JPH03102813A - Variable forming type charged particle beam exposure apparatus - Google Patents

Variable forming type charged particle beam exposure apparatus

Info

Publication number
JPH03102813A
JPH03102813A JP1240338A JP24033889A JPH03102813A JP H03102813 A JPH03102813 A JP H03102813A JP 1240338 A JP1240338 A JP 1240338A JP 24033889 A JP24033889 A JP 24033889A JP H03102813 A JPH03102813 A JP H03102813A
Authority
JP
Japan
Prior art keywords
particle beam
charged particle
deflector
deflection
deflectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1240338A
Other languages
Japanese (ja)
Inventor
Hiroyasu Shimizu
弘泰 清水
Mamoru Nakasuji
護 中筋
Shohei Suzuki
正平 鈴木
Kenji Morita
憲司 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1240338A priority Critical patent/JPH03102813A/en
Publication of JPH03102813A publication Critical patent/JPH03102813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To enhance sensitivity of a deflector by forming a crossover image point through a first contraction lens between the centers of deflection of two deflectors. CONSTITUTION:A first contraction lens 4 forms a crossover image point 9 of a charged particle beam source 1 at a position of an aperture 16 arranged between a first subdeflector 8 and a second subdeflector 10, and contracts a formed image of a charged particle beam passing through the opening of a second forming aperture 12. A second contraction lens 5 forms the crossover image near the pupil position of an objective lens 6, and contracts the image of the beam smaller than that of the lens 4. The deflection sensitivities of the deflectors 8, 10 are so adjusted that the deflection fulcrum of the deflector 10 becomes the point 9. The deflecting directions of the beam by the deflectors 8, 10 become the same since the point 9 is disposed between the deflectors 8 and 10. Accordingly, the centers of deflection of the deflectors 8, 10 can be matched to the point 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、可変成形型荷電粒子線露光装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a variable shaping type charged particle beam exposure apparatus.

〔従来の技術〕[Conventional technology]

従来のこの種の装置は第2図に示す様な構造であった.
第2図に於いて、荷電粒子tXIを出た荷電粒子線は照
射レンズ3によって、第1成形アパーチャl1を照射す
る.第1成形アパーチャ1lの開口を通過した荷電粒子
線は或形偏向器13a、13bによって偏向された後、
第2成形アパーチャl2を照明する。第1成形アバーチ
ャ11と第2成形アバーチャ12とは近接させて配設さ
れているので、許容されるボケの範囲内で重なり合うこ
とになり、かつ第I或形アパーチャl1の開口を通過し
た荷電粒子線は第2成形アバーチャ12上で偏向される
結果、荷電粒子線は或形され、この成形粒子線は第1!
I小レンズ4、第21i!小レンズ5によって縮小され
、対物レンズ6によりターゲット7上に結像される.こ
のとき、副偏向器8・10及び主偏向器15により、或
形粒子線はターゲット7面上を2次元的に偏向される。
Conventional equipment of this type had a structure as shown in Figure 2.
In FIG. 2, the charged particle beam emitted from the charged particle tXI irradiates the first shaping aperture l1 by the irradiation lens 3. After the charged particle beam passing through the opening of the first shaping aperture 1l is deflected by certain deflectors 13a and 13b,
Illuminating the second shaping aperture l2. Since the first shaping aperture 11 and the second shaping aperture 12 are arranged close to each other, they overlap within the range of permissible blur, and the charged particles passing through the opening of the I-shaped aperture l1 The beam is deflected onto the second shaping aperture 12 so that the charged particle beam is shaped;
I small lens 4, 21st i! It is reduced by a small lens 5 and imaged onto a target 7 by an objective lens 6. At this time, the certain particle beam is two-dimensionally deflected onto the surface of the target 7 by the sub-deflectors 8 and 10 and the main deflector 15.

