JPH0290418A - Foamed insulating wire - Google Patents

Foamed insulating wire

Info

Publication number
JPH0290418A
JPH0290418A JP24092688A JP24092688A JPH0290418A JP H0290418 A JPH0290418 A JP H0290418A JP 24092688 A JP24092688 A JP 24092688A JP 24092688 A JP24092688 A JP 24092688A JP H0290418 A JPH0290418 A JP H0290418A
Authority
JP
Japan
Prior art keywords
pfa
wire
insulating material
foamed
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24092688A
Other languages
Japanese (ja)
Inventor
Kazuhide Sakamoto
阪本 一秀
Yoshiaki Oishi
大石 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP24092688A priority Critical patent/JPH0290418A/en
Publication of JPH0290418A publication Critical patent/JPH0290418A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain one with good appearance by making a foamed insulating material with which the surface of a core conductor is covered into such a composition as prescribed. CONSTITUTION:The foamed insulating material of a foamed insulating wire made up of a core conductor and a formed insulating material provided thereon consists of tetrafluoroalkyl vinyl ether copolymer (PFA) whose melt flow rate(MFR) is 20-30g/10min. When an MFR value of PFA is 20-30g/10min. as above, the melt viscosity of PFA is small and the expansion speed of gas becomes fast, so that even in case the wall thickness of an insulating material is small, bubbles sufficiently grow before the insulating material cools and freezes with the result that even in case of a wire whose external diameter of an insulating wire is less than 0.3mm, it is possible to obtain a thin and greatly expanded one whose expansion ratio is 70% or more without deteriorating the appearance of the wire.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば、電子計算機の架間・架内配線に用い
られる高速信号伝送用同軸ケーブルの中て、特に低伝播
遅延時間、低特性インピーダンスを必要とする同軸ケー
ブルに使用される発泡絶縁電線の改良に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is particularly applicable to coaxial cables with low propagation delay time and low characteristics among high-speed signal transmission coaxial cables used, for example, for wiring between computer racks and inside racks. This invention relates to improvements in foam insulated wires used in coaxial cables that require impedance.

(従来の技術) 高速信号伝送用同軸ケーブルに用いられる絶縁電線は(
a)信号の高速伝送と(b)高難燃性と(c)高耐熱性
との3つの特性が要求される。近年、これらの特性の要
求は厳しくなっており、特に信号の高速伝送特性、更に
は低特性インピータンス化が提唱されている。信号の伝
送速度の尺度の1つとして伝播遅延時間でかあり、これ
は次の(1)式で与えられ、これか小さいほど信号伝送
速度か速くなる。
(Prior technology) Insulated wires used in coaxial cables for high-speed signal transmission are (
Three characteristics are required: a) high-speed signal transmission, (b) high flame retardancy, and (c) high heat resistance. In recent years, requirements for these characteristics have become stricter, and in particular, high-speed signal transmission characteristics and lower characteristic impedance have been proposed. One of the measures of signal transmission speed is the propagation delay time, which is given by the following equation (1), and the smaller it is, the faster the signal transmission speed is.

τ=  εs/3x108−−− (1)尚、上式てε
Sは絶縁物の比誘電率である。また、特性インピーダン
スZoは次の(2)式で与えられる。
τ= εs/3x108 --- (1) Furthermore, in the above formula, ε
S is the dielectric constant of the insulator. Further, the characteristic impedance Zo is given by the following equation (2).

Zo= (138,1/εs)x Iogd2/d+ 
 −(2)尚、上記式てd□は心線導体外径、d2は絶
縁電線の外径である。
Zo= (138,1/εs)x Iogd2/d+
-(2) In the above formula, d□ is the outer diameter of the core conductor, and d2 is the outer diameter of the insulated wire.

これら(1)及び(2)式から低伝播遅延時間と低特性
インピーダンスとを実現するためにはεSをより小さく
、d2/d、をより小さくして絶縁電線の肉厚を小さく
することが要求されるまた、発泡率Fは次の(3)式て
与えられ、低伝播遅延時間は高発泡率によって得られる
From these equations (1) and (2), in order to achieve low propagation delay time and low characteristic impedance, it is necessary to reduce εS, d2/d, and reduce the thickness of the insulated wire. Further, the foaming rate F is given by the following equation (3), and a low propagation delay time can be obtained by a high foaming rate.

