JPH03101614A - Production of liposome - Google Patents

Production of liposome

Info

Publication number
JPH03101614A
JPH03101614A JP23927389A JP23927389A JPH03101614A JP H03101614 A JPH03101614 A JP H03101614A JP 23927389 A JP23927389 A JP 23927389A JP 23927389 A JP23927389 A JP 23927389A JP H03101614 A JPH03101614 A JP H03101614A
Authority
JP
Japan
Prior art keywords
liposome
temperature
dispersion
membrane
membrane component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23927389A
Other languages
Japanese (ja)
Other versions
JPH0774146B2 (en
Inventor
Riyouichi Nemori
良一 根守
Jiro Yamaguchi
山口 治朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP23927389A priority Critical patent/JPH0774146B2/en
Publication of JPH03101614A publication Critical patent/JPH03101614A/en
Publication of JPH0774146B2 publication Critical patent/JPH0774146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To easily obtain a liposome useful for basic and application researches as a biomembrane model or a drug carrier for drug delivery, without using an organic solvent and a surfactant, by dispersing a liposome-membrane component substance in an aqueous solution and heating the mixture at a specific temperature. CONSTITUTION:A liposome dispersion is produced by dispersing 1 pt.wt. of a liposome-membrane component substance (e.g. phosphatidyl-choline in 3-100 pts.wt. of water, physiological saline water, buffer solution or an aqueous solution of sugar using an agitator. The dispersion is heated at or above the pretransition temperature(Tp) and below the main transition temperature(Tm) and held at the temperature for 5-20min. The treated dispersion is finally heated at >=Tm to obtain the objective liposome. The particle size can be uniformized by carrying out the above heat-treatment under irradiation with ultrasonic wave and the incorporation into the liposome membrane can be promoted by the use of 1 membrane component substance having high melting point in combination with the above substance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はリボソームの製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing ribosomes.

リボソームはリン脂質等の両親媒性物質を主戚分とする
二分子膜から或る閉鎖小胞であり、生体膜モデルあるい
はドラッグデリバリー用薬物運搬体として基礎および応
用研究に用いられている.(発明の背景) リボソームの調製法は既に数多く知られており、例えば
“Methods of Biochemical A
nalysis” vol.33 (1988Lp.3
37などのレビューに記載されている.これらのリボソ
ーム調製法としてはその多くがクロロホルム、エーテル
、エタノール等の有R?8媒を膜成分物質の溶剤として
用いたり、あるいはTriton X−100やデオキ
シコール酸などの界面活性剤を可溶化剤として用いてい
る。
Ribosomes are closed vesicles with bilayer membranes composed mainly of amphiphilic substances such as phospholipids, and are used in basic and applied research as biological membrane models or drug carriers for drug delivery. (Background of the Invention) Many methods for preparing ribosomes are already known, such as “Methods of Biochemical A
“analysis” vol.33 (1988Lp.3
It is described in reviews such as 37. Most of these ribosome preparation methods involve chloroform, ether, ethanol, etc. 8 medium is used as a solvent for membrane component substances, or a surfactant such as Triton X-100 or deoxycholic acid is used as a solubilizing agent.

