JPH03102800A - High frequency multi-pole wire type accelerator - Google Patents

High frequency multi-pole wire type accelerator

Info

Publication number
JPH03102800A
JPH03102800A JP24147889A JP24147889A JPH03102800A JP H03102800 A JPH03102800 A JP H03102800A JP 24147889 A JP24147889 A JP 24147889A JP 24147889 A JP24147889 A JP 24147889A JP H03102800 A JPH03102800 A JP H03102800A
Authority
JP
Japan
Prior art keywords
tank
electrodes
magnetic material
high frequency
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24147889A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fujita
広之 藤田
Akira Kaimoto
亮 開本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24147889A priority Critical patent/JPH03102800A/en
Publication of JPH03102800A publication Critical patent/JPH03102800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To lessen the dia. of a tank by furnishing magnetic material insulated from electrodes in an acceleration cavity, and thereby enlarging the inductance of the acceleration cavity. CONSTITUTION:Between electrodes 2a-2d magnetic material 3a-3d such as ferrite is installed on the inner surface of an acceleration cavity (tank) 1 in the same length as each electrode 2a-2d. Insulative sheets 4a-4h are inserted between the magnetic material 3a-3d and electrodes 2a-2d, and thereby the magnetic material 3a-3d is insulated from the electrode 2a-2d. Thereby the inductance increases while the resonance frequency decreases-in other words, the dia. of tank 1 required to obtain the same resonance frequency becomes smaller.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えば大型加速器の入射器等として使用され
る、高周波多重極線型加速器に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a high frequency multipole linear accelerator used, for example, as an injector of a large accelerator.

く従来の技術〉 高周波多重極線型加速器においては、一般に、第2図(
a)およびい)従来の高周波四重極線型加速器を例にと
ってその加速空洞の斜視図および拡大縦断面図を示すよ
うに、両端にプレート21a,21bが装着されてなる
円筒状のタンク21内に、複数の電極22a〜22d(
ベーンと称される)が固着された構造であり、各電極2
2a〜22dの先1にはタンク21の軸方向に沿う波形
が形成される。
Conventional technology> Generally speaking, in high-frequency multipole linear accelerators, the method shown in Fig. 2 (
a) and b) Taking a conventional high-frequency quadrupole linear accelerator as an example, as shown in the perspective view and enlarged longitudinal cross-sectional view of the acceleration cavity, a cylindrical tank 21 with plates 21a and 21b attached at both ends is installed. , a plurality of electrodes 22a to 22d (
Each electrode 2 has a structure in which a
A waveform along the axial direction of the tank 21 is formed at the tips 2a to 22d.

そして、タンク21内に高周波電力を導入することによ
りタンク21を共振させ、電極22a〜22dの先端の
形状によってこれらに囲まれた空間内に必要な加速、収
束電場を作り、そこに導かれた荷電粒子を加速する。
Then, by introducing high-frequency power into the tank 21, the tank 21 is made to resonate, and the shape of the tips of the electrodes 22a to 22d creates the necessary acceleration and convergence electric field in the space surrounded by these, and the electric field is guided there. Accelerate charged particles.

このような線型加速器では、加速すべき粒子、入射、出
射エネルギ等により収束力、ボア半径r0が決まり、こ
れらから線型加速器の共振周波数f0とベーン間容量C
。が決定される。
In such a linear accelerator, the convergence force and bore radius r0 are determined by the particles to be accelerated, the incident energy, the output energy, etc., and from these, the resonant frequency f0 of the linear accelerator and the inter-vane capacitance C are determined.
. is determined.

このf0と00から加速空洞が必要とするインダクタン
スL0が、 (2πro) 2=1/C.L0 によって定まるわけであるが、L0はタンク21の1/
4断面積Sとの間に、真空透磁率をμ。とすると、 L0=μ。S なる関係があり、このことから必要なSを実現するタン
ク径Rが決定される。
From this f0 and 00, the inductance L0 required by the acceleration cavity is (2πro) 2=1/C. It is determined by L0, and L0 is 1/1 of the tank 21.
4 between the cross-sectional area S and the vacuum permeability μ. Then, L0=μ. There is a relationship: S, and from this, the tank diameter R that achieves the required S is determined.

