JPH03101708A - Reflected image forming optical device - Google Patents
Reflected image forming optical deviceInfo
- Publication number
- JPH03101708A JPH03101708A JP1239551A JP23955189A JPH03101708A JP H03101708 A JPH03101708 A JP H03101708A JP 1239551 A JP1239551 A JP 1239551A JP 23955189 A JP23955189 A JP 23955189A JP H03101708 A JPH03101708 A JP H03101708A
- Authority
- JP
- Japan
- Prior art keywords
- spherical
- optical system
- image
- mirror
- intermediate image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 103
- 238000003384 imaging method Methods 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 230000009467 reduction Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- 230000004075 alteration Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000003702 image correction Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/082—Catadioptric systems using three curved mirrors
- G02B17/0832—Catadioptric systems using three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70233—Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70275—Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は反射結像光学系、特に縮小投影が可能な反射結
像光学装置に関する
〔従来の技術〕
従来、LSIや超LSI等の半導体素子の製造に用いら
れる露光装置においては、その光源として水銀ランプが
用いられてきた。そして、半導体素子パターンの一層の
微細化に対応するために、露光光源としてより短波長の
エキシマレーザも用いられるようになってきている。し
かし通常の光を用いるかぎり、単波長化にはおのずと限
界があり、0.2μm以下の線幅パターンを露光するた
めにはX線を用いる必要がある。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reflective imaging optical system, particularly a reflective imaging optical device capable of reduction projection. [Prior Art] Conventionally, semiconductor devices such as LSI and VLSI In the exposure apparatus used in the production of lithography, a mercury lamp has been used as the light source. In order to cope with the further miniaturization of semiconductor device patterns, excimer lasers with shorter wavelengths are also being used as exposure light sources. However, as long as ordinary light is used, there is a natural limit to achieving a single wavelength, and in order to expose a pattern with a line width of 0.2 μm or less, it is necessary to use X-rays.
X線を用いる露光装置も既に開発されているが、これら
はすべてマスクの影絵をウエハーに転写する所謂プロキ
シミテイ一方式であって投影倍率は等倍である。このた
め、投影原版としてのマスク自体を極めて微細なパター
ンに仕上げておくことが不可欠であり、具体的には0.
2μmの線幅で0.5μm以下の位置精度でマスクを作
ることが必要となってくる。このような微細パターンを
有するマスクを加工することは極めて困難であり、X線
を用いたとしてもプロキシミティ一方式では実用にはな
らないものであった。Exposure apparatuses using X-rays have already been developed, but all of these are so-called proximity type in which a shadow image of a mask is transferred onto a wafer, and the projection magnification is the same. For this reason, it is essential to finish the mask itself, which serves as a projection master, into an extremely fine pattern.
It becomes necessary to make a mask with a line width of 2 μm and a positional accuracy of 0.5 μm or less. It is extremely difficult to process a mask having such a fine pattern, and even if X-rays were used, the proximity method was not practical.
そこで、X線を用いて縮小投影露光できる装置が望まれ
ているわけであるが、通常のレンズはX線を透過しない
ために使用できず、光学系としては反射系のみ使用可能
である。勿論非球面の反射系を用いればこのようなX線
反射縮小投影光学系は設計可能である。しかしながら、
X′a領域では極めて高い加工精度が必要となるため、
非球面の反射系は到底製造できるものではない。Therefore, there is a desire for an apparatus that can perform reduction projection exposure using X-rays, but ordinary lenses cannot be used because they do not transmit X-rays, and only a reflective system can be used as an optical system. Of course, such an X-ray reflection reduction projection optical system can be designed by using an aspheric reflection system. however,
Extremely high machining accuracy is required in the X'a region, so
It is impossible to manufacture an aspherical reflective system.
従って、実用的に使用できる反射面は球面のみである。Therefore, the only reflective surface that can be used practically is a spherical surface.
球面のみで構成された反射光学系としては古くからンユ
ワルツシルド型が知られている。これは第8図に示すよ
うに同心の凹面鏡lと凸面鏡2との2枚の球面反射鏡に
よって構威される光学系であり、非常に優れた光学系で
ある。しかし唯一とも言える欠点は、同心光学系である
ため物体面及び像面が反射鏡の球心を中心として球面状
に湾曲していることである。The Nyuwarzschild type has been known for a long time as a reflective optical system composed only of spherical surfaces. As shown in FIG. 8, this is an optical system composed of two spherical reflecting mirrors, a concentric concave mirror 1 and a convex mirror 2, and is an extremely excellent optical system. However, the only drawback is that since it is a concentric optical system, the object plane and image plane are spherically curved around the spherical center of the reflecting mirror.
物体面を平面にとれば像而はさらに湾曲してしまう。こ
のため、広い露光面積を必要とする半導体製造装置には
使用できないものであった。If the object surface is taken as a flat surface, the image becomes even more curved. For this reason, it cannot be used in semiconductor manufacturing equipment that requires a wide exposure area.