そのためそれらの薬品の残留の問題や、工業的生産に於
る工程の安全性、技術的困難さの問題がある. 有機溶媒や界面活性剤を用いずにリボソームを調製する
方法としては特開昭57−82310号及び同57−8
2311号に示される凍結乾燥法、特開昭60−793
3号に示される加温法、同60−7934号に示される
I械的練合法などが開発されている. どの方法も膜戒分物質(主としてリン脂質)と水性溶液
をTm以上で混合して水和させる方法に関するものであ
り、その永和速度を速めるために、加温法では温度を膜
成分物質わ}末の相転移温度(Tα)以上に上げて分散
し、又、機械的練合法では乳鉢等により脂質粒子を壊す
ことで水和を促進す−る工夫を行なっている.しかしな
がらこれらの方法は工業的製造として必ずしも満足しう
るものではない.即ち、加温法においてはリボソーム及
びそれに内包される化合物をTα以上に加温(例えばジ
パルミトイルホスファチジルコリン(DI’PC)の場
合には75゛C程度に迄加温)するため、内包化合物の
種類によっては熱により変化する場合がある.又、加温
式、機械的練合法ともにTc以上(或いはTα以上)の
高温での機械的操作を伴うため装置が操作上複雑となる
Therefore, there are problems with residual chemicals, process safety, and technical difficulties in industrial production. Methods for preparing ribosomes without using organic solvents or surfactants include JP-A-57-82310 and JP-A-57-8.
Freeze-drying method shown in No. 2311, JP-A-60-793
The heating method shown in No. 3 and the mechanical kneading method shown in No. 60-7934 have been developed. All methods involve hydration by mixing membrane constituent substances (mainly phospholipids) and an aqueous solution at a temperature above Tm; in the heating method, the temperature is adjusted to increase the temperature of the membrane constituent substances in order to accelerate the stagnation rate. In addition, in the mechanical kneading method, hydration is promoted by breaking the lipid particles using a mortar or the like in the mechanical kneading method. However, these methods are not necessarily satisfactory for industrial production. That is, in the heating method, the ribosome and the compound contained therein are heated to a temperature higher than Tα (e.g., to about 75°C in the case of dipalmitoylphosphatidylcholine (DI'PC)), so the type of the contained compound is heated. In some cases, it may change due to heat. Furthermore, both the heating method and the mechanical kneading method involve mechanical operation at a high temperature of Tc or higher (or Tα or higher), making the apparatus complicated to operate.

Tcの低い膜戊分物質を用いる場合はこれらの問題は回
避できるが、内包化合物の漏れ等、別の問題からTcの
高い膜成分物質を用いた場合も多い。
These problems can be avoided if a membrane component material with a low Tc is used, but membrane component materials with a high Tc are often used due to other problems such as leakage of encapsulated compounds.

(発明が解決しようとする課題) 本発明の目的は従って、有1a’fJ媒や界面活性剤を
用いずにリボソームを調製する方法、即ち、膜戒分物質
を水性溶液中に分散する方法をさらに改良し、できるだ
け低温で迅速、かつ操作の簡便な方法を開発することに
ある. (Li!題を達戒するための手段) 本発明者らは、前記目的にそって鋭意検討した結果、I
l2戒分物質粉末を水性溶液分散物とし、ますTρ以上
でかつTm未溝の温度に数分間以上保つことにより、分
散した粉末が水を吸って膨潤しその後Tm以上に加温す
るとすみやかにミエリン様構造を経てリボソームを形成
することを見出し、本発明を完或するに到った。
(Problems to be Solved by the Invention) Therefore, the object of the present invention is to provide a method for preparing ribosomes without using an 1a'fJ medium or a surfactant, that is, a method for dispersing a membrane-specific substance in an aqueous solution. The goal is to further improve the method and develop a method that is as low-temperature, quick, and easy to operate. (Means for Achieving the Li! Subject) As a result of intensive study in line with the above purpose, the inventors have found that I
By making an aqueous solution dispersion of l2 precept substance powder and keeping it at a temperature above Tρ and below Tm for several minutes or more, the dispersed powder absorbs water and swells, and then when heated above Tm, myelination occurs immediately. They have discovered that ribosomes are formed through a similar structure, and have completed the present invention.

