JPH03102706A - Manufacture of high-forming polyolefin small-diameter wire - Google Patents

Manufacture of high-forming polyolefin small-diameter wire

Info

Publication number
JPH03102706A
JPH03102706A JP24146189A JP24146189A JPH03102706A JP H03102706 A JPH03102706 A JP H03102706A JP 24146189 A JP24146189 A JP 24146189A JP 24146189 A JP24146189 A JP 24146189A JP H03102706 A JPH03102706 A JP H03102706A
Authority
JP
Japan
Prior art keywords
foaming
conductor
agent
surface active
active agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24146189A
Other languages
Japanese (ja)
Inventor
Masazumi Shimizu
清水 正純
Hideo Otsuki
秀夫 大槻
Masahiro Abe
正浩 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP24146189A priority Critical patent/JPH03102706A/en
Publication of JPH03102706A publication Critical patent/JPH03102706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PURPOSE:To improve compression resistant property in the vertical direction to the conductor direction by blending a surface active agent to a system consisting of base resin, a foaming nuclear agent and a foaming agent with specific concentration. CONSTITUTION:A surface active agent of 0.01-2phr is blended with a system consisting of base resin, a foaming nuclear agent and a foaming agent. When a blending amount of the surface active agent is less than 0.01phr, an effect to influence a foam construction is little, and when the blending amount exceeds 2phr, foam pushing out is not conveniently performed. Junction of bubbles with bubbles at a steep shear speed spot being generated at high linear speed in the gap between a die and a conductor is prevented by the surface active agent concerned so as to suppress bubble growth in the flow direction and to promote the growth of bubbles in the vertical direction to the longitudinal direction of the conductor while sharply improving the compression resistant strength in the vertical direction to the conductor of a foaming insulator layer.

Description

【発明の詳細な説明】 [産業上の利用分野」 本発明は、例えば発泡絶縁体の外径が1.0fi以下と
いった極めて細径な発泡絶縁電線の発泡倍率を3倍以上
の高発泡状態に押出形成し、特にその際の機械的耐圧縮
強度を従来例に比較して大巾に向上させることのできる
高発泡ポリオレフィン細径電線の製造方法に関するもの
である.[従来の技術1 高周波伝送用ゲーブルやコンピューターのような精密電
子m器用ゲープルなどにおいては、絶縁体を低誘電率化
し伝送信号の高速化を図りあるいは誘電体損を低減させ
る目的で発泡化させており、最近は発泡倍率3倍以上の
高発泡化が実現されている. このような絶縁体の高発泡化は、例えばCATV用同軸
ケーブルのように比較的線径の大きい場合には、ほぼ確
立されている従来技術によって比較的容易に形成させる
ことができる.近年、通信機器類や精、密電子機器類は
小型化あるいは高密度実装化の傾向が著しく、その要請
に対応するために、ケーブル線心もまずます細径化され
る傾向にあり、外径がl.oam以下といった細径高発
泡絶縁電線も使用されるようになった.[発明が解決し
ようとする課題1 電線の細径化はとりもなおさず発泡絶縁休の薄肉化と同
義であり、このような薄肉絶縁体を発泡倍率3倍以上(
発泡度67%以上)といった高発泡層に形成しようとす
る場合、上記従来技術においては考えられなかった様々
なa問に遭遇することになった. 例示すれば、絶縁体が薄肉化するに伴い高発泡化が困難
となること、細径化し絶縁体が薄肉化されると、線速を
上げ生産性を確保しようとした場合に被膜切れが生ずる
こと、などが主要な問題点であり、発明者らはこれらの
難問解決に鋭意取組み、その解決方法を見出し、先にそ
の詳細について提案を行なった。(特願平1−1041
92)しかし、上記提案において尚残されている課題と
して、発泡絶縁体の耐圧縮強度を向上させるという問題
がある. 発泡押出によって高線速で′!MRされた発泡度70%
以上の高発泡ポリオレフィン細径電線は、一般に機械的
強度が弱いという共通した欠点をイfしている.これに
は材質的要因と気泡構造的要因およびコア梢遺的要因が
原因していると考えられる. これらの中で、高線速による発泡押出という製遣方式に
共通する本質的要因として気泡楕造の特異性を挙げるこ
とができる。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to a highly foamed state in which the foamed insulated wire has an extremely small diameter, for example, the outer diameter of the foamed insulator is 1.0 fi or less, and the foaming ratio is 3 times or more. The present invention relates to a method for producing a small-diameter highly foamed polyolefin electric wire that can be formed by extrusion, and in particular, the mechanical compressive strength at that time can be greatly improved compared to conventional examples. [Conventional technology 1] In cables for high-frequency transmission and cables for precision electronic devices such as computers, insulators are foamed to lower the dielectric constant, increase the speed of transmission signals, or reduce dielectric loss. Recently, high foaming ratios of more than 3 times have been achieved. Such highly foamed insulators can be formed relatively easily using almost established conventional techniques when the wire diameter is relatively large, such as for example in coaxial cables for CATV. In recent years, there has been a remarkable trend toward miniaturization and high-density packaging of communication equipment and precision electronic equipment. is l. Small diameter highly foamed insulated wires with a diameter of less than OAM have also come into use. [Problem to be solved by the invention 1 Reducing the diameter of electric wires is synonymous with reducing the thickness of foamed insulation, and such thin insulators are made with a foaming ratio of 3 times or more (
When trying to form a highly foamed layer (with a foaming degree of 67% or more), various problems that could not be considered with the above-mentioned conventional techniques were encountered. For example, as the insulator becomes thinner, it becomes difficult to achieve high foaming, and when the diameter of the insulator becomes thinner, coating breakage occurs when trying to increase the line speed and ensure productivity. These are the main problems, and the inventors have worked hard to solve these difficult problems, found a solution, and first proposed the details. (Patent application Hei 1-1041
92) However, an issue that remains unsolved in the above proposal is the problem of improving the compressive strength of the foamed insulator. ′′ at high linear speed by foam extrusion! MR foaming degree 70%
The above-mentioned highly foamed polyolefin small-diameter electric wires generally have a common drawback of low mechanical strength. This is thought to be caused by material factors, bubble structure factors, and core root remains factors. Among these, the uniqueness of cell elliptical structure can be mentioned as an essential factor common to the manufacturing method of foam extrusion using high linear speed.