なお、第2図で符号2は荷電粒子源lのクロスオーバ像
の軌道、符号9は副偏向器IOとレンズ5の間のクロス
オーバ像点、符号14は副偏向軌道、符号16はアパー
チャ、符号17は光軸である。
In FIG. 2, reference numeral 2 indicates the trajectory of the crossover image of the charged particle source l, reference numeral 9 indicates the crossover image point between the sub-deflector IO and the lens 5, reference numeral 14 indicates the sub-deflection trajectory, reference numeral 16 indicates the aperture, Reference numeral 17 is an optical axis.

ここで、第2図のクロスオーバ像の軌道2を見れば明ら
かなように、副偏向器8、10の偏向支点を荷電粒子源
1のクロスオーバ像点9に一致するように構威すること
により、成形像を偏向したときに粒子線電流が変化しな
いように、また、アパーチャl6はクロスオーバ像点9
を含んで光軸に直交する面内に配設され、荷電粒子線の
軌道の修正を行なったり、不図示のプランキング用偏向
器と共に荷電粒子線のプランキングを行なうために用い
られる。
Here, as is clear from the trajectory 2 of the crossover image in FIG. In order to prevent the particle beam current from changing when the formed image is deflected, the aperture l6 is located at the crossover image point 9.
It is disposed in a plane perpendicular to the optical axis and is used to correct the trajectory of the charged particle beam and to plank the charged particle beam together with a planking deflector (not shown).

〔発明が解決しようとする課題点〕[Problems that the invention attempts to solve]

上記の如き従来技術に於いては、偏向支点が副偏向器8
、10と第2縮小レンズ5との間にあるため、副偏向器
8、10による偏向方向は逆になり、偏向感度は小さく
なる。したがって、大きく偏向するには偏向H8、1o
用の電源の出力を大きくするか、偏向器8、1oの内径
を小さくしたり長さを長くする必要があった.電源の出
力を大きくした場合は消費電力が増加することはもちろ
ん、高速応答できない問題点があった.また、偏向器8
、10の内径を小さくすることは加工上の困難はもちろ
ん、充分広い範囲で偏向場を一様とすることができず、
収差が大きくなる。また、偏向器8、10を長くすると
成形粒子線の光路が長くなり、空間電荷効果によるボケ
を大きくすることになる. 本発明は以上の様な従来の問題点に鑑みてなされたもの
で、偏向器の感度を高めることを目的とする。
In the prior art as described above, the deflection fulcrum is the sub-deflector 8.
, 10 and the second reduction lens 5, the deflection directions by the sub-deflectors 8 and 10 are opposite, and the deflection sensitivity is reduced. Therefore, to obtain a large deflection, the deflection H8, 1o
It was necessary to increase the output of the power supply for the deflector, or to decrease the inner diameter or length of the deflectors 8 and 1o. Increasing the output of the power supply not only increased power consumption, but also had the problem of not being able to respond quickly. In addition, the deflector 8
, 10 is not only difficult to process, but also makes it impossible to make the deflection field uniform over a sufficiently wide range.
Aberration increases. Furthermore, if the deflectors 8 and 10 are made longer, the optical path of the shaped particle beam becomes longer, which increases the blur caused by the space charge effect. The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to increase the sensitivity of a deflector.

〔問題点を解決する為の手段〕[Means for solving problems]