脂質の粉末は通常1水和物程度の乾燥状態で市販されて
いるためその相転移温度(Tα)は高く、例えばL−α
−ジバル淀トイルホスファジルコリン(DPPC)の場
合は示差走査熱分析(DSC)で測定すると60〜70
゜C付近である。しかしDPPCが1分子当り10分子
以上の水(重量で約20%以上の水)で水和された状態
では主転移温度(Tm)が4FCまで低下する。そのた
め脂質粉末にあらかじめ20wL%以上の水を吸収させ
ておくことができれば、41゜Cを少し越える程度の志
度でリボソームが迅速に調製できる。本発明者らは脂質
粉末に水を吸収させる方法について検討した結果、高湿
度の空気中に放置して吸湿させる方法や、水中(<TP
)に脂質粉末を分散しておく方法では極めてゆっくりと
しか吸水は起こらず、脂質の水分散物をTp以上でかつ
Tm未溝の温度に加温して始めて速い吸水が起こるとと
もに粉末が膨潤し、数分程度で実用上十分な吸水が完了
することを見出した。かかる知見に基づいてなされたの
が本発明である。この十分吸水した分散物をTm以上に
加温するとすみやかにリボソームを形或できた。更に調
製したリボソーム分散液に超音波を照射することにより
粒子サイズは小さくなるとともに均一化した. 本発明において使用される膜戒分物質としてはホスファ
チジルコリン、ホスファチジルエタノールアミン、ホス
ファチジルセリン、ホスファチジルイノシトール、ホス
ファチジン酸などの天然及び合戒のリン脂質類およびこ
れらの混合物が代表的であり、水添レシチン等の加工し
た天然リン脂質も好ましく用いることができる。又、こ
れらに膜構造の安定化剤としてコルステロールやその誘
導体、ガングリオシド、アルキルアミン、脂肪酸、ジセ
チルホスフエートなどを加えても良い。
Lipid powder is usually commercially available in a dry state of monohydrate, so its phase transition temperature (Tα) is high; for example, L-α
- In the case of Dival Yodo Toylphosphazylcholine (DPPC), it is 60 to 70 when measured by differential scanning calorimetry (DSC).
It is around °C. However, when DPPC is hydrated with 10 or more molecules of water per molecule (approximately 20% or more water by weight), the main transition temperature (Tm) decreases to 4FC. Therefore, if the lipid powder can absorb 20wL% or more of water in advance, ribosomes can be rapidly prepared at temperatures slightly above 41°C. The present inventors investigated methods for making lipid powder absorb water, and found that there were two methods: leaving it in high-humidity air to absorb moisture, and water (<TP).
), water absorption occurs only very slowly, and rapid water absorption occurs only when the aqueous lipid dispersion is heated to a temperature above Tp and below Tm, and the powder swells. It was discovered that practically sufficient water absorption can be completed in about a few minutes. The present invention has been made based on this knowledge. When this sufficiently water-absorbed dispersion was heated above Tm, ribosomes could be formed immediately. Furthermore, by irradiating the prepared ribosome dispersion with ultrasound, the particle size became smaller and more uniform. Typical membrane-binding substances used in the present invention include natural and synthetic phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid, and mixtures thereof, hydrogenated lecithin, etc. Processed natural phospholipids can also be preferably used. Moreover, cholesterol, derivatives thereof, gangliosides, alkylamines, fatty acids, dicetyl phosphate, etc. may be added to these as stabilizers for the membrane structure.

股戒分を分散させる水性溶液としては、水、生理食塩水
、緩衝液、糖類の水溶液およびこれらの混合物が好まし
く用いられる. 膜成分物質と水性溶液との比率は、膜戒分物質1重量部
に対して水性溶液3〜100重量部程度が適当である. 本発明のリボソームに内包させる化合物としては特に制
限は無いが、グルコース、デキストラン等の糖類、アミ
ノ酸、ベブチド、蛋白質類、DNA..RNAなとの核
酸類、.ビタミン類などの他、薬物としてペニシリンG
に代表される抗生物質、メトトレキセートに代表される
制癌剤などを用いることができ、一般にはこれらを水性
溶液として用いる。
As the aqueous solution for dispersing the crocodile, water, physiological saline, a buffer solution, an aqueous solution of saccharide, and a mixture thereof are preferably used. The appropriate ratio of the membrane component material to the aqueous solution is about 3 to 100 parts by weight of the aqueous solution to 1 part by weight of the membrane component material. Compounds to be encapsulated in the ribosomes of the present invention are not particularly limited, but include sugars such as glucose and dextran, amino acids, bebutides, proteins, DNA, etc. .. RNA and other nucleic acids. In addition to vitamins, penicillin G is used as a drug.
Antibiotics such as these, anticancer drugs such as methotrexate, etc. can be used, and these are generally used in the form of an aqueous solution.