F=(2ts+ εair)(εo −ε5)x 10
0/ 3εs (εo −εair )−−−一−(3
) 尚、上式で60は材料固有の比誘電率、εairは空気
の比誘電率(岬i、o )である。
F=(2ts+εair)(εo−ε5)x 10
0/3εs (εo −εair)---1-(3
) In the above equation, 60 is the relative permittivity specific to the material, and εair is the relative permittivity of air (cape i, o).

従来技術では、この発泡絶縁電線の絶縁物は発泡ポリエ
チレン(PE)、発泡ポリプロピレン(pp)等の比較
的比誘電率が低い汎用熱可塑性樹脂または弗素樹脂が用
いられていた。
In the prior art, general-purpose thermoplastic resins or fluororesins with relatively low dielectric constants, such as foamed polyethylene (PE) and foamed polypropylene (PP), have been used as the insulators of the foamed insulated wires.

(発明が解決しようとする課題) PE、PPは絶縁物を薄肉で高発泡とすることができる
が、難燃性が極めて悪く、また耐熱性は架橋を行なって
も連続使用温度で120〜135°C程度で低く、更に
薄肉で高発泡とすると、変形し易く強度上問題があった
(Problems to be Solved by the Invention) PE and PP can make insulators thin and highly foamable, but they have extremely poor flame retardancy, and even after crosslinking, the heat resistance is 120 to 135 at continuous use temperature. If the temperature is low, about 100°C, and the thickness is thinner and the foam is highly foamed, it will be easily deformed and there will be problems in terms of strength.

また、弗素樹脂としては低誘電率のテトラフルオロエチ
レン(PTFE)、テトラフルオロエチレン・ヘキサフ
ルオロエチレン共重合体(FEP) 、テトラフルオロ
エチレン・パーフルオロアルキルビニルエーテル共重合
体(PFA)、テトラフルオロエチレン・エチレン共重
合体(ETFE)が用いられるか、このうちPTFEは
溶融粘度が極端に大きいため通常の押し出し成形をする
ことかできないで発泡絶縁電線を得るためには多孔質テ
ープ化し、ラップ巻きすることが行なわれているが、生
産性が低く、発泡率(気孔率)か安定しないし、長尺物
を得ることができないし、材料費が高い欠点があった。
Fluororesins include low dielectric constant tetrafluoroethylene (PTFE), tetrafluoroethylene/hexafluoroethylene copolymer (FEP), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene/hexafluoroethylene copolymer (FEP). Ethylene copolymer (ETFE) is used. Among these, PTFE has an extremely high melt viscosity, so it cannot be subjected to normal extrusion molding. In order to obtain a foam insulated wire, it must be made into a porous tape and wrapped. However, the drawbacks were that productivity was low, the foaming rate (porosity) was unstable, long products could not be obtained, and material costs were high.

更に、FEP、PFA、ETFE等の熱可塑性樹脂はい
ずれも押し出し成形により発泡絶縁電線を製造すること
ができるが、このうちFEPは強度的に弱く、発泡絶縁
電線に用いられた場合に引っ張り強さ、変形性が極端に
悪くなる。この傾向は絶縁物の肉厚が小さくなるほど、
また発泡率が大きくなるほど顕著となる。
Furthermore, thermoplastic resins such as FEP, PFA, and ETFE can all be used to manufacture foamed insulated wires by extrusion molding, but FEP is weak in terms of strength, and when used for foamed insulated wires, the tensile strength is low. , the deformability becomes extremely poor. This tendency increases as the thickness of the insulator decreases.
Moreover, the larger the foaming rate is, the more noticeable it becomes.

一方、ETFEは発泡しても強度の低下は小さいか、融
点、耐熱温度が低い欠点かある。即ち、融点は約260
°Cで溶融半田(220〜250℃)の熱によって軟化
、変形し、また連続使用温度は150℃でFEP(7)
2000C,PFAの2606Cに比べると、はるかに
低い。
On the other hand, ETFE has drawbacks such as a small decrease in strength even when foamed, and a low melting point and low heat resistance. That is, the melting point is approximately 260
FEP (7) softens and deforms due to the heat of molten solder (220-250°C) at °C, and the continuous use temperature is 150°C.
It is much lower than 2000C and 2606C of PFA.