上記問題点の解決の為に本発明では、第1縮小レンズ4
によるクロスオーバ像点9を2つの偏向器8、lOの偏
向中心の間に形成して、2つの副偏向器の偏向方向を同
じにした. 〔作 用〕 本発明に於いては、クロスオーバ像点が2つの偏向器の
偏向中心の間にあるため、偏向器の偏向中心をクロスオ
ーバ像点に合わせるのに一段目の偏向器で偏向した方向
に対し、2段目の偏向器で同じ方向に偏向することにな
る.したがって、2つの偏向器による偏向感度が足され
ることになり、従来の様な引かれる場合よりも偏向感度
は大きくなる。そこで、偏向器の電源の出力を小さくし
ても従来と同じ偏向幅が得られ、消費電力を小さくする
ことができ、また小電力の出力しか必要でないため高周
波で動作するトランジスタが使え、高速でビームを偏向
できる。さらに、従来よりも大きな内径の偏向器でも従
来と同じ偏向幅が得られ、一様な偏向場の領域は偏向器
の内径との比で決まるので、従来よりも広い範囲で一様
な偏向場が得られ、収差が小さくなる.その上、偏向器
を短かくしても従来と同じ偏向器が得られ成形粒子線の
光距長を短かくすることができるため、空間電荷効果に
よるボケも従来より小さくすることができる. 〔実施例〕 第1図は本発明の実施例であって、第2図の従来例と異
なる点は第1縮小レンズ4によりクロスオーバ像の形威
される位置9を第1、第2の副偏向器8、IOの間に設
定し、第1、第2の副偏向器8、10の偏向方向を同じ
にしたことであり、第1図と第2図とで同符号の部材は
同機能を有するものである. さて、第1図において、荷電粒子源lを射出した荷電粒
子線2は、照射レンズ3により第1成形アバーチャ1l
に入射する。第1成形アパーチャ11の開口を射出した
荷電粒子線2は第1成形アバーチ中1lに近接して配設
された第2成形アパーチャl2に入射する.その結果、
荷電粒子源lを射出した荷電粒子線2のうち、第1成形
アパーチャ11の開口と第2成形アパーチャl2の開口
を通った荷電粒子線のみが第1縮小レンズ4に入射する
.第1成形アパーチ+I1と第2成形アパーチャ12と
の間の或形偏向器13a、13bは、第1或形アバーチ
ャ11の開口を射出した荷電粒子線を光軸l7に直行す
る方向へ2次元的に振り、光軸17に直行する方向での
第1成形アパーチャl1の開口を通った荷電粒子線の平
面形状を第2成形アバーチャ12の開口で制限すること
により、荷電粒子線の形状を或形するためのものである
In order to solve the above problems, in the present invention, the first reduction lens 4
A crossover image point 9 was formed between the deflection centers of the two deflectors 8 and 1O to make the deflection directions of the two sub-deflectors the same. [Function] In the present invention, since the crossover image point is located between the deflection centers of the two deflectors, it is necessary to use the first stage deflector to align the deflection center of the deflector with the crossover image point. The second stage deflector will deflect the light in the same direction. Therefore, the deflection sensitivities of the two deflectors are added, and the deflection sensitivity becomes greater than in the conventional case of subtraction. Therefore, even if the output of the deflector's power supply is reduced, the same deflection width as before can be obtained, reducing power consumption.Also, since only a small amount of power is required, transistors that operate at high frequencies can be used, and high-speed Beam can be deflected. Furthermore, the same deflection width as before can be obtained even with a deflector with a larger inner diameter than before, and since the area of uniform deflection field is determined by the ratio to the inner diameter of the deflector, it is possible to obtain a uniform deflection field over a wider range than before. is obtained, and aberrations are reduced. Furthermore, even if the deflector is shortened, the same deflector as the conventional one can be obtained, and the optical distance of the shaped particle beam can be shortened, so the blur caused by the space charge effect can also be made smaller than before. [Embodiment] FIG. 1 shows an embodiment of the present invention, which is different from the conventional example shown in FIG. It is set between the sub-deflector 8 and IO, and the deflection directions of the first and second sub-deflectors 8 and 10 are the same, and members with the same symbols in FIG. 1 and FIG. 2 are the same. It has a function. Now, in FIG. 1, the charged particle beam 2 ejected from the charged particle source l is transmitted through the irradiation lens 3 to the first forming aperture 1l.
incident on . The charged particle beam 2 ejected through the opening of the first shaping aperture 11 enters the second shaping aperture 12 disposed close to 1l in the first shaping aperture. the result,
Of the charged particle beam 2 ejected from the charged particle source 1, only the charged particle beam that passes through the opening of the first shaping aperture 11 and the opening of the second shaping aperture 12 enters the first reduction lens 4. Certain shaped deflectors 13a and 13b between the first shaped aperture +I1 and the second shaped aperture 12 two-dimensionally direct the charged particle beam emitted from the opening of the first shaped aperture 11 in a direction perpendicular to the optical axis l7. The shape of the charged particle beam is shaped into a certain shape by restricting the planar shape of the charged particle beam passing through the opening of the first shaping aperture l1 in the direction perpendicular to the optical axis 17 by the opening of the second shaping aperture 12. It is for the purpose of