次に本発明に従ってリボソームを調製する手順について
詳しく述べる. 膜成分物質の永和状態におけるTpおよびTmが文献等
で既知の場合はその値を用いることができるが、未知の
場合は実験により求めることができる.一般的には示差
走査熱分析(DSC)法が便利である,DSC測定用試
料の作製法としては、膜威分物質粉末を水に分散し、そ
のまま溶液用セルを用いて測定するのが良い. 水添レシチンなど膜威分物質の種類によってはTpが明
瞭に観測されない場合もあるがその場合はTm−5゜C
をTpとして扱う.又、膜威分物質が何種類かの混合物
である場合は主戒分の相転移温度に合わせることが望ま
しい. 次に、リボソームに内包しようとする化合物を含有する
水性溶媒中に膜威分物質の粉末を加え、ホモジナイザー
、ホモごキサー、プロペラミキサー等の攪拌機を用いて
分散する。この時の溶液温度は通常室温が便利で良いが
、例えばジパルミトイルホスファチジルコリン(DMP
C)の様にTmが低い(23℃)脂質を用いる場合、そ
の温度を越えない様に注意して行なう. 続いて、分散液−t−Tp以上Tm以下に加温し、その
温度で保持する.保持時間は1分以上60分以下でよい
が通常5分から20分が好ましく用いられる.この際D
MPCの様にTpSTmが低く、分散時の温度がTp以
上である場合でも同様に処理する. 次に、この分散液をTm以上に加温するとリボソームが
得られるが、通常はTmより5〜20℃高い温度で3分
間から60分間、より好ましくは10分間から30分間
加温する.この際更に超音波照射を併用すると粒子サイ
ズの均一化などの効果があり、又、融点の高い膜威分物
質を併用する場合にリボソーム膜への取り込みを促進す
るメリットもあるため好ましく用.いる事ができる.以
上述べた操作によってリボソームを得ることができるが
、粒子サイズを更に均一にするためにはミクロフィルタ
ー、例えばNuclepore@による加圧ロ過を用い
ることも可能である. このようにして得たリボソームはこのまま使用しても良
いが、遠心分離、ゲルロ遇、透析等の手段によりリボソ
ームに内包されなかった化合物を分離・除去して使用し
ても良い. (発明の効果) 既知のリボソーム調製法に比べ、本発明の方法が優れて
いるところは次の通りである.1)有機溶媒、界面活性
剤を使用しないため、その残留による性能上の悪影響が
無く、又、工程の安全上も問題がない. 2)最高操作温度がTmの少し上工程と低く、また高温
での撹拌の不要であるため安全作業上問題が少ない. 又、特殊な設備も必要とせず操作も簡便であるためスケ
ールアンプにも容易に対応できる.3)操作温度を既知
の加温法ほど高くする必要がないため内包させる化合物
の熱による変化の危険が少ない。
Next, the procedure for preparing ribosomes according to the present invention will be described in detail. If Tp and Tm in the permanent state of the membrane component substance are known from literature, those values can be used, but if unknown, they can be determined by experiment. Differential scanning calorimetry (DSC) is generally convenient. A good way to prepare a sample for DSC measurement is to disperse membrane substance powder in water and directly measure it using a solution cell. .. Depending on the type of membrane-enhancing substance such as hydrogenated lecithin, Tp may not be clearly observed, but in that case Tm-5°C
is treated as Tp. In addition, if the membrane material is a mixture of several types, it is desirable to match the phase transition temperature of the main material. Next, powder of a membrane-enhancing substance is added to an aqueous solvent containing a compound to be encapsulated in ribosomes, and dispersed using a stirrer such as a homogenizer, a homomixer, or a propeller mixer. The solution temperature at this time is usually room temperature, which is convenient, but for example, dipalmitoylphosphatidylcholine (DMP)
When using a lipid with a low Tm (23°C) as in C), be careful not to exceed that temperature. Subsequently, the dispersion liquid is heated to -t-Tp or more and Tm or less, and maintained at that temperature. The holding time may be between 1 minute and 60 minutes, but 5 minutes to 20 minutes is usually preferred. At this time D
Even when TpSTm is low and the temperature at the time of dispersion is Tp or higher, such as MPC, the same process is applied. Next, ribosomes are obtained by heating this dispersion to a temperature higher than the Tm, but it is usually heated at a temperature 5 to 20°C higher than the Tm for 3 to 60 minutes, more preferably 10 to 30 minutes. At this time, it is preferable to use ultrasonic irradiation in combination, as this has the effect of uniformizing the particle size, and when a membrane-enhancing substance with a high melting point is used in combination, it also has the advantage of promoting uptake into the ribosomal membrane. You can be there. Ribosomes can be obtained by the operations described above, but in order to make the particle size more uniform, it is also possible to use pressure filtration using a microfilter, such as Nuclepore@. The ribosomes obtained in this way may be used as they are, or they may be used after separating and removing compounds that are not encapsulated in the ribosomes by means such as centrifugation, gel gelation, or dialysis. (Effects of the Invention) The advantages of the method of the present invention compared to known ribosome preparation methods are as follows. 1) Since no organic solvents or surfactants are used, there is no adverse effect on performance due to residual organic solvents, and there is no problem in terms of process safety. 2) The maximum operating temperature is low, just above Tm, and there is no need for stirring at high temperatures, so there are few problems in terms of safety. In addition, it does not require special equipment and is easy to operate, so it can easily be used with scale amplifiers. 3) Since the operating temperature does not need to be as high as in known heating methods, there is less risk of changes in the encapsulated compound due to heat.