.すなわち、高い線速で製造すれば、発泡剤ガスを溶解
したポリマメルトがダイス部に於で高い剪断を受けるこ
とになり、流れの方向に対して垂直な断面に於ける流れ
の放物線状の速度分布が生じ、流れの方向に長く伸びた
気泡を成長させる結果となる.この特異な気泡構造は、
コアの導体方向に対して垂直な方向からの圧縮強度を低
下させる大きな原因となるものである. 本発明の目的は、従来技術に本質的に内在する上記の欠
点を解消し、導体方向に対して垂直な方向の耐圧縮性を
大巾に向上させることができる新規な高発泡ポリオレフ
ィン細径電線の製造方法を提供しようとするものである
. [課題を解決するための手段] 本発明は、細径の導体に高発泡ポリオレフィン絶縁体層
を押出法により成形被覆する場合において、ベースレジ
ンと発泡核剤及び発泡剤からなる系に対して界面活性剤
を0.01〜2 phr配合することを要旨とするもの
である. ここにいう界面活性剤には、水溶液φで電離して生ずる
イオンの種類により陽イオン界面活性剤(陽イオン系)
、陰イオン界面活性剤(陰イオン系)およびそのように
電離しない非イオン界面活性/fl (ノニオン系)の
3種類があるが、本発明に適用するに当ってはそのいず
れを選択使用してもモ支えはない. 第4級アンモニウム塩のように電気特性を低下させる可
能性のあるものもあるが、本発明の配合量の範囲では実
際に問題となる場合は少ない.しかして、界面活性剤の
配合量を0。01〜2 phrの範囲とするのは、0。
.. In other words, if manufactured at a high linear velocity, the polymer melt in which the blowing agent gas is dissolved will be subjected to high shear at the die section, resulting in a parabolic velocity distribution of the flow in the cross section perpendicular to the flow direction. This results in the growth of bubbles that are elongated in the direction of flow. This unique bubble structure is
This is a major cause of decreasing the compressive strength in the direction perpendicular to the conductor direction of the core. The object of the present invention is to provide a novel highly foamed polyolefin small-diameter electric wire that can eliminate the above-mentioned drawbacks essentially inherent in the prior art and can greatly improve the compression resistance in the direction perpendicular to the conductor direction. The aim is to provide a manufacturing method for . [Means for Solving the Problems] The present invention provides an interface to a system consisting of a base resin, a foaming nucleating agent, and a foaming agent when forming and coating a thin conductor with a highly foamed polyolefin insulating layer by an extrusion method. The gist is to incorporate 0.01 to 2 phr of an active agent. The surfactants mentioned here include cationic surfactants (cationic) depending on the type of ions generated by ionization in aqueous solution φ.
There are three types of surfactants: anionic surfactants (anionic) and nonionic surfactants/fl (nonionic), which do not ionize, and which of them should be selected for use in the present invention. There is no thigh support. There are some substances, such as quaternary ammonium salts, that may deteriorate electrical properties, but within the range of the amount used in the present invention, there are few cases in which this actually becomes a problem. Therefore, setting the amount of surfactant to be in the range of 0.01 to 2 phr is zero.