PFAは既にのべたように連続使用温度が260℃で融
点が300〜310’Cと極めて高く、また発泡時の強
度の低下が小さく、薄肉で高発泡の絶縁電線としてはF
EP、ETFEに比べて良い。しかし、これまでに発泡
絶縁電線に使用されていたPFAはASTM  D33
07によって規定されているメルトフローレート(MF
R)値て7〜16gZlo分(温度372°C1荷重5
kgf)のものがあるが、絶縁物の肉厚が0.3mm以
下になると、発泡率があがり難くなるので絶縁物の発泡
率を高めるために発泡源であるガスの添加量を多くした
り成形温度を制御して気泡の成長を促すと、ガスが絶縁
物を突き破って電線の表面の外観を悪くする欠点かあっ
た。
As mentioned above, PFA has an extremely high melting point of 300 to 310'C at a continuous operating temperature of 260 degrees Celsius, and its strength decreases little when foaming, making it suitable for thin-walled, highly foamed insulated wires.
Better than EP and ETFE. However, the PFA that has been used for foam insulated wires is ASTM D33
Melt flow rate (MF
R) Value: 7 to 16 g Zlo min (temperature 372°C 1 load 5
kgf), but if the wall thickness of the insulator is 0.3 mm or less, it becomes difficult to increase the foaming rate, so in order to increase the foaming rate of the insulator, it is necessary to increase the amount of gas that is the foaming source or to mold the insulator. Controlling the temperature to encourage bubble growth had the disadvantage that the gas could break through the insulation, making the surface of the wire look unsightly.

本発明の目的は、上記の欠点を回避し、外観を悪くする
ことなく薄肉で高発泡率の絶縁物を有する発泡絶縁電線
を提供することにある。
An object of the present invention is to avoid the above-mentioned drawbacks and provide a foam insulated wire having a thin wall and a high foaming ratio insulator without deteriorating the appearance.

(課題を解決するための手段) 本発明は、上記の課題を解決するために、心線導体とそ
の上に設けられた発泡絶縁物とから成る発泡絶縁電線に
おいて、発泡絶縁物はメルトフローレート(MFR)か
20〜30gZlO分のテトラフルオロエチレン・パー
フルオロアルキルビニルエーテル共重合体(PFA)か
ら成っていることを特徴とする発泡絶縁電線を提供する
ものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a foam insulated wire consisting of a core conductor and a foam insulator provided thereon, in which the foam insulator has a melt flow rate. The present invention provides a foam insulated wire characterized in that it is made of a tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA) containing 20 to 30 g of ZlO (MFR) or 20 to 30 g of ZlO.

〔作用〕[Effect]

このようにPFA(7)MFR値が20〜30g710
分であると、PFAの溶融粘度が小さく、ガスの膨張速
度が速くなるので絶縁物の肉厚が薄い場合でも絶縁物が
冷却凝固する前に気泡が充分に成長する。従って、絶縁
電線の外径が0.3mm以下の絶縁電線でも電線の外観
を悪くすることなく発泡率が70%以上の薄肉高発泡の
絶縁電線を得ることかできる。
In this way, PFA(7) MFR value is 20-30g710
If the insulator is cooled and solidified, bubbles will grow sufficiently even if the insulator is thin because the melt viscosity of PFA is low and the expansion rate of the gas is high. Therefore, even if the insulated wire has an outer diameter of 0.3 mm or less, a thin, highly foamed insulated wire with a foaming rate of 70% or more can be obtained without deteriorating the appearance of the wire.

〔実施例〕〔Example〕

次に、本発明の発泡絶縁電線を詳細にのべるが、この発
泡絶縁電線は、心線導体とその上に設けられた発泡絶縁
物とから成っている。
Next, the foam insulated wire of the present invention will be described in detail, and this foam insulated wire consists of a core conductor and a foam insulator provided thereon.