(実施例) 次に実施例をあげて本発明を更に#’pmに説明するが
、本発明はこれらに限定されるものではない.尖施斑上 市販のし一α−ジパルミトイルホスファチジルコリン(
DPPC)を用いモデル化合物としてカルボキシフルオ
レセイン(CF9を内包するりボソームを作製した。D
PPCは’rpが35゜C、Tmが41’Cであること
が既に知られている.100mMのCFと50mMのN
aCj!を含む6 m M  Trlsバッフy 一(
pH7.0)30ydにL−α−DPPC扮末0.9g
を加え室温下でホモジナイザーにより3分間攪拌し、粉
末を細かく分散した。次に恒温水槽を用いてDPPCの
Tp以上に相当する38℃に10分間加温し、その後D
PPCのTm以上50℃にlO分間加温、最後に50゜
Cで浴型超音波照射装rL(本田電子製W−220R型
)により約5分間超音波照射して室温に戻した。
(Examples) Next, the present invention will be further explained with reference to Examples, but the present invention is not limited to these. Commercially available α-dipalmitoyl phosphatidylcholine (
A bosome containing carboxyfluorescein (CF9) as a model compound was prepared using DPPC).
It is already known that PPC has a 'rp of 35°C and a Tm of 41'C. 100mM CF and 50mM N
aCj! 6 m M Trls buffer containing y one (
pH 7.0) 0.9g of L-α-DPPC powder in 30yd
was added and stirred for 3 minutes using a homogenizer at room temperature to finely disperse the powder. Next, use a constant temperature water bath to heat the temperature to 38°C, which corresponds to the Tp of DPPC or higher, for 10 minutes, and then
It was heated to 50° C. for 10 minutes above the Tm of PPC, and finally it was irradiated with ultrasonic waves at 50° C. for about 5 minutes using a bath-type ultrasonic irradiator rL (Model W-220R manufactured by Honda Electronics Co., Ltd.) and returned to room temperature.

得られたリボソーム分散液のリボソーム外液を、遠心分
離により150mM  NaClを含む6mMTriS
バッフ1−に交換し、リボソームに内包されなかったC
Fを分離・除去した. 内包されたCFIは、リボソーム分散液に界面活性剤(
デオキシコール酸)を加えリボソームを破壊して均一溶
液とした後、蛍光光度計(492nm励起、517nm
測定)を用いて定量した所、内包効率7.5%であった
。また光散乱(光子相関分光法)により求めた粒径は約
1μmであり、位相差光学顕微鏡観察では均一な粒状が
認められた. 比較斑土 市販のDPPC粉末をそのままDSCにより測定した所
、粉末の相転移温度(Tα)は69゜Cであった. 100mMのCFと50mMのNaClを含む6mM 
 Trisバッフy   (pH7.0)30dを75
゛Cに加温し、そこにDPPC粉末0.9gを加えて7
5゜Cに保ったままホモジナイザーにより3分間攪拌し
た。
The extraribosomal liquid of the obtained ribosome dispersion was centrifuged into 6mM TriS containing 150mM NaCl.
Changed to buffer 1- and removed C that was not encapsulated in ribosomes.
F was separated and removed. The encapsulated CFI is added to the ribosome dispersion using a surfactant (
Deoxycholic acid) was added to destroy the ribosomes to make a homogeneous solution, and then the fluorescence was measured using a fluorometer (492 nm excitation, 517 nm excitation).
The encapsulation efficiency was 7.5% when quantified using the following method. The particle size determined by light scattering (photon correlation spectroscopy) was approximately 1 μm, and uniform particle shape was observed by phase contrast optical microscopy. When a commercially available DPPC powder was directly measured by DSC, the phase transition temperature (Tα) of the powder was 69°C. 6mM containing 100mM CF and 50mM NaCl
Tris buffer y (pH 7.0) 30d to 75
Heat to ゛C, add 0.9g of DPPC powder to it and heat to 7
The mixture was stirred for 3 minutes using a homogenizer while maintaining the temperature at 5°C.

