooling gas supplied between the electrode stage and the substrate is sealed by the ring-shaped protrusion, the cooling gas can be prevented from leaking into the processing atmosphere.

2図は本発明装置における静電吸着装置の近傍の構成図
、第3図は冷却方式による処理時間と基板温度との関係
を示すグラフ、第4図は本発明装置における静電吸着装
置の他の実施例を示す構成図である。
Figure 2 is a block diagram of the vicinity of the electrostatic chuck device in the apparatus of the present invention, Figure 3 is a graph showing the relationship between processing time and substrate temperature using a cooling method, and Figure 4 is a diagram showing the electrostatic chuck device and other parts in the apparatus of the present invention. FIG.

1・・・第1電極、2・・・第2電極、3・・・真空容
器、4・・・交流電源、5・・・ガス導入管、6・・・
ガスυト出管、7・・・静電吸着装置、8・・・被処理
物、9・・・絶縁物、9a・・・リング状突起、10・
・・静電吸着用電極、11・・・直流電源、12・・・
冷却ガス配管、13・・・ガス導入管。
DESCRIPTION OF SYMBOLS 1... First electrode, 2... Second electrode, 3... Vacuum container, 4... AC power supply, 5... Gas introduction tube, 6...
Gas outlet pipe, 7... Electrostatic adsorption device, 8... Treated object, 9... Insulator, 9a... Ring-shaped protrusion, 10.
...Electrostatic adsorption electrode, 11...DC power supply, 12...
Cooling gas piping, 13... gas introduction pipe.

Claims (1)

【特許請求の範囲】[Claims] 真空容器内に対向配置された第1電極および第2電極と
、前記真空容器内に反応性ガスを供給する反応性ガス供
給装置と、前記真空容器内を真空排気する真空排気装置
とを備えた真空処理装置において、前記第1電極に被処
理物を静電吸着する静電吸着装置と、前記第1電極と前
記被処理物との間に圧力制御された冷却ガスを導入する
冷却ガス配管とを具備することを特徴とする真空処理装
置。
A first electrode and a second electrode arranged opposite each other in a vacuum container, a reactive gas supply device for supplying a reactive gas into the vacuum container, and a vacuum evacuation device to evacuate the inside of the vacuum container. In the vacuum processing apparatus, an electrostatic adsorption device that electrostatically adsorbs a workpiece to the first electrode; a cooling gas pipe that introduces pressure-controlled cooling gas between the first electrode and the workpiece; A vacuum processing apparatus comprising:
JP1241036A 1989-09-18 1989-09-18 Vacuum treating apparatus Pending JPH03102820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1241036A JPH03102820A (en) 1989-09-18 1989-09-18 Vacuum treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1241036A JPH03102820A (en) 1989-09-18 1989-09-18 Vacuum treating apparatus

Publications (1)

Publication Number Publication Date
JPH03102820A true JPH03102820A (en) 1991-04-30

Family

ID=17068365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1241036A Pending JPH03102820A (en) 1989-09-18 1989-09-18 Vacuum treating apparatus

Country Status (1)