く発明が解決しようとする課題〉 ところで、この種の線型加速器では、一般に大きな収束
力を実現しようとするとf0が小さくなるが、電極間の
放電やビーム径等より、ボア半径r0はあまり小さくす
ることができず、その結果ベーン間容量C0はあまり大
きくならない。
Problems to be Solved by the Invention> By the way, in this type of linear accelerator, generally when trying to achieve a large focusing force, f0 becomes small, but the bore radius r0 is not made too small due to the discharge between the electrodes, the beam diameter, etc. As a result, the inter-vane capacitance C0 does not become very large.

このことから、L0従って31つまりタンク径Rが大き
くなってしまう。Rが大きくなると、設置スペース、装
置重量、組立精度等の点で不利となる。
As a result, L0 and therefore 31, that is, the tank diameter R, becomes large. If R becomes large, there will be disadvantages in terms of installation space, device weight, assembly accuracy, etc.

この発明はこのような点に鑑みてなされたもので、入射
、出射エネルギ等同一の加速条件で、従来に比してタン
ク径Rを大きくすることなく、必要な共振周波数を実現
できる高周波多重極線型加速器の提供を目的としている
This invention was made in view of these points, and it is a high-frequency multipole that can realize the necessary resonant frequency without increasing the tank diameter R compared to the conventional one under the same acceleration conditions such as input and output energy. The purpose is to provide linear accelerators.

く課題を解決するための手段〉 上記の目的を達或するため、本発明では、実施例に対応
する第1図に示すように、空洞(タンク)1の内部に、
各電極2a〜2dと絶縁を保った状態で磁性材料3a〜
3dを配設している。
Means for Solving the Problems> In order to achieve the above object, in the present invention, as shown in FIG. 1 corresponding to the embodiment, inside the cavity (tank) 1,
The magnetic material 3a~ is kept insulated from each electrode 2a~2d.
3d is installed.

く作用〉 タンク1の1/4断面積を31そのうちの磁性材料が占
める面積を32、残りを31とすると、磁性材料3a〜
3dの透磁率(比透磁率)がμ,であれば、空洞のイン
ダクタンスL0は、Lo”poSt十μ。μr s z となる。μ,》lであるから、同じL.を得るための1
/4断面積S (=S.+s!)は小さくなる。
Effect> If the 1/4 cross-sectional area of the tank 1 is 31, the area occupied by the magnetic material is 32, and the remaining area is 31, then the magnetic materials 3a to 31 are
If the magnetic permeability (relative magnetic permeability) of 3d is μ, the inductance L0 of the cavity is Lo”poSt0μ.μr s z.Since μ, >>l, 1 to obtain the same L.
/4 cross-sectional area S (=S.+s!) becomes smaller.

〈実施例〉 第1図は本発明実施例の中央縦断面図である。<Example> FIG. 1 is a central vertical sectional view of an embodiment of the present invention.

この実施例において、タンク1、電極2a〜2d等の基
本的構或は第2図に示した従来のものと同等である。
In this embodiment, the basic structure of the tank 1, electrodes 2a to 2d, etc. is the same as the conventional structure shown in FIG.

この実施例では、各電極2a〜2d間に、タンク1の内
面に沿ってフエライト等の磁性材料3a〜3dが各電極
2a〜2dと等しい長さで一様に配設されており、その
各磁性材料3a〜3dと各電極2a〜2dの間には、そ
れぞれ絶縁シ一ト4a〜4hが挿入され、これによって
各磁性材料3a〜3dは各電極2a〜2dに対して絶縁
されている。
In this embodiment, magnetic materials 3a to 3d such as ferrite are uniformly arranged along the inner surface of the tank 1 between the electrodes 2a to 2d, and have a length equal to that of each of the electrodes 2a to 2d. Insulating sheets 4a-4h are inserted between the magnetic materials 3a-3d and the electrodes 2a-2d, respectively, so that the magnetic materials 3a-3d are insulated from the electrodes 2a-2d.