このようにして成形された荷電粒子線は、第1縮小レン
ズ4、第2縮小レンズ5により縮小された後、対物レン
ズ6によりターゲット7上に結像される.そのときター
ゲット7上での荷電粒子線の位置は、第Hl小レンズ4
と第2縮小レンズ5の間に配設された第1、第2の副偏
向器8、10と、対物レンズ5の位置に置かれた主偏向
器15とによりターゲット7上の露光すべき所望の位置
に偏向させられる。
The charged particle beam shaped in this manner is reduced by the first reduction lens 4 and the second reduction lens 5, and then imaged onto the target 7 by the objective lens 6. At that time, the position of the charged particle beam on the target 7 is determined by the position of the Hl small lens 4.
The first and second sub-deflectors 8 and 10 disposed between the second reduction lens 5 and the main deflector 15 placed at the objective lens 5 position the target 7 to be exposed. deflected to the position of

第1縮小レンズ4は、第1の副偏向器8と第2の副偏向
器10の間に配設されたアバーチャ16の位置に荷電粒
子線源1のクロスオーバ像点9を形威し、また、第2成
形アパーチャ12の開口を通った荷電粒子線の成形像を
縮小する.第2縮小レンズ5は、クロスオーバ像を対物
レンズ6の瞳位置近傍に形威し、また荷電粒子線の成形
像を第1の縮小レンズ4に比較して小さく縮小する。
The first reduction lens 4 forms a crossover image point 9 of the charged particle beam source 1 at the position of the aperture 16 disposed between the first sub-deflector 8 and the second sub-deflector 10, Furthermore, the formed image of the charged particle beam passing through the opening of the second forming aperture 12 is reduced. The second reduction lens 5 forms a crossover image near the pupil position of the objective lens 6, and also reduces the formed image of the charged particle beam to a smaller size than the first reduction lens 4.

第1副偏向器8、第2副偏向器10および主偏向器15
は、成形像を偏向させるものであるが、偏向に際して、
電子線電流がケラレにより不必要に変化することを防ぐ
ために、光源像(クロスオーバ像)は偏向しないように
設定される。すなわち、第2副偏臼器10の偏向支点が
クロスオーバ像点9となるように第1副偏向器8と第2
副偏向器10の偏向感度が調整されている. そして、第1副偏向器8と第2副偏向器10による荷電
粒子線の偏向方向は、クロスオーバ像点9が第1副偏向
器8と第2副偏向器10との間にあるので、同方向とな
る。
First sub-deflector 8, second sub-deflector 10 and main deflector 15
is for deflecting the formed image, but when deflecting,
In order to prevent the electron beam current from changing unnecessarily due to vignetting, the light source image (crossover image) is set not to be deflected. That is, the first sub deflector 8 and the second sub deflector 10 are arranged so that the deflection fulcrum of the second sub deflector 10 is the crossover image point 9.
The deflection sensitivity of the sub-deflector 10 is adjusted. Since the crossover image point 9 is between the first sub-deflector 8 and the second sub-deflector 10, the direction of deflection of the charged particle beam by the first sub-deflector 8 and the second sub-deflector 10 is as follows. They will be in the same direction.

このような構戒であるから、第1副偏向器8の偏向方向
に対して第2副偏向器10の偏向方向を同じ方向にil
!節することによって、第2副偏向器lOの偏向支点、
すなわち副偏向器8、10の偏向中心をクロスオーバ像
点9に合わせることができる。
Because of this configuration, the deflection direction of the second sub-deflector 10 is set in the same direction as the deflection direction of the first sub-deflector 8.
! By connecting the deflection fulcrum of the second sub-deflector lO,
That is, the deflection centers of the sub-deflectors 8 and 10 can be aligned with the crossover image point 9.