本発明の目的は、球面のみからなる簡単な構成でありな
がら、広い領域にわたって平坦な結像面を形戒でき、縮
小投影が可能な反射結像光学装置を提供することにある
。SUMMARY OF THE INVENTION An object of the present invention is to provide a reflective imaging optical device that has a simple configuration consisting of only spherical surfaces, yet can form a flat imaging surface over a wide area, and is capable of reduction projection.
本発明は、少なくとも1組の同心光学系を含む複数の球
面反射光学系を有する光学装置において、前記複数の球
面反射光学系により形威される中間像の少なくとも1ケ
所の中間像位置近傍に球面反射鏡を配置したものである
。具体的には、同心光学系として所謂ンユワルツシルド
光学系を用い、その中間像付近に像面湾曲補正用の球面
しらなる凹面反射鏡を配置したものである。The present invention provides an optical device having a plurality of spherical reflective optical systems including at least one set of concentric optical systems, in which a spherical surface is provided near at least one intermediate image position of an intermediate image formed by the plurality of spherical reflective optical systems. It is equipped with reflective mirrors. Specifically, a so-called Nywarzschild optical system is used as a concentric optical system, and a concave reflecting mirror with a spherical surface for correcting field curvature is arranged near the intermediate image thereof.
本発明によれば、少なくとも1組の同心光学系によって
発生する補正しきれない像面湾曲を、中間結像面の近傍
に配置した球面反射鏡によって良好に補正することがで
きる。この像面湾曲補正用球面鏡の設計法は以下の通り
である。According to the present invention, the curvature of field that cannot be corrected due to at least one set of concentric optical systems can be favorably corrected by the spherical reflecting mirror disposed near the intermediate imaging surface. The design method of this spherical mirror for correcting field curvature is as follows.
いま、例えば第1図に示した第1実施例の如き2つの同
心光学系S .. S !を組み合わせるものとする。Now, for example, two concentric optical systems S. like the first embodiment shown in FIG. .. S! shall be combined.
そして、全系による縮小投影倍率をM分のIとし、倍率
引分の1の第1光学系Sと、倍率m2分の1の第2光学
系S,とを組合せてM分の1の縮小投影光学系を得るこ
ととする。Then, the reduction projection magnification of the entire system is set to I/M, and the first optical system S with a magnification subtraction of 1 and the second optical system S with a magnification of 1/m2 are combined to reduce the reduction by 1/M. Let us obtain a projection optical system.
すなわち、M=m+Xm*とする。That is, M=m+Xm*.
そして、引分の1の倍率の第l光学系Slを考えその物
体面01を平面とする。次に、m7分の1の倍率の第2
光学系S2の像面■,を平面とし、その像a,の大きさ
は第1光学系の物体a0のM分のlとする。第2光学系
S,の物体と像の配置は第1光学系の逆とし、各々の光
学系の光軸を一致させ第l光学系S1の像面■と第2光
学系S2の物体面O,とを光軸上で一致させる。すると
第2図に示す如く、第1光学系の像面■1と第2光学系
の物体面O,とはそれぞれおおよそ球面状に湾曲してお
り、互いの大きさは等しいが、湾曲の度合は異っている
。Then, consider a l-th optical system Sl with a magnification of 1, and assume that its object surface 01 is a plane. Next, the second magnification of 1/m7
The image plane (2) of the optical system S2 is a plane, and the size of the image a is 1/M of the object a0 of the first optical system. The arrangement of objects and images in the second optical system S is opposite to that of the first optical system, and the optical axes of each optical system are made to coincide with each other, so that the image plane ■ of the first optical system S1 and the object plane O of the second optical system S2 are aligned. , and coincide on the optical axis. Then, as shown in Fig. 2, the image plane (1) of the first optical system and the object plane (O) of the second optical system are each approximately spherically curved, and although their sizes are the same, the degree of curvature is different. are different.
第l光学系による像面Lと第2光学系についての物体面
02との対応する点の中点を結んでできる曲面Mを考え
るとこれもほぼ球面状となり、この面Mを鏡面とすると
、第l光学系の像面I1と第2光学系の物体面O,とが
反射面Mを介して共役となる。If we consider the curved surface M formed by connecting the midpoints of the corresponding points of the image plane L of the first optical system and the object surface 02 of the second optical system, this will also be approximately spherical, and if this surface M is a mirror surface, then The image plane I1 of the first optical system and the object plane O of the second optical system become conjugate via the reflective surface M.