各磁性材料3a〜3dのタンク1の半径方向への断面積
はそれぞれStであって互いに等しく、1/4断面積S
の残りの部分の面積はそれぞれSIである。
The cross-sectional area of each magnetic material 3a to 3d in the radial direction of the tank 1 is St, which is equal to each other, and the 1/4 cross-sectional area S
The remaining area of each is SI.

また、各磁性材料3a〜3d内にはそれぞれ冷却管5・
・・・5が通されており、その管内部に水等の冷媒を流
し得るようになっている。
In addition, cooling pipes 5 and 5 are provided in each of the magnetic materials 3a to 3d.
... 5 is passed through the pipe, and a refrigerant such as water can be flowed inside the pipe.

以上の本発明実施例によれば、インダクタンスL0は、
真空透磁率を゜μ。、磁性材料3a〜3dの比透磁率を
μ,とすると、 Lo=μoS+十#o#rSz   ・・・・(1)と
なる。
According to the above embodiments of the present invention, the inductance L0 is
Vacuum permeability is ゜μ. , when the relative magnetic permeability of the magnetic materials 3a to 3d is μ, Lo=μoS+ten#o#rSz (1).

ちなみに、同一の1/4断面積Sで磁性材料3a〜3d
がない場合のインダクタンスL0は前記したように、 LO=μaS           ・・・・(2)と
なり、 S=St+Sz,  μ,〉1 であることから、同一の半径のタンクを使用しても本発
明実施例の方がそのインダクタンスL0は大きくなり、
共振周波数f0は低くなる。換言すれば、本発明実施例
によると同じ共振周波数f0を得るために必要なタンク
径が小さくなる。
By the way, magnetic materials 3a to 3d with the same 1/4 cross-sectional area S
As mentioned above, the inductance L0 in the case where there is no inductance L0 is LO=μaS (2), and S=St+Sz,μ,〉1. Therefore, the present invention can be implemented even if tanks with the same radius are used. In the example, the inductance L0 is larger,
The resonance frequency f0 becomes lower. In other words, according to the embodiment of the present invention, the tank diameter required to obtain the same resonance frequency f0 is reduced.

ここで、本発明実施例においては、装置の駆動時に磁性
材料3a〜3dは磁気抵抗による損失のために発熱する
が、この発熱は冷却管5・・・・5内に冷媒を通すこと
によって逃がすことができる。
Here, in the embodiment of the present invention, when the device is driven, the magnetic materials 3a to 3d generate heat due to loss due to magnetic resistance, but this heat is released by passing a coolant through the cooling pipes 5...5. be able to.

なお、タンク1内に設ける磁性材料としては、フエライ
ト以外′に任意のものを使用できることは勿論であるが
、電気絶縁性の磁性材料を使用すれば絶縁シー}4a〜
4hは不要となる。
Note that as the magnetic material provided in the tank 1, it is of course possible to use any material other than ferrite, but if an electrically insulating magnetic material is used, the insulation sheet 4a~
4h becomes unnecessary.

また、磁性材料の形状は上記の実施例に限定されず任意
であって、要はタンク1内に挿入されていれば良いわけ
である。
Further, the shape of the magnetic material is not limited to the above-mentioned embodiments, but is arbitrary, as long as it is inserted into the tank 1.

更に、本発明は四重極に限らず、他の多重極高周波線型
加速器に広く応用することができる。
Furthermore, the present invention is not limited to quadrupole but can be widely applied to other multipole high frequency linear accelerators.

く発明の効果〉 以上説明したように、本発明によれば、多重極高周波線
型加速器の加速空洞内に、各電極と絶縁された磁性材料
を設けることにより、加速空洞のインダクタンスを大き
くすることができ、これによって、同一条件の使用に対
してタンク径を従来に比して小さくすることができる。
Effects of the Invention> As explained above, according to the present invention, by providing a magnetic material insulated from each electrode in the acceleration cavity of a multipole high-frequency linear accelerator, the inductance of the acceleration cavity can be increased. As a result, the tank diameter can be made smaller than in the past for use under the same conditions.