従って、第1副偏向器8による偏向量と第2副偏向器I
Oによる偏向量とは加算されるので、それぞれの偏向器
の偏向量は小さくてもよいことになる。すなわち、偏向
器の偏向感度が向上したことになる。
Therefore, the amount of deflection by the first sub-deflector 8 and the second sub-deflector I
Since the amount of deflection due to O is added, the amount of deflection of each deflector may be small. In other words, the deflection sensitivity of the deflector is improved.

その結果、第1副偏向器8と第2副偏向器10とは従来
の偏向器と同じ構造であれば、副偏向器用電源の出力を
従来よりも小さくしながら同じ偏向量が得られるから、
副偏向器の電源の出力を小さくでき、消費電力を少なく
、しかも高速で荷電粒子線を偏向することができる。
As a result, if the first sub-deflector 8 and the second sub-deflector 10 have the same structure as the conventional deflector, the same amount of deflection can be obtained while reducing the output of the sub-deflector power supply compared to the conventional one.
The output of the power source of the sub-deflector can be reduced, power consumption can be reduced, and the charged particle beam can be deflected at high speed.

また、従来の副偏向器と同じ構造でかつ副偏向器用電源
の出力が同じ場合には、従来の偏向量よりも大きな偏向
量が得られることになるが、偏向量が従来の偏向量と同
じでよいならば、副偏向器の内径を大きくすることがで
き、この場合には、大きく偏向した場合でも偏向場の一
様性が良いため、収差を大きくすることのない偏向器を
得ることができる. さらに、副偏向器の長さを短くすることができ、その場
合には、成形荷電粒子線の光路長を短縮し、空間電荷効
果による荷電粒子線のボケを小さくすることができる。
Also, if the structure is the same as the conventional sub-deflector and the output of the sub-deflector power supply is the same, a larger deflection amount can be obtained than the conventional one, but the deflection amount is the same as the conventional one. If this is acceptable, the inner diameter of the sub-deflector can be increased, and in this case, the uniformity of the deflection field is good even when the deflection is large, so it is possible to obtain a deflector that does not increase aberrations. can. Furthermore, the length of the sub-deflector can be shortened, and in that case, the optical path length of the shaped charged particle beam can be shortened, and blurring of the charged particle beam due to the space charge effect can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、簡単な構戊で副偏向器の
感度を高めることができる。
As described above, according to the present invention, the sensitivity of the sub-deflector can be increased with a simple structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による装置の実施例の結像図
、第2図は従来のこの種の装置の結像図である. 〔主要部分の符号の説明〕 1・・・荷電粒子線源、2・・・荷電粒子線の軌道、4
・・・第1縮小レンズ、5・・・第2縮小レンズ、7・
・・ターゲット、8・・・第1副偏向!L9・・・クロ
スオーバ像点、10・・・第2副偏向器、1l・・・第
1成形アバーチャ、 12・・・第2成形アパーチャ、13・・・成形偏向器
、14・・・副偏向軌道。
FIG. 1 is an image diagram of an embodiment of a device according to an embodiment of the present invention, and FIG. 2 is an image diagram of a conventional device of this type. [Explanation of symbols of main parts] 1... Charged particle beam source, 2... Trajectory of charged particle beam, 4
...first reduction lens, 5...second reduction lens, 7.
...Target, 8...1st secondary deflection! L9... Crossover image point, 10... Second sub deflector, 1l... First shaping aperture, 12... Second shaping aperture, 13... Shaping deflector, 14... Sub deflection trajectory.