その結果、第1光学系の物体面01上の平面物体a0は
、第2光学系の像面I,上にM分の1の平面像a+とじ
て結像され、平面物体の平坦な像が所望の倍率にて像面
湾曲なしに形成されるのである。As a result, the plane object a0 on the object plane 01 of the first optical system is imaged as a 1/M plane image a+ on the image plane I of the second optical system, and the flat image of the plane object is It is formed at a desired magnification without curvature of field.
尚、同心光学系における光軸Aは、物体面及び像面を与
えたとき、同心中心を通り物体面及び像面に垂直な直線
として定義するものとする。Note that, when an object plane and an image plane are given, the optical axis A in the concentric optical system is defined as a straight line passing through the concentric center and perpendicular to the object plane and the image plane.
ところで、像面湾曲補正用球面鏡の設計について上記と
は別の説明をすると、像面湾曲のない光学系とはペッツ
バール和がOの光学系である。いま、各同心光学系にお
いて各反射面の曲率半径をrl. r2.・・・・・・
,r7とするとき、ペッツバール和Pは、
P=1/r++l/r,+1/rs+−・−−−−+
1/r. (11となるから、この(1)式の値が0
であることが侃面湾曲のない条件となる。By the way, to explain the design of the spherical mirror for field curvature correction in a different way from the above, an optical system without field curvature is an optical system with a Petzval sum of O. Now, in each concentric optical system, the radius of curvature of each reflecting surface is rl. r2.・・・・・・
, r7, the Petzval sum P is P=1/r++l/r,+1/rs+-・----+
1/r. (11, so the value of this equation (1) is 0
This is the condition for no surface curvature.
従って、各同心光学系が2つの同心反射面からなるシュ
ワルツシルド光学系であるとすれば、r+、rzを第1
のシュワルツシルド光学系の曲率半径、r,、r,を第
2のシュワルツシルド光学系の曲率半径とするとき、中
間像位置付近に置く像面蒲正用球面MMの曲率半径rは
、
で与えられる。Therefore, if each concentric optical system is a Schwarzschild optical system consisting of two concentric reflecting surfaces, let r+, rz be the first
When the radius of curvature of the Schwarzschild optical system, r, is the radius of curvature of the second Schwarzschild optical system, the radius of curvature r of the spherical surface MM for image plane correction placed near the intermediate image position is given by It will be done.
このf11式は、第k面の入射光側の屈折率をN1、射
出光側の屈折率をNk′ とし、補正反射面の入射光側
の屈折率をN(0,射出光側の屈折率をN1 とする
とき、より厳密には以下のとおりとなる。This f11 formula has the refractive index on the incident light side of the k-th surface as N1, the refractive index on the emitted light side as Nk', and the refractive index on the incident light side of the correction reflecting surface as N(0, the refractive index on the emitted light side). When N1 is set, more precisely, it is as follows.
k−1 ,,
ここで、屈折率N.’ ,Nk等は1又は=1であり、
その符号は後記する反射面間隔と同様に光線の向きが左
側である場合を正、右側である場合を負としている。k-1,, where the refractive index N. ', Nk, etc. are 1 or = 1,
The sign is positive when the direction of the light ray is to the left, and negative when the direction of the light ray is to the right, similar to the interval between reflective surfaces described later.
この球面が第2図にて前述した像面補正用反射鏡と一致
するのは勿論である。Of course, this spherical surface coincides with the image plane correction reflecting mirror described above in FIG.
同様に、同心光学系を含む全系の反射面の曲率半径をr
l+ rl+ ・・・・・・,reとし、そのうちの第
1番目の反射面が中間像位置近傍に配置される像面補正
用反射面であるとすると、その曲率半径ryは、一般に
k−1 r, k−+4 ,,で
与えられる。Similarly, the radius of curvature of the reflecting surface of the entire system including the concentric optical system is r
l+ rl+ . It is given by r, k-+4,,.
そして実際上は、シュワルツシルド光学系やそれに組み
合わされる光学系における残存収差とのバランスに応じ
て、上記(31式によって決定される像面補正用反射面
の曲率半径を適宜修正することが必要である。その場合
、最終的な像面補正用反射面の曲率半径の値rは、(2
)式や(3)式で決定される値rMに対して、
λ
の範囲に設定することが有効である。In practice, it is necessary to modify the radius of curvature of the reflecting surface for image plane correction determined by the above formula (31) as appropriate, depending on the balance with residual aberrations in the Schwarzschild optical system and the optical system combined with it. In that case, the final value r of the radius of curvature of the reflective surface for image plane correction is (2
) or (3), it is effective to set it within the range of λ.
ここで、λは波長、Yは最終像の像高、NAは最終像面
における結像光束の開き角に対応する開口数である。Here, λ is the wavelength, Y is the image height of the final image, and NA is the numerical aperture corresponding to the aperture angle of the imaging light beam at the final image plane.