その結果、従来に比して装置が小型化され、設置スペー
ス、装置重量および組立精度の点で有利となる。
As a result, the device is smaller than the conventional device, which is advantageous in terms of installation space, device weight, and assembly accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の縦断面図、第2図は従来の四重
極高周波線型加速器の構造説明図である。 1・・・・タンク 2a〜2d・・・・電極 3a〜3d・・・・磁性材料 4a〜4h・・・・絶縁シート 5・・・・5・・・・冷却管
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is a structural explanatory diagram of a conventional quadrupole high frequency linear accelerator. 1...Tank 2a-2d...Electrode 3a-3d...Magnetic material 4a-4h...Insulation sheet 5...5...Cooling pipe

Claims (1)

【特許請求の範囲】[Claims] 内部に複数の電極が配設された空洞内に高周波電力を導
入することによって、当該空洞を共振させて上記複数の
電極の先端で囲まれた空間に加速電場を形成する線型加
速器において、上記空洞の内部に、上記各電極と絶縁を
保った状態で磁性材料を配設したことを特徴とする高周
波多重極線型加速器。
In a linear accelerator in which high frequency power is introduced into a cavity in which a plurality of electrodes are arranged, the cavity is caused to resonate and an accelerating electric field is formed in a space surrounded by the tips of the plurality of electrodes. A high-frequency multipolar linear accelerator characterized in that a magnetic material is disposed inside the accelerator while maintaining insulation from each of the electrodes.
JP24147889A 1989-09-18 1989-09-18 High frequency multi-pole wire type accelerator Pending JPH03102800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24147889A JPH03102800A (en) 1989-09-18 1989-09-18 High frequency multi-pole wire type accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24147889A JPH03102800A (en) 1989-09-18 1989-09-18 High frequency multi-pole wire type accelerator

Publications (1)

Publication Number Publication Date
JPH03102800A true JPH03102800A (en) 1991-04-30

Family

ID=17074914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24147889A Pending JPH03102800A (en) 1989-09-18 1989-09-18 High frequency multi-pole wire type accelerator

Country Status (1)

Country Link
JP (1) JPH03102800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190026938A (en) * 2016-08-04 2019-03-13 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Electrode, accelerator column and ion implantation device comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190026938A (en) * 2016-08-04 2019-03-13 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Electrode, accelerator column and ion implantation device comprising same

Similar Documents

Publication Publication Date Title
US5435881A (en) Apparatus for producing planar plasma using varying magnetic poles
US6057655A (en) Method for sweeping charged particles out of an isochronous cyclotron, and device therefor
JPS6280950A (en) Ion source
JPH08279400A (en) Microwave distribution device and plasma generator
US6975072B2 (en) Ion source with external RF antenna
JP2006156394A (en) Electromagnetic induction accelerator with coil winding number adjustment
US3067359A (en) Structure for linear ion accelerators
US4093856A (en) Method of and apparatus for the electrostatic excitation of ions
US3013173A (en) Magnetic beam focusing method and apparatus
JPH03102800A (en) High frequency multi-pole wire type accelerator
US4019088A (en) Electrovacuum SHF apparatus
JP2592169B2 (en) Explosive generator
JPS5927499A (en) Method of producing simple and highly efficient sheet plasma
US2971113A (en) Acceleration tube for microwave linear accelerator having an integral magnet structure
JP2001338800A (en) Neutron generator
JP5715562B2 (en) Electron cyclotron resonance ion generator
Akimov et al. High-power X-band pulse magnicon
US3255369A (en) Variable polarization saturable magnetic circuits
JP4038883B2 (en) High frequency type accelerator tube
JPH06242273A (en) Neutral particle injector
US3133226A (en) Magnetic structure for traveling wave tubes
JP3585512B2 (en) Microwave plasma generator
JPH05182794A (en) High frequency acceleration resonator
SU739759A1 (en) X-ray generator
US3436587A (en) Permanent magnet system for the generation of a substantially homogeneous magnetic field for the bundled guidance of an electron beam over a relatively long path,especially for traveling wave tubes