Claims (1)

【特許請求の範囲】 荷電粒子線源と、 前記荷電粒子線源からの荷電粒子線を成形する成形装置
と、 前記成形装置により成形された成形粒子線をターゲット
上に結像するために、少なくとも2つに分割された第1
と第2の結像レンズと、 前記第1と第2の結像レンズの間に配設され、前記荷電
粒子線をターゲット上で偏向させる第1と第2の偏向器
と、 を少なくとも有し、前記荷電粒子線源のクロスオーバ像
の生じる位置を偏向中心として、前記第1と第2の偏向
器が荷電粒子線を偏向させる可変成形型荷電粒子線装置
において、 前記第1の結像レンズにより前記クロスオーバ像の形成
される位置を前記第1と第2の偏向器の間に設定し、前
記偏向器各々の偏向方向を同じにしたことを特徴とする
可変成形型荷電粒子線装置。
[Scope of Claims] A charged particle beam source, a shaping device for shaping the charged particle beam from the charged particle beam source, and at least one device for forming an image of the shaped particle beam shaped by the shaping device on a target. The first part is divided into two parts.
and a second imaging lens; and first and second deflectors disposed between the first and second imaging lenses to deflect the charged particle beam onto a target. , a variable-shaped charged particle beam device in which the first and second deflectors deflect the charged particle beam with a deflection center centered at a position where a crossover image of the charged particle beam source occurs, the first imaging lens; A variable-shaped charged particle beam device characterized in that the position where the crossover image is formed is set between the first and second deflectors, and the deflection direction of each of the deflectors is the same.
JP1240338A 1989-09-16 1989-09-16 Variable forming type charged particle beam exposure apparatus Pending JPH03102813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240338A JPH03102813A (en) 1989-09-16 1989-09-16 Variable forming type charged particle beam exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240338A JPH03102813A (en) 1989-09-16 1989-09-16 Variable forming type charged particle beam exposure apparatus

Publications (1)

Publication Number Publication Date
JPH03102813A true JPH03102813A (en) 1991-04-30

Family

ID=17058001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240338A Pending JPH03102813A (en) 1989-09-16 1989-09-16 Variable forming type charged particle beam exposure apparatus

Country Status (1)

Country Link
JP (1) JPH03102813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370720A (en) * 2001-06-13 2002-12-24 Os Seiko:Kk Packaging apparatus
JP2007188937A (en) * 2006-01-11 2007-07-26 Jeol Ltd Charged particle beam apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370720A (en) * 2001-06-13 2002-12-24 Os Seiko:Kk Packaging apparatus
JP2007188937A (en) * 2006-01-11 2007-07-26 Jeol Ltd Charged particle beam apparatus

Similar Documents

Publication Publication Date Title
KR20180108720A (en) A plurality of charged particle beam devices
JPS6290839A (en) Ion microbeam device
JP7194849B2 (en) electron optical system
KR20010007211A (en) Apparatus and method for image-forming charged particle beams and charged particle beam exposure apparatus
JPH0447944B2 (en)
JPS6042825A (en) Exposure device by charged beam
JP2000228162A (en) Electron beam device
US4475044A (en) Apparatus for focus-deflecting a charged particle beam
JPH03102813A (en) Variable forming type charged particle beam exposure apparatus
JP3862344B2 (en) Electrostatic lens
JPH01264149A (en) Charged particle beam applied device
US6995378B2 (en) Lens array with a laterally movable optical axis for corpuscular rays
US6023067A (en) Blanking system for electron beam projection system
JPH06139983A (en) Charged particle beam device
JPH0542808B2 (en)
JP2822283B2 (en) Electron beam reduction transfer device
SU980190A1 (en) Optronic device
JP3139441B2 (en) Electron beam drawing equipment
JP2000340152A (en) Electrostatic lens and mapping projection optical device
JP4192338B2 (en) Secondary charged particle projection system
JPS6261325A (en) Multi-charged beam image drawing device
JPS62115715A (en) Electron-beam exposure device
JP2000011936A (en) Electron beam optical system
JPS62229937A (en) Electron beam lithography equipment
JPS6276619A (en) Multicharged beam lighography equipment