得られたリボソーム分散液を遠心分離により洗浄し、実
施例lと同様に内包されたCF量を定量した所、内包効
率は6.6%、平均粒径は2.5〜3μmで、光学顕微
鏡によると粒径分布はややブロードであった. 止較旌L 実施例lと同し処方で行ない、DPPCを室温で内包液
に分散後、38゜Cの加温を行なわずにTm以上の50
℃にて10分間加温した.試料の一部をとって位相差光
学顕微鏡で観察すると数10μ程度の粗大な粒子が多数
残存しリボソームは完全にはできていないと考えられた
.さらに50℃で5時間加温し、その後50℃で10分
間の超音波照射を行なった所、光学顕微鏡で5μmφ以
上の粗大粒子は無くなりほぼリボソーム化したものと判
断された. 実施例lと同様に遠心分離を行いCFの内包効率を測定
した所3。2%であった。
The obtained ribosome dispersion was washed by centrifugation, and the amount of encapsulated CF was quantified in the same manner as in Example 1. The encapsulation efficiency was 6.6%, and the average particle size was 2.5 to 3 μm. According to the results, the particle size distribution was somewhat broad. Temperature comparison test L The same formulation as in Example 1 was used, and after dispersing DPPC in the encapsulated liquid at room temperature, the temperature was increased to 50% above Tm without heating to 38°C.
It was heated at ℃ for 10 minutes. When a part of the sample was taken and observed under a phase contrast optical microscope, many coarse particles of several tens of microns remained, indicating that ribosomes were not completely formed. When the sample was further heated at 50°C for 5 hours and then subjected to ultrasonic irradiation at 50°C for 10 minutes, it was determined by optical microscopy that there were no coarse particles larger than 5 μm in diameter, and it was determined that the particles had almost become ribosomes. Centrifugation was carried out in the same manner as in Example 1, and the CF entrapment efficiency was measured and found to be 3.2%.

!JilL桝{ 膜成分物質としてL−α−ジミリストイルホスファチジ
ルコリン(DMPC)とL−α−ジミリストイルホスフ
ァチジルセリン(DMPS)を混合して用いた。
! { L-α-dimyristoyl phosphatidylcholine (DMPC) and L-α-dimyristoyl phosphatidylserine (DMPS) were used as a mixture as membrane components.

0.28Mグルコースを含む5mMリン酸バッファ−p
H7.4、30−にDMPC粉末0.8gとDMPS粉
末0.2gを加え室温(20”C)にてホモジナイザー
で3分間分散した.主戒分であるDMPCのTpはl4
゜Cであるので、この分散液を更に室温でIO分静置し
、その後Tm(23゜C)以上である30゜CでlO分
間加温した.30℃で5分間超音波照射した後、試料の
一部をとってセファロース4Bカラム(30cmφ×2
2cm)を用いてリボソームに内包されなたったグルコ
ースを除去し、150mM  NaCj!を含む5mM
リン酸バンファ一pH7.4に交換した.得られたリボ
ソームについて、先ず界面活性剤でリボソームを破壊後
、グルコースを比色定置した所、内包効率は7.1%で
あった. 位相差光学顕微鏡観察により均一な粒状のリボソームが
認められ光散乱法による平均粒径は0.8μであった. 手続補正書
5mM phosphate buffer containing 0.28M glucose-p
0.8 g of DMPC powder and 0.2 g of DMPS powder were added to H7.4, 30- and dispersed for 3 minutes with a homogenizer at room temperature (20"C). The Tp of DMPC, which is the main component, is 14
℃, this dispersion was further allowed to stand at room temperature for IO minutes, and then heated at 30℃, which is above Tm (23℃), for IO minutes. After 5 minutes of ultrasonic irradiation at 30°C, a portion of the sample was taken and placed on a Sepharose 4B column (30cmφ x 2
Glucose not encapsulated in ribosomes was removed using 150mM NaCj! 5mM containing
Replaced with phosphate buffer pH 7.4. The obtained ribosomes were first disrupted with a surfactant, and then glucose was colorimetrically fixed, and the entrapment efficiency was 7.1%. Uniform granular ribosomes were observed by phase-contrast optical microscopy, and the average particle size by light scattering was 0.8μ. Procedural amendment

Claims (1)