発泡絶縁物はメルトフローレート(MFR)が20〜3
0g/lo分のテトラフルオロエチレン・パーフルオロ
アルキルビニルエーテル共重合体(PFA)から成って
いる。尚、このMFRはASTM  D3307に規定
されるものであり、温度は372℃、荷重は5kgfで
ある。PFAにはクロロフルオロカーボンガス、炭酸ガ
ス、窒素ガスの如き発泡源が添加され、またセラミック
微粉末の如き核材が添加されるが、その外に必要に応じ
て顔料等の添加剤を添加することができる。
Foam insulation has a melt flow rate (MFR) of 20 to 3.
It consists of 0 g/lo of tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA). Note that this MFR is specified by ASTM D3307, the temperature is 372° C., and the load is 5 kgf. Foaming sources such as chlorofluorocarbon gas, carbon dioxide gas, and nitrogen gas are added to PFA, and a core material such as fine ceramic powder is added, but additives such as pigments may also be added as necessary. Can be done.

PFAは次のようなメカニズムで発泡される。先ず、核
剤が添加されたPFAを押出機内て溶融混練し、発泡源
となるガスを添加する。ガスは押出機内で分散し、ダイ
吐出直後に核剤を核にして膨張し、気泡となる。既にの
べたように、PFAのMFR値か20〜30g/10分
であると、PFAの溶融粘度か小さく、ガスの膨張速度
か速くなるので絶縁物の肉厚が薄い場合でも絶縁物が冷
却凝固する前に気泡が充分に成長する。従って、絶縁電
線の外径が0.3mm以下の絶縁電線でも電線の外観を
悪くすることなく発泡率か70%以上の薄肉高発泡の絶
縁電線を得ることかてきる。尚、MFR値は20未満て
は溶融粘度が大きく、気泡が充分に成長する前に絶縁物
が冷却凝固し、また30を越えると、気泡の発生が多す
ぎて好ましくない。
PFA is foamed by the following mechanism. First, PFA to which a nucleating agent has been added is melt-kneaded in an extruder, and a gas serving as a foaming source is added. The gas is dispersed within the extruder, and immediately after being discharged from the die, the gas expands using the nucleating agent as a nucleus to form bubbles. As already mentioned, when the MFR value of PFA is 20 to 30 g/10 minutes, the melt viscosity of PFA is small and the gas expansion speed is high, so even if the insulator is thin, the insulator will cool and solidify. The bubbles have grown sufficiently before Therefore, even if the insulated wire has an outer diameter of 0.3 mm or less, it is possible to obtain a thin, highly foamed insulated wire with a foaming rate of 70% or more without deteriorating the appearance of the wire. If the MFR value is less than 20, the melt viscosity is high and the insulator cools and solidifies before the bubbles grow sufficiently, and if it exceeds 30, too many bubbles are generated, which is not preferable.

次に、本発明の幾つかの具体例を比較例と共に説明する
Next, some specific examples of the present invention will be explained together with comparative examples.

外径が30mmの押出機を用い、PFA100重量部に
セラミック系核剤0.5重量部をホッパーから投入し、
クロロフルオロカーボンガス(フロン22)を注入し、
外径が0.18mmの軟鋼単線の心線導体上に発泡絶縁
物を被覆して発泡絶縁電線を製造した。このようにして
得られた発泡絶縁電線の発泡率と変形率とを測定し、電
線の表面状態を観察して結果を次の表1.2に示す。表
1は本発明の3つの具体例、また表2は2つの比較例を
示す。
Using an extruder with an outer diameter of 30 mm, 0.5 parts by weight of a ceramic nucleating agent was added to 100 parts by weight of PFA from a hopper,
Inject chlorofluorocarbon gas (Freon 22),
A foam insulated wire was manufactured by covering a core conductor of a single mild steel wire with an outer diameter of 0.18 mm with a foam insulator. The foaming rate and deformation rate of the foamed insulated wire thus obtained were measured, and the surface condition of the wire was observed. The results are shown in Table 1.2 below. Table 1 shows three specific examples of the present invention, and Table 2 shows two comparative examples.

