JPH03102096A - Support surface correction method for support device and device therefor - Google Patents

Support surface correction method for support device and device therefor

Info

Publication number
JPH03102096A
JPH03102096A JP23965989A JP23965989A JPH03102096A JP H03102096 A JPH03102096 A JP H03102096A JP 23965989 A JP23965989 A JP 23965989A JP 23965989 A JP23965989 A JP 23965989A JP H03102096 A JPH03102096 A JP H03102096A
Authority
JP
Japan
Prior art keywords
water level
jack devices
support
jack
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23965989A
Other languages
Japanese (ja)
Other versions
JP2748591B2 (en
Inventor
Yasuo Yakeno
焼野 保雄
Sumio Asano
麻野 純生
Hitoshi Kitayama
仁志 北山
Nobuhito Takeuchi
竹内 暢人
Masaaki Matsuba
松葉 正明
Takayoshi Tahashi
太箸 孝善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1239659A priority Critical patent/JP2748591B2/en
Publication of JPH03102096A publication Critical patent/JPH03102096A/en
Application granted granted Critical
Publication of JP2748591B2 publication Critical patent/JP2748591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recording Measured Values (AREA)

Abstract

PURPOSE:To enable the accurate shape recognition of a structure in changing the posture thereof by controlling a lift stroke depending upon a water level continuous to a jack device, and automatically correcting the uneven settlement of the structure due to the unbalanced support load thereof. CONSTITUTION:In changing the posture of a structure W such as the main tower block of a very long bridge assembled in a longitudinal direction after supported and aligned in a transverse direction with jack devices 2, an unbalance is caused on a support load when the structure W is placed on the jack devices 2. As A result, a substructure or foundation is subjected to uneven settlement. Due to this uneven settlement, the levels of support surfaces formed with a plurality of jack devices 2 become different from each other. In this case, level gauges 6A, 6B, 6C and 6D connected respectively to the jack devices 2 via a communication tube 7 are used to measure a water level. Thereafter, the lift stroke of the jack devices 2 is corrected depending upon the water level concerned, and the support levels formed with the jack devices 2 are restored to desired height.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、複数のジャッキ装置によって構造物を支持
する支持装置の支持面補正方法およびその装置に関する
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method and apparatus for correcting the support surface of a support device that supports a structure using a plurality of jack devices.

「従来の技術」 従来より、構造物をジャッキ装置によって支持する支持
装置が知られている。支持される構造物には、例えば、
ブロックを横方向に支持して芯出しした後、縦方向に組
み立てられる長大橋主塔ブロノクなどがある。
"Prior Art" Support devices for supporting structures using jack devices have been known. The supported structure may include, for example:
There is a long bridge main tower, Bronok, in which the blocks are supported horizontally and centered, and then assembled vertically.

従来、上述した構造物の支持は、第5図および第6図に
示す支持装置上において行われる。この図において、ま
ず、・載置テーブル1の上に、複数の仮置き用のジャッ
キ2aをセットして(第6図参照)、このジャッキ2a
の上にブロックWを載せる。次に、予め載置テーブル1
の上にセットされた複数の電気油圧サーボシリンダ2,
2,・・・・・・のシリンダを徐々に押し上げる。この
電気油圧サ−ボシリンダ2,2,・・・・・・には、押
し上げ力を検出する油圧センサが設けられており、この
油圧センサの検出データと、予め図面から求めておいた
ブロックWの理論上の反力(サーボシリンダに加わる圧
力)とが一致するまで、上記シリンダを上昇させる。こ
の結果、各電気油圧サーボシリンダ2に対するブロック
Wの荷重と、各電気油圧サーボシリンダ2の押し上げ力
が相殺され、ブロックWは無応力の自然体の横置姿勢を
とる。そして、ブロックWが自然体の横置姿勢で支持さ
れた後、3次元座標測定器3,3,・・・・・・によっ
てその形状が測定され、この測定データはシステムコン
トローラ4に供給される。そして、システムコントロー
ラ4によってブロックWの構造解析が行われる。
Conventionally, the above-mentioned structure is supported on a support device shown in FIGS. 5 and 6. In this figure, first, a plurality of jacks 2a for temporary placement are set on the mounting table 1 (see Fig. 6), and the jacks 2a are
Place block W on top of it. Next, place the table 1 in advance.
A plurality of electro-hydraulic servo cylinders 2 set on the
2. Gradually push up the cylinder. The electro-hydraulic servo cylinders 2, 2, . The cylinder is raised until it matches the theoretical reaction force (pressure applied to the servo cylinder). As a result, the load of the block W on each electro-hydraulic servo cylinder 2 and the pushing up force of each electro-hydraulic servo cylinder 2 are offset, and the block W assumes a stress-free natural horizontal posture. After the block W is supported in a natural horizontal position, its shape is measured by the three-dimensional coordinate measuring devices 3, 3, . . . , and this measurement data is supplied to the system controller 4. Then, the system controller 4 performs a structural analysis of the block W.