Country Link
JP (1) JPH03102820A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169825A (en) * 1993-12-15 1995-07-04 Nec Corp Electrostatic attracting apparatus
JPH09120987A (en) * 1995-07-10 1997-05-06 Watkins Johnson Co Electrostatic chuck assembly
US6255223B1 (en) 1998-03-12 2001-07-03 Matsushita Electric Industrial Co., Ltd. Substrate handling method and apparatus, and attractive force inspection method and apparatus used therewith
US6524428B2 (en) 1993-09-16 2003-02-25 Hitachi, Ltd. Method of holding substrate and substrate holding system
US6648976B1 (en) 1999-02-24 2003-11-18 Matsushita Electric Industrial Co., Ltd. Apparatus and method for plasma processing
KR100984177B1 (en) * 2008-06-13 2010-09-28 엘아이지에이디피 주식회사 Electrostatic chuck and plasma ion implantation apparatus using the same
KR101011858B1 (en) * 2007-06-05 2011-01-31 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, electrode temperature adjustment apparatus, and electrode temperature adjustment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424427A (en) * 1987-07-20 1989-01-26 Tokuda Seisakusho Vacuum treatment equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424427A (en) * 1987-07-20 1989-01-26 Tokuda Seisakusho Vacuum treatment equipment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645871B2 (en) 1993-09-16 2003-11-11 Hitachi, Ltd. Method of holding substrate and substrate holding system
US6676805B2 (en) 1993-09-16 2004-01-13 Hitachi, Ltd. Method of holding substrate and substrate holding system
US6610170B2 (en) 1993-09-16 2003-08-26 Hitachi, Ltd. Method of holding substrate and substrate holding system
US6524428B2 (en) 1993-09-16 2003-02-25 Hitachi, Ltd. Method of holding substrate and substrate holding system
US6610171B2 (en) 1993-09-16 2003-08-26 Hitachi, Ltd. Method of holding substrate and substrate holding system
US6544379B2 (en) 1993-09-16 2003-04-08 Hitachi, Ltd. Method of holding substrate and substrate holding system
US6899789B2 (en) 1993-09-16 2005-05-31 Hitachi, Ltd. Method of holding substrate and substrate holding system
JP2626539B2 (en) * 1993-12-15 1997-07-02 日本電気株式会社 Electrostatic suction device
JPH07169825A (en) * 1993-12-15 1995-07-04 Nec Corp Electrostatic attracting apparatus
US5838528A (en) * 1995-07-10 1998-11-17 Watkins-Johnson Company Electrostatic chuck assembly
JPH09120987A (en) * 1995-07-10 1997-05-06 Watkins Johnson Co Electrostatic chuck assembly
US6255223B1 (en) 1998-03-12 2001-07-03 Matsushita Electric Industrial Co., Ltd. Substrate handling method and apparatus, and attractive force inspection method and apparatus used therewith
US6648976B1 (en) 1999-02-24 2003-11-18 Matsushita Electric Industrial Co., Ltd. Apparatus and method for plasma processing
KR101011858B1 (en) * 2007-06-05 2011-01-31 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, electrode temperature adjustment apparatus, and electrode temperature adjustment method
KR100984177B1 (en) * 2008-06-13 2010-09-28 엘아이지에이디피 주식회사 Electrostatic chuck and plasma ion implantation apparatus using the same

Similar Documents

Publication Publication Date Title
JP4133333B2 (en) Method of processing object and processing apparatus thereof
KR910002451B1 (en) Vacucem treatment device
KR920003435A (en) Plate support table and processing apparatus using the same
TWI628711B (en) Method of processing target object
JPH03102820A (en) Vacuum treating apparatus
JPH06349938A (en) Vacuum processing device
KR950009957A (en) Method and apparatus for treating target object in reduced pressure atmosphere
JPH09320798A (en) Plasma processor
JPH02135753A (en) Sample holding device
KR19990088228A (en) Method of treating surface of sample
JP2000232098A (en) Control method for sample temperature and vacuum process device
JPH10163308A (en) Plasma treating method and apparatus therefor
JPH065505A (en) Equipment for treatment before application of photoresist
JPH09191005A (en) Specimen temperature control method and vacuum treatment apparatus
JPH07211769A (en) Method and apparatus for plasma processing
JP2000058512A (en) Device and method for plasma treatment
JP2001237222A (en) Vacuum-treating device
JP3169793B2 (en) Electrostatic adsorption method for plasma processing equipment
JPH02215126A (en) Dry processing of semiconductor wafer and processing device therefor
JPH0869897A (en) Plasma ashing device
JP3269781B2 (en) Vacuum processing method and device
JPH04360527A (en) Etching method and etching equipment
JPH04329626A (en) Processor of semiconductor device
JPH11135485A (en) Plasma treating device
JP2002502109A (en) Substrate drying method and drying equipment