上記(4)の条件は、3次収差論により求められるベッ
ツバール像面のガウス像面からのズレ量Δ=−Y’(N
k’P)と、回折限界の光学系におけるjQ点深度 Δ
Z=±λ/2(NA)’との関係に基づいて決定した条
件であり、上記の範囲を超える場合には、像面補正用の
反射面において発生する高次収差が著しくなりすぎるた
め良好な結像を得ることが難しくなる。Condition (4) above is the amount of deviation Δ=-Y'(N
k'P) and the jQ point depth Δ in the diffraction-limited optical system.
This is a condition determined based on the relationship with Z=±λ/2(NA)', and if it exceeds the above range, the higher-order aberrations generated on the reflective surface for image plane correction will become too significant, so it is not good. It becomes difficult to obtain a clear image.
以下、本発明を実施例に基づいて詳細に説明する。 Hereinafter, the present invention will be explained in detail based on examples.
第I図は本発明の第1実施例の構威を示す断面光路図で
あり、物体a.の軸上点から発する主光線が最終像a+
に達する様子を示している。FIG. I is a cross-sectional optical path diagram showing the structure of the first embodiment of the present invention. The chief ray emitted from the axial point of is the final image a+
It shows how it reaches.
図示のように、第1実施例は、C1を球心とする凸面鏡
の第1反射鏡R.と凹面鏡の第2反射鏡R,とからなる
第lシュワルツシルド型同心光学系S,、像面補正MM
としての第3反射#lIR,、及びctを球心とする凹
面鏡の第4反射鏡R4と凸面鏡の第5反射鏡R,とから
なる第2シュワルツシルド型同心光学系S2とで構成さ
れている。ここで、第lシュワルツシルド型同心光学系
は縮小系であり、第2シェフルッシルド型同心光学系は
拡大系である。As shown in the figure, in the first embodiment, the first reflecting mirror R. and a concave mirror second reflecting mirror R, a first Schwarzschild concentric optical system S, and an image plane correction MM.
, and a second Schwarzschild concentric optical system S2 consisting of a fourth reflecting mirror R4, which is a concave mirror, and a fifth reflecting mirror R, which is a convex mirror, with ct as the spherical center. . Here, the first Schwarzschild type concentric optical system is a reduction system, and the second Schwarzschild type concentric optical system is an expansion system.
物体a6からの光束は、第1反射面としての凸面鏡R+
、第2反射面としての凹面鏡R2で反射されて中間像a
,を形戒する。中間像a1は湾曲しているが、中間像a
1の近傍に配置された第3反射鏡としての凹面鏡R,に
よってさらに曲げられ像a!を形威する。中間像a,の
近傍に配置された第3反射鏡としての凹面鏡R,での反
射を受けた光束は、第4反射面としての凹面鏡R,、第
5反射面としての凸面鏡R,で反射されて最終(l a
tを形戒する。The light flux from object a6 is reflected by convex mirror R+ as the first reflecting surface.
, an intermediate image a is reflected by the concave mirror R2 serving as the second reflecting surface.
, is a form of precept. Although the intermediate image a1 is curved, the intermediate image a
1 is further bent by a concave mirror R, which serves as a third reflecting mirror, and the image a! to give form to. The light beam that has been reflected by the concave mirror R, which is the third reflecting mirror, and which is placed near the intermediate image a, is reflected by the concave mirror R, which is the fourth reflecting surface, and the convex mirror R, which is the fifth reflecting surface. final (l a
Precept the form of t.
像面補正鏡Mとしての第3反射MR,によって、中間像
a1が第2図について説明した如く、反射像a2として
適度に曲げられているため、第1及び第2シュワルツシ
ルド光学系で生じる像面湾曲は補正され、最終像a,は
平面に形成される。このような構戊において、更に最終
像a,を形或する主光線が光軸にほぼ平行となるように
像餌でのテレセントリック性を良くするためには、像面
補正鏡としての第3反射鏡R,をわずかに傾けることが
有効である。As explained with reference to FIG. 2, the intermediate image a1 is moderately bent as the reflected image a2 by the third reflection MR as the image plane correction mirror M, so that the images generated in the first and second Schwarzschild optical systems are The surface curvature is corrected and the final image a, is formed on a plane. In such a structure, in order to further improve the telecentricity of the image feed so that the chief ray forming the final image a is almost parallel to the optical axis, a third reflection mirror as an image plane correction mirror is used. It is effective to tilt the mirror R slightly.