「発明が解決しようとする課題」 ところで、電気油圧サーボシリジダにブロックが積載さ
れると、第7図に示すように、そのプロ・ノクの重量に
よって、電気油圧サーボシリンダが設置されている基礎
や地盤が沈下し、その後静定する。そして、この状態で
構造物の姿勢を変化させるために、例えば、第8図に示
すように右側の電気油圧サーボシリンダのシリンダを押
し上げると、左側の電気油圧サーボシリンダに加わる荷
重が大となり、支持荷重アンバランスが生じ、当該電気
油圧サーボシリンダの下の上記基礎や地盤が不等沈下す
る。このように、不等沈下すると、従来の支持装置では
、構造物を自然体の横置姿勢で支持することが困難にな
るため、正確な形状認識ができなくなるという問題を生
じる。
"Problem to be Solved by the Invention" By the way, when a block is loaded onto the electro-hydraulic servo cylinder, as shown in Figure 7, the weight of the block causes the foundation or ground on which the electro-hydraulic servo cylinder is installed to collapse. sinks and then becomes static. In order to change the attitude of the structure in this state, for example, as shown in Figure 8, if the cylinder of the electro-hydraulic servo cylinder on the right side is pushed up, the load applied to the electro-hydraulic servo cylinder on the left side becomes large, causing Load imbalance occurs, and the foundation and ground below the electro-hydraulic servo cylinder settle unevenly. In this way, when uneven settlement occurs, it becomes difficult for the conventional support device to support the structure in its natural horizontal position, resulting in a problem that accurate shape recognition becomes impossible.

この発明は、上述した問題に鑑みてなされたもので、構
造物を自然体の横置姿勢で支持でき、かつ、当該構造物
の正確な構造解析ができる支持装置の支持面補正方法お
よびその装置を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems, and provides a method and device for correcting the support surface of a support device that can support a structure in a natural horizontal position and also allow accurate structural analysis of the structure. is intended to provide.

「課題を解決するための手段」 このような問題点を解決するために、請求項l記載の発
明では複数のジャソキ装置によって構造物を支持し、前
記ジャッキ装置の押し上げ量を制御して、前記構造物の
姿勢を変化させる支持装置において、前記ジャッキ装置
の各々に連通管により接続された水位計を設置し、この
水位計によって水位を測定した後、 当該水位に応じて
前記ジャッキ装置の押し上げ量を補正することを特徴と
する。
"Means for Solving the Problem" In order to solve such problems, the invention according to claim 1 supports a structure by a plurality of jacking devices, controls the amount of pushing up of the jacking devices, and controls the lifting amount of the jacking devices. In a support device that changes the attitude of a structure, a water level gauge connected to each of the jacking devices by a communication pipe is installed, and after measuring the water level with the water level gauge, the amount of lifting of the jacking device is determined according to the water level. It is characterized by correcting.