o t phrより少ないと気泡構造に影皆を及ぼす効
果が少なく、また2 phrを越えるようになると発泡
押出が具合よく行なわれなくなり、好ましくないためで
ある.[作用] 上記配合範囲において界面活性剤を添加し発泡押出を行
なうと、高線速によってダイスと樽体の間隙に生じてい
るけわしいIJI断速度場での気泡と気泡の接合を当該
界而活性剤が防止し、流れの方向への気泡成長を抑制し
て、樽体の゛長手方向に対し重直方向への気泡の成長が
促進され、それによって発泡絶縁体層の導体に対し垂直
方向における耐圧縮強度が大巾に向上される. [実施例] 以下に、本発明について実施例を参照し説明する. 実施例 発泡押出用40m+押出111(L/D=29)のシリ
ンダの中央部に注入用ノズルを設評し、これを通じて発
泡剤として液体フロン(フロンl14)を定量ポンプに
よって加圧注入し、フロンガスが溶解したポリマメルト
を、クロスヘッド部で、走行する導体上に押出披覆して
、高発泡ポリオレフィン細径電線を試作した。
This is because if it is less than ot phr, there will be little effect on the cell structure, and if it exceeds 2 phr, foam extrusion will not be carried out properly, which is not preferable. [Function] When a surfactant is added in the above formulation range and foaming extrusion is performed, the bonding between the bubbles in the severe IJI breaking velocity field that occurs in the gap between the die and the barrel due to high linear velocity is activated. The agent prevents and suppresses bubble growth in the direction of flow, promoting bubble growth in the direction perpendicular to the longitudinal direction of the barrel, thereby increasing the Compressive strength is greatly improved. [Examples] The present invention will be described below with reference to Examples. Example: An injection nozzle was installed in the center of a cylinder of 40 m + extrusion 111 (L/D = 29) for foam extrusion, and through this, liquid fluorocarbon (Freon 114) was injected under pressure as a foaming agent using a metering pump, and the fluorocarbon gas The melted polymer melt was extruded onto a running conductor using a crosshead section to fabricate a highly foamed polyolefin small-diameter electric wire.

押出温度は約200℃、ヘッド部はダイスをボリマの融
点近く迄下げるため、シリンダ部からa′tかな温度勾
配をもたせた。高発泡細径化はダイス温度を低下させ高
発泡化か生じて膨張したメルトドロ一部を線速でコント
ロールして細径化した。
The extrusion temperature was about 200°C, and the head part had a temperature gradient of about a't from the cylinder part in order to lower the die to near the melting point of the bolymer. To achieve high foaming and reducing the diameter, the die temperature was lowered and a part of the melt dross that expanded due to high foaming was controlled by the line speed to reduce the diameter.

線速は約50m/II!nであった. ベースレジンとしてショウレックスC4309(密度0
.944g/cs3.MI  0.9g/10iin;
昭和電工製品)、核剤として粉末シリカ0.51)hr
、本発明において添加する界面活性剤として、非イオン
系のアルキルフェノール型のノニオンHS(日本油脂製
品)をO,0.01,0.05,0.1.0.5,1.
0,2.0,3.Ophr各々配合したコンパウンドを
調整し、細粒化して供試材とした. このコンパウンドを用いて前記の押出機により、導体径
0.18−の導体,Lに発泡押出して、コア径0.8m
、発泡度約80%の高発泡細径電線を得た. このコア試料について、コアの耐潰れ性、つまり導体方
向に対して乗直な耐圧縮性を調べた.試験機としては、
a厚計を改良して、上部に荷重を載せられるようにした
ものを用い、荷重tooarの時の変形率および荷重を
取去った後30分経過した時の永久変形率を室温で測定
した.結果を第1表に示した. 第1表より明らかなように、界面活性剤を添加しないN
0.1は、荷重変形量および永久変形量ともに大きな値
を示しているが、界面活性剤0.ON+hrの添加(N
o.2>により、その変形量には顕著な改首が認められ
、以下2 phrの添加(No.7)まで、その圧縮変
形の改首効果は著しい NO,8ずなわち3.Ollhr添加した試料では圧縮
変形量は一層小さくなっているが、遅延時間が4.2n
s/mと大r1Jに増大しており、発泡度においても十
分な発泡が行なわれていないことがわかる. IIII杼化した場合に困難性の大きい高発泡化を実現
させることの本来の理由は、それによって遅延時間の短
縮化を図り、送信信号の高速化(Tdが3.8nS/m
以下)を達成しようとすることにある.従って、このよ
うな遅延時間の増大を考慮するとき、界面活性剤の添加
量の上限は2 phr程度のところにあるということが
できる. [発明の効果1
Linear speed is approximately 50m/II! It was n. Shorex C4309 (density 0) as base resin
.. 944g/cs3. MI 0.9g/10iin;
Showa Denko products), powdered silica as a nucleating agent 0.51) hr
As a surfactant to be added in the present invention, nonionic alkylphenol type nonionic HS (NOF products) was used at O, 0.01, 0.05, 0.1, 0.5, 1.
0, 2.0, 3. The compound containing each Ophr was adjusted and finely granulated to prepare a test material. This compound was foamed and extruded into a conductor L with a conductor diameter of 0.18 mm using the extruder described above, and the core diameter was 0.8 m.
A highly foamed small diameter electric wire with a degree of foaming of approximately 80% was obtained. For this core sample, we investigated the core's crushing resistance, that is, its compression resistance perpendicular to the conductor direction. As a test machine,
Using a modified A-thickness gauge so that a load could be placed on the top, the deformation rate when the load was tooar and the permanent deformation rate 30 minutes after the load was removed were measured at room temperature. The results are shown in Table 1. As is clear from Table 1, N
0.1 shows large values for both the amount of deformation under load and the amount of permanent deformation. Addition of ON+hr (N
o. 2>, a remarkable change in the amount of deformation was observed, and from then on up to the addition of 2 phr (No. 7), the effect of compression deformation was remarkable as NO, 8, that is, 3. In the sample with Ollhr added, the amount of compressive deformation is even smaller, but the delay time is 4.2n.
s/m and increased to a large r1J, indicating that sufficient foaming was not performed in terms of foaming degree. The original reason for achieving high foaming, which is extremely difficult when using a III-type shuttle, is to shorten the delay time and increase the speed of the transmission signal (Td is 3.8 nS/m).
(below). Therefore, when considering this increase in delay time, it can be said that the upper limit of the amount of surfactant added is about 2 phr. [Effects of the invention 1