上記の第1実施例は、最終像を縮小結像するために、第
1シュワルツシルド光学系を縮小系とし、1g2シュワ
ルツシルド型同心光学系を拡大系として組み合わせたが
、本発明においてはこのような組合せに限られるもので
はない。すなわち、シュワルツシルド型同心光学系の拡
大と縮小は適宜選択して組み合わされるべきものであり
、同心光学系としては凹面反射鏡と凸面反射鏡とからな
る等倍の所謂オフナー型を用いることも可能である。In the first embodiment described above, the first Schwarzschild optical system is used as a reduction system and the 1g2 Schwarzschild type concentric optical system is used as an enlargement system in order to reduce the final image. It is not limited to the following combinations. In other words, the magnification and reduction of the Schwarzschild type concentric optical system should be selected and combined as appropriate, and it is also possible to use the so-called Offner type concentric optical system with a same magnification consisting of a concave reflecting mirror and a convex reflecting mirror. It is.
第3図に示した第2実施例の構戒は、2つのシュワルツ
シルド型同心光学系を、共に縮小系として組合せたもの
である。すなわち、物体a。から光路に沿って、第1反
射鏡としての凸面反射鏡R,と同心中心C,を有する第
2反射面としての凹面鏡R,からなる第lシュワルツシ
ルド光学系Slにより、中間像a1が形成され、像面捕
正鏡Mでの反射を介して、第4反射鏡としての凸面反射
#IR1と同心中心C,をぎする第5反射面としての凹
面M R +からなる第2シュワルツシルド光学系S2
により最終像alが形成される。The configuration of the second embodiment shown in FIG. 3 is a combination of two Schwarzschild type concentric optical systems as a reduction system. That is, object a. Along the optical path, an intermediate image a1 is formed by the first Schwarzschild optical system Sl consisting of a convex reflecting mirror R as a first reflecting mirror and a concave mirror R as a second reflecting surface having a concentric center C. , a second Schwarzschild optical system consisting of a concave surface M R + as a fifth reflecting surface that intersects the convex reflection #IR1 as the fourth reflecting mirror and the concentric center C through reflection at the image plane capturing mirror M. S2
A final image al is formed.
また、第4図に示した第3実施例の構戊は、第1のンユ
ワルッシルド光学系SIを拡大系とし、第2のシュワル
ツシルド光学系S2を縮小系として組み合わせたもので
ある。すなわち、物体a0から光路に沿って、第1反射
鏡としての凹面反射鏡R1と同心中心C,を有する第2
反射面としての凸面鏡R,からなる第lシュヮルツシル
ド光学系Slにより、中間像alが形威され、像面補正
鏡Mでの反射を介して、第4反射鏡としての凸面反射M
RI と同心中心Ctを有する第5反射面としての凹面
鏡R,からなる第2シュワルツシルド光学系S,により
最終像a,が形成される。The structure of the third embodiment shown in FIG. 4 is a combination of the first Schwarzschild optical system SI as an enlargement system and the second Schwarzschild optical system S2 as a reduction system. That is, along the optical path from the object a0, there is a second mirror having a concentric center C, with the concave reflecting mirror R1 as the first reflecting mirror.
An intermediate image al is formed by the first Schwarzschild optical system Sl consisting of a convex mirror R as a reflecting surface, and through reflection by an image plane correction mirror M, a convex reflection M as a fourth reflecting mirror is formed.
A final image a is formed by a second Schwarzschild optical system S consisting of a concave mirror R as a fifth reflecting surface having a concentric center Ct with RI.
これらの実施例においても、像面補正用反射MMの曲率
半径は上記(2)式によって与えられ、平面物体a0の
平坦な縮小像a,が鮮明に形或される。In these embodiments as well, the radius of curvature of the reflection MM for image plane correction is given by the above equation (2), and a flat reduced image a of the planar object a0 is clearly formed.
第5図に示した第4実施例は、物体側に縮小系のンユワ
ルツシルド光学系S1を用い、像側に等倍の同心系S,
を用いている。等倍系はシュワルツシルド型ではなく、
凹面鏡と凸面鏡との組合せからなり凸面鏡での反射の前
後で1回づづ凹面鏡で反射させる構戒の所謂オフナー型
を用いている。具体的には、物体a,から光路に沿って
、第1反射鏡としての凸面反射鏡Rと同心中心C1を有
する第2反射面としての凹面鏡Rlからなる第1同心光
学系としてのシュワルツシルド光学系SIにより、中間
像a1が形成され、像而補正鏡Mでの反射を介した後、
同心中心C,を有する第4反射面としての凹面反射鏡R
.と第5反射面としての凸面反射itRSからなるオフ
ナー型第2同心光学系S2によって、最終像a,が形威
される。ここで、第2同心光学系S,が等倍のオフナー
光学系であるため、最終像alが光軸外に位置すること
になるが、中間像はal湾曲しているのに対し、最終像
a,ほこの平面内に位置する平坦な像として形成される
ことは前述の実施例と同様である。The fourth embodiment shown in FIG. 5 uses a reduction system Nyuwarzschild optical system S1 on the object side, and a same-magnification concentric system S on the image side.