請求項2記載の発明では複数のジャッキ装置によって構
造物を支持し、前記ジャッキ装置の押し上げ量を制御し
て、前記構造物の姿勢を変化させる支持装置において、
前記ジャッキ装置の各々に設けられ、各々が連通管によ
って接続された水位計と、この水位計によって測定され
た水位に応じて前記ジャッキ装置の押し上げ量を補正す
る制御手段とを具備することを特徴とする。
The invention according to claim 2 provides a support device that supports a structure using a plurality of jack devices and changes the attitude of the structure by controlling the amount of pushing up of the jack devices,
A water level gauge provided in each of the jacking devices and connected to each other by a communication pipe, and a control means for correcting the amount of pushing up of the jacking device according to the water level measured by the water level gauge. shall be.

「作用」 構造物の姿勢を変化させる際に、支持荷重にアンバラン
スが生じ、ジャッキ装置の下の基礎や地盤が不等沈下す
る。この不等沈下(どよって、複数のジャッキ装置によ
って形戊される支持面の高さがずれる。このような場合
に、ジャッキ装置の各々に連通管により接続された水位
計を設置し、この水位計によって水位を測定した後、当
該水位に応じて前記ジャソキ装置の押し上げ量を補正し
て、当該ジャ,キ装置により形成される支持而を所望の
高さに戻す。
``Effect'' When changing the posture of a structure, an imbalance occurs in the supporting load, causing the foundation and ground under the jack device to settle unevenly. This uneven settlement (as a result of this, the height of the support surface formed by multiple jacking devices deviates). After measuring the water level with a meter, the lifting amount of the jacking device is corrected according to the water level, and the support formed by the jacking device is returned to the desired height.

「実施例」 次に図面を参照してこの発明の実施例について説明する
"Embodiments" Next, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の一実施例の構成を示す斜視図である
。なお、この図において、第3図に示す従来例の各部に
対応する部分については同一の符号を付して説明を省略
する。
FIG. 1 is a perspective view showing the structure of an embodiment of the present invention. In this figure, parts corresponding to the parts of the conventional example shown in FIG. 3 are given the same reference numerals and explanations are omitted.

この実施例の特徴は、電気油圧サーボシリンダ2,2,
・・・・・・の各々に水位計6 A, 6 a, 6 
C, 6Dが取り付けられており、各水位計6A〜6D
は、連通管の原理を応用して、ビニールホース7によっ
て給水タンク8とともに共通接続されているところにあ
る。次に、これら電気油圧サーボシリンダ22,・・・
・・・、水位計6A〜6oおよび給水タンク8について
、第2図を参照して説明する。この図において、給水タ
ンク8は、外部から供給される水を一定量蓄えるように
なっており、この水はビニールホース7を通って各水位
計6A〜6Dに供給される。また、各水位計6A〜6D
には水位センサが取り付けられており、この水位センサ
は、水位に応じて上下するフロートの位置を検出する。
The features of this embodiment are that the electro-hydraulic servo cylinders 2, 2,
Water level gauges 6A, 6a, 6 for each of...
C, 6D are installed, each water level gauge 6A to 6D
is commonly connected with a water tank 8 by a vinyl hose 7 by applying the principle of a communicating pipe. Next, these electro-hydraulic servo cylinders 22,...
..., the water level gauges 6A to 6o and the water supply tank 8 will be explained with reference to FIG. In this figure, a water supply tank 8 stores a certain amount of water supplied from the outside, and this water is supplied to each water level gauge 6A to 6D through a vinyl hose 7. In addition, each water level gauge 6A to 6D
A water level sensor is attached to the , and this water level sensor detects the position of the float, which moves up and down depending on the water level.

これは、言い換えれば、基礎を基準面としたときの各水
位計6A〜6Dにおける水位を測定することになる。
In other words, the water level at each of the water level gauges 6A to 6D is measured when the foundation is used as a reference surface.