【特許請求の範囲】[Claims]  リボソーム膜成分物質を水性溶液に分散した後、一旦
膜成分物質の前転移温度(Tp)以上でかつ主転移温度
(Tm)未満の温度に加温し、次にTm以上に加温する
ことを特徴とするリボソームの製造方法。
After dispersing the ribosome membrane component substance in an aqueous solution, it is first heated to a temperature above the pre-transition temperature (Tp) and below the main transition temperature (Tm) of the membrane component substance, and then heated to above Tm. Characteristic method for producing ribosomes.
JP23927389A 1989-09-14 1989-09-14 Method for producing liposome Expired - Fee Related JPH0774146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23927389A JPH0774146B2 (en) 1989-09-14 1989-09-14 Method for producing liposome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23927389A JPH0774146B2 (en) 1989-09-14 1989-09-14 Method for producing liposome

Publications (2)

Publication Number Publication Date
JPH03101614A true JPH03101614A (en) 1991-04-26
JPH0774146B2 JPH0774146B2 (en) 1995-08-09

Family

ID=17042305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23927389A Expired - Fee Related JPH0774146B2 (en) 1989-09-14 1989-09-14 Method for producing liposome

Country Status (1)

Country Link
JP (1) JPH0774146B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2275443A1 (en) * 2005-11-30 2007-06-01 Italfarmaco, S.A. Liposome preparation method
US8591942B2 (en) 2009-09-23 2013-11-26 Indu JAVERI Methods for the preparation of liposomes comprising docetaxel
US10143652B2 (en) 2009-09-23 2018-12-04 Curirx Inc. Methods for the preparation of liposomes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2275443A1 (en) * 2005-11-30 2007-06-01 Italfarmaco, S.A. Liposome preparation method
WO2007063156A1 (en) * 2005-11-30 2007-06-07 Italfarmaco, S.A. Liposome preparation method
EP2380559A4 (en) * 2005-11-30 2011-10-26 Italfarmaco Sa Liposome preparation method
US8591942B2 (en) 2009-09-23 2013-11-26 Indu JAVERI Methods for the preparation of liposomes comprising docetaxel
US9402812B2 (en) 2009-09-23 2016-08-02 Indu JAVERI Methods for the preparation of liposomes
US9655846B2 (en) 2009-09-23 2017-05-23 Indu JAVERI Methods for the preparation of liposomes comprising drugs
US10143652B2 (en) 2009-09-23 2018-12-04 Curirx Inc. Methods for the preparation of liposomes

Also Published As

Publication number Publication date
JPH0774146B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
JP2756526B2 (en) Stabilization method of liposome suspension and liposome suspension
US5776486A (en) Methods and apparatus for making liposomes containing hydrophobic drugs
JP3742427B2 (en) Method and apparatus for producing liposomes
Laouini et al. Preparation, characterization and applications of liposomes: state of the art
JPS607934A (en) Preparation of liposome
Li et al. Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains
EP1838286B1 (en) Production of lipid-based nanoparticles using a dual asymmetrical centrifuge
MAGIN et al. Temperature-dependent drug release from large unilamellar liposomes
JPS61502452A (en) Extrusion technology for producing liposomes
JPS59134712A (en) Manufacture of multi-thin layer lipid cell
EP0792143B1 (en) Methods for making liposomes containing hydrophobic drugs
JP3681776B2 (en) Proliposome and method for producing liposome
JPH02167218A (en) Production of lipid powder for preparing liposome and production of liposome
Brandl et al. Preparation and characterization of semi-solid phospholipid dispersions and dilutions thereof
JP2011256199A (en) Method for manufacturing liposome and method for dissolving cholesterol
US6399094B1 (en) Unilamellar liposomal preparations with high active substance content
JPH03101614A (en) Production of liposome
JPS607933A (en) Preparation of liposome
US8951450B2 (en) Apparatus and method for production of liposomes
JP2766691B2 (en) Method and apparatus for modifying liposome surface
Yamashita et al. Homogeneous and reproducible liposome preparation relying on reassembly in microchannel laminar flow
JPS6012127A (en) Preparing method of liposome
JP2017190329A (en) Method for producing liposome and multi-lamellar liposome
JP2008063284A (en) Protein-including liposome, method for producing protein-including liposome, producing apparatus and liposome preparation
JP3831958B2 (en) Lipid mixed lipid and liposome dispersion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370