is used. The same size system is not a Schwarzschild type,
The so-called Offner type is used, which consists of a combination of a concave mirror and a convex mirror, and reflects the light once before and after the concave mirror. Specifically, along the optical path from object a, Schwarzschild optics as a first concentric optical system consisting of a convex reflecting mirror R as a first reflecting mirror and a concave mirror Rl as a second reflecting surface having a concentric center C1. An intermediate image a1 is formed by the system SI, and after being reflected by the image correction mirror M,
Concave reflecting mirror R as a fourth reflecting surface having a concentric center C,
.. A final image a is formed by the Offner type second concentric optical system S2 consisting of the convex reflection itRS and the fifth reflection surface itRS. Here, since the second concentric optical system S, is a same-magnification Offner optical system, the final image al is located off the optical axis, but while the intermediate image is curved, the final image As in the previous embodiment, the image is formed as a flat image located within the plane of a.
そして、この第4実施例においては、最終像a,に達す
る主光線を像面に対して垂直になる状態を維持するため
に、物体面a0を光軸に対して傾けておくことが有効で
ある。In this fourth embodiment, it is effective to tilt the object plane a0 with respect to the optical axis in order to maintain the principal ray reaching the final image a perpendicular to the image plane. be.
以上のとおり、複数の同心光学系を組み合わせて所望の
縮小倍率の投影光学装置が構成されるが、第1図に示し
た第1実施例の構成が、最も大きな領域にわたって平坦
な像を得ることができ、露光面積を大きくするのに有利
である。As described above, a projection optical device with a desired reduction magnification is constructed by combining a plurality of concentric optical systems, but the configuration of the first embodiment shown in FIG. 1 can obtain a flat image over the largest area. This is advantageous in increasing the exposed area.
第1図に示した2つのシュワルツンルド型同心光学系を
組み合わせた具体的横威例を第6図に示しす。FIG. 6 shows a concrete example of the combination of the two Schwarzund type concentric optical systems shown in FIG. 1.
第6図において、MSは前記物体a0に対応するマスク
(レチクル)等の披投影物体であり、WFは前記最終像
a,が転写されるウエハ面等の露光面である。M(Rs
)が像面湾曲補正面でり、その他第1図と同一機能の部
材には同一の記号を付した。第6図に示した構成では、
像面補正用の第3反射面と第4反射面との間の光路中に
、絞りSを配置している。また、平面鏡M0は最終像が
第1反射鏡R1と機械的に接触するのを避けるために設
けられている。In FIG. 6, MS is a projection object such as a mask (reticle) corresponding to the object a0, and WF is an exposure surface such as a wafer surface onto which the final image a is transferred. M (Rs.
) is the field curvature correction surface, and other members having the same functions as those in FIG. 1 are given the same symbols. In the configuration shown in Figure 6,
A diaphragm S is arranged in the optical path between the third and fourth reflecting surfaces for image plane correction. Further, the plane mirror M0 is provided to prevent the final image from mechanically contacting the first reflecting mirror R1.
第6図に示したように、光線が左から右に進方向を正と
し、左側に凸面を向けた反射面の曲率半径rを正、左側
に凹面を向けた反射面の曲率半径rを負とし、面間隔d
は光線の進行方向が正である媒質中は正とし、光線の進
行方向が負である媒質中では負とするものとし、その諸
元の値を以下の表に示す。尚、表中、d0は第6図に示
した如く、物体面から第1反射面の頂点までの距離であ
り、d6は第5反射面の頂点から最終像面までの距離で
ある。As shown in Figure 6, the direction in which the light ray travels from left to right is positive, the radius of curvature r of the reflecting surface with the convex surface facing the left is positive, and the radius of curvature r of the reflecting surface with the concave surface facing the left is negative. and the surface spacing d
is assumed to be positive in a medium in which the direction of propagation of light rays is positive, and negative in a medium in which the direction of propagation of light rays is negative, and the values of its specifications are shown in the table below. In the table, d0 is the distance from the object plane to the apex of the first reflecting surface, and d6 is the distance from the apex of the fifth reflecting surface to the final image plane, as shown in FIG.