この水位計6A〜6Dの水位は、基礎が水平ならば図示
のように常に同一になる。
If the foundation is level, the water levels of the water level gauges 6A to 6D will always be the same as shown in the figure.

一方、構造物の姿勢制御を行うと、左側の電気油圧サー
ボシリンダに加わる荷重が大となり、支持荷重アンバラ
ンスが生じ、上記基礎や地盤が不等比下する。このよう
に、基礎が不等沈下すると、虎下した基礎上の電気油圧
サーボシリンダ2,2,・・・も沈下する。そして、電
気油圧サーボシリンダ2,2,・・・・・・のいずれか
が沈下すれば、当然、これに設置されている水位計も沈
下する。この結果、沈下しない水位計と沈下した水位計
では、水位が異なるようになる。
On the other hand, when the attitude of the structure is controlled, the load applied to the left electro-hydraulic servo cylinder becomes large, resulting in an unbalanced support load, which causes the foundation and the ground to fall unevenly. In this way, when the foundation sinks unevenly, the electro-hydraulic servo cylinders 2, 2, . . . on the foundation that has fallen also sink. If any of the electro-hydraulic servo cylinders 2, 2, . . . sinks, the water level gauge installed therein also sinks. As a result, the water level becomes different between the water level gauge that does not sink and the water level gauge that sinks.

次に、上述した水位センサによって検出されたフロート
の位置(水位)は、水位信号L S A, L Se,
 L S c, L S oとして各増幅器9へ出力さ
れる。
Next, the position (water level) of the float detected by the water level sensor described above is determined by the water level signals L S A, L Se,
The signals are outputted to each amplifier 9 as L S c and L S o.

これら増幅器9,9,・・・・・・は各々、水位信号L
 S A〜LSDを増幅して水位レベル検出装置10に
供給する。次に、水位レベル検出装置10は、記録計(
マルチコーダ)11およびスキャナ12に応じた信号レ
ベルに水位信号LSを増幅した後、各々へ出力する。
These amplifiers 9, 9, . . . each have a water level signal L
SA to LSD are amplified and supplied to the water level detection device 10. Next, the water level detection device 10 uses a recorder (
After amplifying the water level signal LS to a signal level corresponding to the multicoder 11 and scanner 12, it is output to each.

記録計11は、水位信号L S A − L S Dを
順次記録用紙にプロットするようになっている。スキャ
ナl2は、水位信号LSA−LSoを一定の時間間隔で
サンプリングし、順次、データロガ−13に供給する。
The recorder 11 is configured to sequentially plot the water level signals LSA to LSD on a recording sheet. The scanner l2 samples the water level signals LSA-LSo at regular time intervals and sequentially supplies them to the data logger 13.

データロガー13は、水位信号LSA〜LSDをデジタ
ルに変換し、水位データとして記憶し、所定のデータ処
理を行う。
The data logger 13 converts the water level signals LSA to LSD into digital data, stores it as water level data, and performs predetermined data processing.

次に、上記構成によるこの実施例の動作について第3図
に示すフローチャートおよび第4図に示す動作説明図を
参照して説明する。
Next, the operation of this embodiment with the above configuration will be explained with reference to the flowchart shown in FIG. 3 and the operation diagram shown in FIG. 4.

まず、ブロックWが電気油圧サーボシリンダ2,2.・
・・・・・に載せられると、このプロ,,クWの重量に
より基礎が沈下し、その後静定する(第4図(a)の一
点破線と基礎との段差参照)。そして、沈下静定後、各
電気油圧サーボシリンダ2のシリンダを徐々に押し上げ
ることによって、従来の支持装置と同様な姿勢制御が行
われる(第4図(b)参照)。
First, the block W is the electro-hydraulic servo cylinder 2, 2 .・
When placed on..., the foundation sinks due to the weight of this professional, and then settles (see the difference in level between the dashed line and the foundation in Figure 4 (a)). After settling down, the cylinders of each electro-hydraulic servo cylinder 2 are gradually pushed up to perform attitude control similar to that of the conventional support device (see FIG. 4(b)).