発泡率は、電線1m当りの静電容量を測定しく4)式に
よって発泡絶縁電線の比誘電率εSを求めた後(3)式
から求められる。
The foaming rate can be determined from equation (3) after measuring the capacitance per meter of wire and finding the dielectric constant εS of the foam insulated wire using equation (4).

εs =(Cx log d2/d+)/24.13−
−− (4)尚、上式で、Fは発泡率(%)、Cは静電
容量(pF/m)である。
εs = (Cx log d2/d+)/24.13-
-- (4) In the above formula, F is foaming rate (%) and C is capacitance (pF/m).

また、電線の表面の外観は目視、手触りによって判断し
、r良」、r悪1で評価した。
In addition, the appearance of the surface of the electric wire was judged by visual inspection and touch, and was rated as ``good'' and ``bad'' as 1.

表1 実施例1 実施例2 実施例3 材料 PFA (MFR25) 100 系 核  剤  0,5 0.5 0.5 フロン22 フロン22 フロン22 仕様特性 仕上り 外径(mm) 肉厚(m層) 静電容量 (、F/m) 発泡率(z) 表面外観 材料 PFA (肝R14) 系 核  剤 仕様特性 仕上り 外径(m+*) 肉厚(11膳) 静電容量 (PF/m) 発泡率(X) 0.60 0.21 58.6 70.1 良 表 比較例1 0.5 フロン22 0.70 0.26 52.2 69.5 0.70 0.26 52.0 70.0 良 比較例2 0.70 0.26 50.0 75.0 良 0.5 フロン22 0.70 0.26 表面外観   悪    極悪 上記衣1及び2から本発明の具体例によれば、特に70
%以上の高発泡率の電線てもその表面の外観がいずれも
良好であることが解る。尚、上記実施例及び比較例ては
発泡率を69.5〜75(%)としたが、一般には本発
明では発泡率を高めても製品の表面の外観を悪くするこ
とかないが、比較例では発泡率を高めると、製品の表面
の外観か悪くなり、時には発泡率を高めようとしても高
くならない。特に、本発明で肉厚が0.5mm以下て発
泡率が75%以上の薄肉・高発泡絶縁物を良好な表面外
観て得ることかできることに注目すべきである。
Table 1 Example 1 Example 2 Example 3 Material PFA (MFR25) 100 Nucleating agent 0.5 0.5 0.5 Freon 22 Freon 22 Freon 22 Specifications Characteristics Finished outer diameter (mm) Wall thickness (m layer) Static Capacity (, F/m) Foaming rate (z) Surface appearance material PFA (Liver R14) System core Agent specification characteristics Finished outer diameter (m+*) Wall thickness (11 plates) Capacitance (PF/m) Foaming rate ( X) 0.60 0.21 58.6 70.1 Good comparison example 1 0.5 Freon 22 0.70 0.26 52.2 69.5 0.70 0.26 52.0 70.0 Good comparison Example 2 0.70 0.26 50.0 75.0 Good 0.5 Freon 22 0.70 0.26 Surface appearance Bad Very bad According to the embodiment of the present invention, especially 70
It can be seen that even the electric wires with a high foaming rate of 50% or more have a good surface appearance. In addition, in the above Examples and Comparative Examples, the foaming rate was set to 69.5 to 75 (%), but in general, in the present invention, even if the foaming rate is increased, the appearance of the surface of the product will not deteriorate, but in the Comparative Example However, if the foaming rate is increased, the appearance of the product's surface will deteriorate, and sometimes the foaming rate cannot be increased even if the foaming rate is increased. In particular, it should be noted that the present invention can provide a thin, highly foamed insulator with a wall thickness of 0.5 mm or less and a foaming rate of 75% or more with good surface appearance.

(発明の効果) 本発明によれば、上記のように、PFAのMFR値か2
0〜30g710分としたので表面の外観を悪くするこ
となく薄肉で高発泡の絶縁電線を得ることがてきる実益
がある。
(Effects of the Invention) According to the present invention, as described above, the MFR value of PFA is 2.
Since it is 0 to 30 g and 710 minutes, there is a practical benefit in that a thin-walled and highly foamed insulated wire can be obtained without deteriorating the surface appearance.