倍率−1/3 NA=0.02
像高 Y = 201am
j,= 595.27679
r2=2163.40741
r= 一−300. 90422 ( M :像面補正
用反射面)r+= 4347.90820
rs= 426.12529
d.= 2059.02029
d =−1575.26720
dz= 2634.39929
ds= −222.74000
d4=−4459.64835
ds= 3945.38501
d*= −238.79334
像面サイズφ= 20+nn+
上記の具体的数値例において、物体面は平面であり、像
而も平面となっており、第1同心光学系SIによる像筒
の曲率半径R1.は410.625 、また第2同心光
学系S,についての物体面の曲率半径R。.は−236
.213である。従って、像面湾曲補正用反射面として
の第3反射面の曲率半径r3の値は、上記各曲率半径の
はぼ中間の値となっていることがわかる。Magnification - 1/3 NA = 0.02 Image height Y = 201am j, = 595.27679 r2 = 2163.40741 r = -300. 90422 (M: reflective surface for image plane correction) r+= 4347.90820 rs= 426.12529 d. = 2059.02029 d = -1575.26720 dz = 2634.39929 ds = -222.74000 d4 = -4459.64835 ds = 3945.38501 d* = -238.79334 Image plane size φ = 20 + nn + Specific numbers above In the example, the object surface is a plane, the image plane is also a plane, and the radius of curvature R1 of the image tube by the first concentric optical system SI. is 410.625, and the radius of curvature R of the object surface for the second concentric optical system S. .. is -236
.. It is 213. Therefore, it can be seen that the value of the radius of curvature r3 of the third reflective surface serving as the reflective surface for correcting curvature of field is approximately an intermediate value among the radii of curvature described above.
また、ペッツバール和に関連した上記(4)式の条件に
ついてみれば、(3)式で求まる像面補正用反射面の曲
率半径rwの値は、
r M =299. 90502
となる。そして、本実施例においては、波長λ=100
人 、最終像高Y = 20mm,最終結像光束の開口
数NA= 0. 02であるから、上記(4)式の右辺
の値は、次のとおりである。Furthermore, regarding the condition of the above equation (4) related to the Petzval sum, the value of the radius of curvature rw of the reflecting surface for image plane correction determined by the equation (3) is r M =299. It becomes 90502. In this example, the wavelength λ=100
Person, final image height Y = 20 mm, numerical aperture of final imaging light beam NA = 0. 02, the value on the right side of the above equation (4) is as follows.
λ
rv’ =5.6mm
Y ” (NA)”
これに対し上記のとおり像面補正用反射面(第3反射面
)の曲率半径r.は−300. 90422であり、左
辺の値は、
r−rw =0.9992
となるから、上記条件(4)が満たされていることが分
かる。λ rv' = 5.6 mm Y ''(NA)'' On the other hand, as described above, the radius of curvature r of the image plane correction reflecting surface (third reflecting surface). is -300. 90422, and the value on the left side is r-rw =0.9992, so it can be seen that the above condition (4) is satisfied.
上記の諸元の構成における最終像についての非点収差、
歪曲収差及び横収差を第7図に示した。Astigmatism for the final image in the configuration of the above specifications,
Distortion aberration and lateral aberration are shown in FIG.
第7図から分かるように、像面は像高20mmにわたっ
てほぼ良好に補正されており、歪曲収差も横収差も極め
て良好に浦正されており、3分の1の縮小倍率にて優れ
て結像性能であることが明らかである。As can be seen from Fig. 7, the image plane is almost well corrected over an image height of 20 mm, distortion and lateral aberrations are very well corrected, and excellent resolution is achieved even at a one-third reduction magnification. It is clear that the image quality is improved.
以上の様に本発明よれば、球面のみからなる簡単な構成
でありながら、広い領域にわたって平坦で高解像の像を
得ることができ、縮小投影が可能な反射結像光学装置が
達戊され、屈折系を用いることのできないxvin光装
置として極めて有用なものである。また、補正用球面反
射鏡又は物体面を傾けることにより像側のテレセントリ
ック性を向上させることが可能であり、露光装置として
より適したものとすることができる。As described above, according to the present invention, a reflective imaging optical device has been achieved which is capable of obtaining a flat, high-resolution image over a wide area and capable of reduction projection even though it has a simple configuration consisting of only a spherical surface. This is extremely useful as an xvin optical device that cannot use a refraction system. Furthermore, by tilting the correction spherical reflecting mirror or the object surface, it is possible to improve the telecentricity on the image side, making it more suitable as an exposure apparatus.
第1図は本発明による第l実施例の構或図、第2図は像
面湾曲補正用反射鏡の機能を説明するための図、第3図
は第2実施例の構成図、第4図は第3実施例の構成図、
第5図は第4実施例の構成図、第6図は第1図に示した
第1実施例の具体的数値構戊例を示す図、第7図はその
諸収差図、第8図は公知のシュワルツシルド光学系を例
示する図である。
〔主用部分の符号の説明〕
S1・・・第1同心光学系
S,・・・第2同心光学系
R ,, R *, R s. R +, R i・・
・球面反射鏡M ・・・像面補正用反射鏡FIG. 1 is a diagram showing the configuration of the first embodiment according to the present invention, FIG. 2 is a diagram for explaining the function of a reflecting mirror for correcting field curvature, FIG. The figure is a configuration diagram of the third embodiment,
FIG. 5 is a block diagram of the fourth embodiment, FIG. 6 is a diagram showing a specific numerical configuration example of the first embodiment shown in FIG. 1, FIG. 7 is a diagram of various aberrations, and FIG. 1 is a diagram illustrating a known Schwarzschild optical system. [Explanation of symbols of main parts] S1...first concentric optical system S,...second concentric optical system R,, R*, R s. R +, R i...