そして、上述した姿勢制御の間に、一定の時間間隔で、
第3図に示すフローチャートがデータロガ−13によっ
て実行される。まず、ステップS1において、各水位計
6A〜6Dによって測定された水位信号LSA−LSD
がデジタルに変換され、水位データとして取り込まれる
。ここで、上述した姿勢制御において、第4図(b)に
示すように不等代下が生じる。この結果、上記各水位計
6A〜6Dの水位(水位データ)は異なる。次に、ステ
ップS2に進み、上記水位データをお互いに比較して、
最も小さい水位データ、子なわち最も低い水位を基準水
位として選定する。この例の場合、水位計6Dの水位が
上述したステ・ノブS2における基準水位として選定さ
れる。次に、ステ,,ブS3に進み、基準となる水位(
この例の場合は、水位計6Dの水位)と他の水位計6 
A+ 6 B+ 6Cの水位との水位差D 4+ D 
b+ D eを求める(第4図(b)参照)。次に、ス
テップS4において、ステソフS3で求めた水位差D 
ll+ D b+ D ,に応じた制御値(補正値)を
各電気油圧サーボシリンダ2に供給し、上記水位差D 
a+ D b, D Cだけシリンダを上昇させる(第
4図(C)参照)。この結果、各電気油圧サーボシリン
ダ2のシリンダ上面によって形威される支持面の高さは
、不等沈下した量に応じて補正され(第4図(C)参照
)、所望する位置に戻る。このように、第3図に示すフ
ローチャ−1・は、姿勢制御における各電気油圧サーボ
シリンタ2のシリンダの押し上げ毎に行われる。
Then, during the attitude control described above, at regular time intervals,
The flowchart shown in FIG. 3 is executed by the data logger 13. First, in step S1, water level signals LSA-LSD measured by each water level gauge 6A to 6D
is converted into digital data and imported as water level data. Here, in the above-mentioned posture control, an unequal lower occurs as shown in FIG. 4(b). As a result, the water levels (water level data) of each of the water level gauges 6A to 6D are different. Next, proceed to step S2, compare the water level data with each other,
The smallest water level data, i.e. the lowest water level, is selected as the reference water level. In this example, the water level of the water level gauge 6D is selected as the reference water level at the above-mentioned stem knob S2. Next, proceed to step S3, and proceed to the reference water level (
In this example, the water level of water level gauge 6D) and the other water level gauge 6
A+ 6 B+ Water level difference with the water level of 6C D 4+ D
Find b+D e (see Figure 4(b)). Next, in step S4, the water level difference D obtained in Stesof S3 is
A control value (correction value) corresponding to ll+D b+D is supplied to each electro-hydraulic servo cylinder 2, and the water level difference D
Raise the cylinder by a + D b, D C (see Figure 4 (C)). As a result, the height of the support surface defined by the cylinder top surface of each electrohydraulic servo cylinder 2 is corrected according to the amount of uneven settling (see FIG. 4(C)), and returns to the desired position. In this way, the flowchart 1 shown in FIG. 3 is performed every time the cylinder of each electro-hydraulic servo cylinder 2 is pushed up during attitude control.

なお、上述した姿勢制御において、不等沈下か生じない
場合には、各水位計6A〜6oに水位差は生じない。し
たがって、ステップS4における各電気油圧サーボシリ
ンダ2に供給される制御値(補正値)はゼロとなり、各
シリンダの押し上げ量は補正されない。
In addition, in the above-mentioned attitude control, when uneven settlement does not occur, no water level difference occurs between the water level gauges 6A to 6o. Therefore, the control value (correction value) supplied to each electro-hydraulic servo cylinder 2 in step S4 becomes zero, and the amount of push-up of each cylinder is not corrected.