Claims (1)

【特許請求の範囲】[Claims] (1) 細径の導体に高発泡ポリオレフィン絶縁体層を
押出法により成形被覆する場合において、ベースレジン
と発泡核剤及び発泡剤からなる系に対して界面活性剤を
0.01〜2phr配合する高発泡ポリオレフィン細径
電線の製造方法。
(1) When molding and coating a small-diameter conductor with a highly foamed polyolefin insulating layer by extrusion, 0.01 to 2 phr of a surfactant is added to the system consisting of the base resin, foaming nucleating agent, and foaming agent. A method for producing a highly foamed polyolefin small diameter electric wire.
JP24146189A 1989-09-18 1989-09-18 Manufacture of high-forming polyolefin small-diameter wire Pending JPH03102706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24146189A JPH03102706A (en) 1989-09-18 1989-09-18 Manufacture of high-forming polyolefin small-diameter wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24146189A JPH03102706A (en) 1989-09-18 1989-09-18 Manufacture of high-forming polyolefin small-diameter wire

Publications (1)

Publication Number Publication Date
JPH03102706A true JPH03102706A (en) 1991-04-30

Family

ID=17074664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24146189A Pending JPH03102706A (en) 1989-09-18 1989-09-18 Manufacture of high-forming polyolefin small-diameter wire

Country Status (1)

Country Link
JP (1) JPH03102706A (en)

Similar Documents

Publication Publication Date Title
CA1154216A (en) Foamed perfluorocarbon resin compositions
CN1910224B (en) Expandable resin composition, expanded article using the same and coaxial insulated cable
US4683166A (en) Foamed plastic insulated wire and method for producing same
JPH03102706A (en) Manufacture of high-forming polyolefin small-diameter wire
US4547328A (en) Method for producing foamed plastic insulator
CN109735030A (en) A kind of fluorine Material Physics foaming nucleation masterbatch
JP2596114B2 (en) Method of forming highly foamed propylene-based resin insulation coating
JPH0290418A (en) Foamed insulating wire
JPH0193012A (en) Manufacture of foam fluorine resin insulating coverage
JPH0493221A (en) Extrusion molding method of fluororesin
JPH01154410A (en) Manufacture of foamy fluorine resin insulated wire
JPH0388210A (en) Manufacture of high expansion polyolefin small diameter wire
JPS6298507A (en) Formation of foamed fluorine insulation covering
JPS63211515A (en) Foam resin insulated wire
JPH01173511A (en) Formation of foaming fluororesin insulating cover
JP2535906B2 (en) Method for producing foamed fluororesin insulated wire
JPH04206407A (en) Manufacture of thin wire of low density polyethylene foam
JP5545178B2 (en) Foamed cable and manufacturing method thereof
JPH0193011A (en) Manufacture of high foam insulating wire
JPH0272514A (en) Manufacture of foaming insulated wire
JPH0197328A (en) Formation of foaming fluororesin insulated coating
JPH02284314A (en) Manufacture of fine gauge wire insulated by highly foaming plastic
JPH054267A (en) Extrusion method of highly expanded plastic
JPH0195421A (en) Molding method for foamed fluorinated resin insulation coat
JPS6039712A (en) Method of producing foamable polypropylene insulated wire