・Spherical reflector M...Reflector for image plane correction
Claims (1)
光学系を有する光学装置において、前記複数の球面反射
光学系により形成される中間像の少なくとも1ヶ所の中
間像位置近傍に球面反射鏡を配置したことを特徴とする
反射結像光学装置。 2)前記球面反射鏡は凹面反射面であり、その曲率半径
は、前記複数の球面光学系の合成系による像面湾曲に対
応する値であることを特徴とする請求項1記載の反射結
像光学装置。[Scope of Claims] 1) In an optical device having a plurality of reflective spherical optical systems including at least one set of concentric optical systems, at least one intermediate image position of intermediate images formed by the plurality of spherical reflective optical systems. A reflective imaging optical device characterized by having a spherical reflective mirror placed nearby. 2) The reflective imaging according to claim 1, wherein the spherical reflecting mirror is a concave reflecting surface, and the radius of curvature thereof is a value corresponding to a field curvature due to a composite system of the plurality of spherical optical systems. optical equipment.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1239551A JPH03101708A (en) | 1989-09-14 | 1989-09-14 | Reflected image forming optical device |
US07/578,787 US5071240A (en) | 1989-09-14 | 1990-09-07 | Reflecting optical imaging apparatus using spherical reflectors and producing an intermediate image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1239551A JPH03101708A (en) | 1989-09-14 | 1989-09-14 | Reflected image forming optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03101708A true JPH03101708A (en) | 1991-04-26 |
Family
ID=17046491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1239551A Pending JPH03101708A (en) | 1989-09-14 | 1989-09-14 | Reflected image forming optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03101708A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0850246A (en) * | 1994-05-23 | 1996-02-20 | Hughes Aircraft Co | Three-mirror anastigmat device deviated from axis having correcting mirror |
EP1901106A2 (en) * | 2006-09-15 | 2008-03-19 | Ricoh Company, Ltd. | Optical projection system having two sub-systems and forming an intermediate image there between |
-
1989
- 1989-09-14 JP JP1239551A patent/JPH03101708A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0850246A (en) * | 1994-05-23 | 1996-02-20 | Hughes Aircraft Co | Three-mirror anastigmat device deviated from axis having correcting mirror |
EP1901106A2 (en) * | 2006-09-15 | 2008-03-19 | Ricoh Company, Ltd. | Optical projection system having two sub-systems and forming an intermediate image there between |
EP1901106A3 (en) * | 2006-09-15 | 2008-04-16 | Ricoh Company, Ltd. | Optical projection system having two sub-systems and forming an intermediate image there between |
US7946717B2 (en) | 2006-09-15 | 2011-05-24 | Ricoh Company, Ltd. | Projection optical system and image projecting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5071240A (en) | Reflecting optical imaging apparatus using spherical reflectors and producing an intermediate image | |
USRE38421E1 (en) | Exposure apparatus having catadioptric projection optical system | |
KR100991584B1 (en) | Catadioptric projection objective | |
US7508580B2 (en) | 8-mirror microlithography projection objective | |
JP4918542B2 (en) | EUV projection optical system with six reflectors | |
US6600552B2 (en) | Microlithography reduction objective and projection exposure apparatus | |
JP2001185480A (en) | Optical projection system and projection exposure device equipped with the system | |
JP2000031041A (en) | Reduced objective | |
JPH0525170B2 (en) | ||
JPH04234722A (en) | Compensation type optical system | |
JPH03139822A (en) | Device for semiconductor lithography | |
US20090097106A1 (en) | Reflective-Type Projection Optical System and Exposure Apparatus Equipped with the Reflective-Type Projection Optical System | |
JPH0533368B2 (en) | ||
EP0604093B1 (en) | Catadioptric reduction projection optical system | |
JP2000098228A (en) | Projection exposing device, exposing method and reflection reduction projection optical system | |
JP2002107630A (en) | Micro-lithographic projection optical system using six reflection mirrors | |
JP2005315918A (en) | Reflection type projection optical system and exposure device having the reflection type projection optical system | |
KR20110059721A (en) | Microlithography projection exposure apparatus having at least two operating states | |
KR20000076656A (en) | Microlithography reduction objective and projection exposure apparatus | |
JPH03101708A (en) | Reflected image forming optical device | |
JP2005172988A (en) | Projection optical system and exposure device equipped with the projection optical system | |
EP0527043B1 (en) | Catadioptric reduction projection optical system | |
EP0581585A1 (en) | Catadioptric reduction projection optical system | |
JPH0525088B2 (en) | ||
JP2565149B2 (en) | Circuit manufacturing method and exposure apparatus |