また、第3図に示すステップS2において還定する基準
水位としては、最も低い水位だけに限らず、給水タンク
8の水位などの他の水位でもよい。
Further, the reference water level returned in step S2 shown in FIG. 3 is not limited to the lowest water level, but may be another water level such as the water level of the water supply tank 8.

「発明の効果」 以上説明したように、この発明によれば構造物の姿勢を
変化させた際、前記ジャッキ装置の各々に連通管により
接続された水位計を設置し、この水位計によって水位を
測定した後、当該水位に応じて前記ジャッキ装置の押し
上げ量を制御して、構造物の支持荷重アンバランスによ
る不等沈下を自動的に補正する。この結果、この発明に
よれば構造物を自然体の横置姿勢で支持でき、かつ、構
造物の正確な形状認識ができるという利点が得られる。
"Effects of the Invention" As explained above, according to the present invention, when the attitude of the structure is changed, a water level gauge connected to each of the jack devices by a communicating pipe is installed, and the water level is measured by this water level gauge. After the measurement, the lifting amount of the jack device is controlled according to the water level to automatically correct uneven settlement due to unbalanced support load of the structure. As a result, according to the present invention, there are advantages that the structure can be supported in a natural horizontal position and that the shape of the structure can be accurately recognized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の構成を示す斜視図、第2
図は同実施例の水位計の構或を示すブロック図、第3図
は同実施例のフローチャート、第4図は同実施例の動作
を説明するための説明図、第5図は従来の支持装置の構
戊を示す斜視図、第6レ1、第7図および第8図は従来
の支持装置の動作を説明するための説明図である。 2・・・・・・電気油圧サーボシリンダ(ジャソキ装置
)、6 A+ 6 8. 6 C+ 6 D・・・・・
・水位計、7・・・・・・ビニールホース(連通管)、
13・・・・・・データロガー(制御手段)、W・・・
・・・ブロック(構造物)。
FIG. 1 is a perspective view showing the configuration of an embodiment of the present invention, and FIG.
The figure is a block diagram showing the structure of the water level gauge of the same embodiment, Fig. 3 is a flowchart of the same embodiment, Fig. 4 is an explanatory diagram for explaining the operation of the same embodiment, and Fig. 5 is a conventional support. The perspective view showing the structure of the device, the sixth level 1, FIG. 7, and FIG. 8 are explanatory diagrams for explaining the operation of the conventional support device. 2...Electrohydraulic servo cylinder (Jasoki device), 6 A+ 6 8. 6 C+ 6 D...
・Water level gauge, 7...vinyl hose (communicating pipe),
13...Data logger (control means), W...
...Block (structure).

Claims (2)

【特許請求の範囲】[Claims] (1)複数のジャッキ装置によって構造物を支持し、前
記ジャッキ装置の押し上げ量を制御して、構造物の姿勢
を変化させる支持装置において、前記ジャッキ装置の各
々に連通管により接続された水位計を設置し、この水位
計によって水位を測定した後、当該水位に応じて前記ジ
ャッキ装置の押し上げ量を補正することを特徴とする支
持装置の支持面補正方法。
(1) In a support device that supports a structure with a plurality of jack devices and changes the attitude of the structure by controlling the amount of lifting of the jack devices, a water level gauge is connected to each of the jack devices by a communication pipe. A method for correcting a support surface of a support device, comprising: installing a water level gauge, measuring the water level using the water level gauge, and then correcting the amount of pushing up of the jack device according to the water level.
(2)複数のジャッキ装置によって構造物を支持し、前
記ジャッキ装置の押し上げ量を制御して、構造物の姿勢
を変化させる支持装置において、前記ジャッキ装置の各
々に設けられ、各々が連通管によって接続された水位計
と、この水位計によって測定された水位に応じて前記ジ
ャッキ装置の押し上げ量を補正する制御手段とを具備す
ることを特徴とする支持装置の支持面補正装置。
(2) A support device that supports a structure with a plurality of jack devices and changes the attitude of the structure by controlling the amount of pushing up of the jack devices, provided in each of the jack devices, and each connected by a communicating pipe. A support surface correction device for a support device, comprising: a water level gauge connected to the water level gauge; and a control means for correcting the lifting amount of the jack device according to the water level measured by the water level gauge.
JP1239659A 1989-09-14 1989-09-14 Method and apparatus for correcting support surface of support device Expired - Fee Related JP2748591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1239659A JP2748591B2 (en) 1989-09-14 1989-09-14 Method and apparatus for correcting support surface of support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1239659A JP2748591B2 (en) 1989-09-14 1989-09-14 Method and apparatus for correcting support surface of support device