Claims (1)

【特許請求の範囲】[Claims] 心線導体とその上に設けられた発泡絶縁物とから成る発
泡絶縁電線において、前記発泡絶縁物はメルトフローレ
ート(MFR)が20〜30g/10分のテトラフルオ
ロエチレン・パーフルオロアルキルビニルエーテル共重
合体(PFA)から成っていることを特徴とする発泡絶
縁電線。
In a foam insulated wire consisting of a core conductor and a foam insulator provided thereon, the foam insulator is a tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer having a melt flow rate (MFR) of 20 to 30 g/10 min. A foam insulated wire characterized by being made of a composite material (PFA).
JP24092688A 1988-09-28 1988-09-28 Foamed insulating wire Pending JPH0290418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24092688A JPH0290418A (en) 1988-09-28 1988-09-28 Foamed insulating wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24092688A JPH0290418A (en) 1988-09-28 1988-09-28 Foamed insulating wire

Publications (1)

Publication Number Publication Date
JPH0290418A true JPH0290418A (en) 1990-03-29

Family

ID=17066702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24092688A Pending JPH0290418A (en) 1988-09-28 1988-09-28 Foamed insulating wire

Country Status (1)

Country Link
JP (1) JPH0290418A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110774A (en) * 2007-10-29 2009-05-21 Junkosha Co Ltd Coaxial cable
JP2010056079A (en) * 2008-08-01 2010-03-11 Panasonic Corp Flat nonaqueous electrolyte secondary battery
WO2017130713A1 (en) * 2016-01-28 2017-08-03 株式会社デンソー Piping

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298507A (en) * 1985-10-24 1987-05-08 日立電線株式会社 Formation of foamed fluorine insulation covering
JPS63110508A (en) * 1986-10-22 1988-05-16 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Covered wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298507A (en) * 1985-10-24 1987-05-08 日立電線株式会社 Formation of foamed fluorine insulation covering
JPS63110508A (en) * 1986-10-22 1988-05-16 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Covered wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110774A (en) * 2007-10-29 2009-05-21 Junkosha Co Ltd Coaxial cable
JP2010056079A (en) * 2008-08-01 2010-03-11 Panasonic Corp Flat nonaqueous electrolyte secondary battery
WO2017130713A1 (en) * 2016-01-28 2017-08-03 株式会社デンソー Piping

Similar Documents

Publication Publication Date Title
US4683166A (en) Foamed plastic insulated wire and method for producing same
CN1910224B (en) Expandable resin composition, expanded article using the same and coaxial insulated cable
EP2065155B1 (en) High processing temperature foaming polymer composition
EP1332179B1 (en) High-speed processable cellular insulation material with enhanced foamability
AU2002245757A1 (en) High-speed processable cellular insulation material with enhanced foamability
US4547328A (en) Method for producing foamed plastic insulator
CA1124950A (en) Foamed plastic insulated wire and method for producing the same
JPH0290418A (en) Foamed insulating wire
JP3227091B2 (en) Insulating material for coaxial cable, coaxial cable, and method of manufacturing coaxial cable
JP4304183B2 (en) Foamed coaxial cable
JP2739288B2 (en) Foamed fluororesin insulated wire
JPH07169334A (en) Foamed fluororesin insulated cable and manufacture thereof
JP2861283B2 (en) Foam plastic insulated wire
JP2596114B2 (en) Method of forming highly foamed propylene-based resin insulation coating
JP2861284B2 (en) Foam plastic insulated wire
JPH0272514A (en) Manufacture of foaming insulated wire
JP3514835B2 (en) High foam covered wire and method of manufacturing the same
JPS6298507A (en) Formation of foamed fluorine insulation covering
JPH0195421A (en) Molding method for foamed fluorinated resin insulation coat
JPS63254620A (en) Manufacture of foam fluorocarbon resin insulated wire
JPH0388210A (en) Manufacture of high expansion polyolefin small diameter wire
JPS63276831A (en) Manufacture of foamed fluoroplastic insulated wire
JPH0448510A (en) Foamed plastic insulated wire and manufacture thereof
JPH02284314A (en) Manufacture of fine gauge wire insulated by highly foaming plastic
JPH06145399A (en) Production of polyethylene foam