Publications (2)

Publication Number Publication Date
JPH03102096A true JPH03102096A (en) 1991-04-26
JP2748591B2 JP2748591B2 (en) 1998-05-06

Family

ID=17047992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1239659A Expired - Fee Related JP2748591B2 (en) 1989-09-14 1989-09-14 Method and apparatus for correcting support surface of support device

Country Status (1)

Country Link
JP (1) JP2748591B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305512A (en) * 2006-05-15 2007-11-22 Yamatake Corp Led lighting system
CN102359907A (en) * 2011-07-20 2012-02-22 西南交通大学 Model differential settlement controlling device of geotechnical centrifuge test
JP2019144140A (en) * 2018-02-21 2019-08-29 藤倉コンポジット株式会社 Plane inspection device and plane inspection method
JP2022132466A (en) * 2018-02-21 2022-09-08 藤倉コンポジット株式会社 Plane inspection device and plane inspection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146099A (en) * 1974-05-13 1975-11-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146099A (en) * 1974-05-13 1975-11-22

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305512A (en) * 2006-05-15 2007-11-22 Yamatake Corp Led lighting system
CN102359907A (en) * 2011-07-20 2012-02-22 西南交通大学 Model differential settlement controlling device of geotechnical centrifuge test
JP2019144140A (en) * 2018-02-21 2019-08-29 藤倉コンポジット株式会社 Plane inspection device and plane inspection method
JP2022132466A (en) * 2018-02-21 2022-09-08 藤倉コンポジット株式会社 Plane inspection device and plane inspection method

Also Published As

Publication number Publication date
JP2748591B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
CN212835550U (en) Frame construction jacking deviation correcting system
CN106093358A (en) Can directly measure concrete temperature stress testing machine and the method for concrete deformation
JPH03102096A (en) Support surface correction method for support device and device therefor
JP4198223B2 (en) Oil drilling rig system
JPH07292702A (en) Unequal settlement correction quantity measuring method for structure and device thereof
CN209783580U (en) Self-balancing caisson or open caisson levelness measuring device
KR100415010B1 (en) Leveler
CN112053740B (en) Multipurpose automatic leveling device and leveling method
Bartsch et al. Small insect measurements using a custom MEMS force sensor
JP2005207916A (en) Static balance measuring method for rotating body and its instrument
JPH03102212A (en) Initializing method of supporting surface of supporting apparatus
KR100231491B1 (en) Device and method for measuring load distribution of sling rod
JP3254039B2 (en) Jack-up building equipment
JP2932518B2 (en) Structure reaction force management method
JP2718983B2 (en) Level measurement method
CN217738322U (en) Supporting device for ceramic tile detection
JPS61207722A (en) Detecting system for horizontal level of underwater working device
CN114526860B (en) Calibration method of simply supported beam type soil pressure sensor
JP2891064B2 (en) Control device for slip form method
CN110532609B (en) Grouting pressure simulation method and device based on partition equivalent grouting pressure vector
JPH02140367A (en) Level correcting device for construction
JPH06264458A (en) Uneven settlement-adjusting system and adjusting method for uneven settlement
JP2723561B2 (en) Structure level correction device
JP2880829B2 (en) Uneven settlement correction device for buildings
CN209387010U (en) It is a kind of for measuring and correcting the device of platen flatness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees