JPH0310144A - Corpuscle measuring apparatus - Google Patents

Corpuscle measuring apparatus

Info

Publication number
JPH0310144A
JPH0310144A JP1145831A JP14583189A JPH0310144A JP H0310144 A JPH0310144 A JP H0310144A JP 1145831 A JP1145831 A JP 1145831A JP 14583189 A JP14583189 A JP 14583189A JP H0310144 A JPH0310144 A JP H0310144A
Authority
JP
Japan
Prior art keywords
light
wafer
signal
interference fringes
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1145831A
Other languages
Japanese (ja)
Other versions
JP2711140B2 (en
Inventor
Minoru Akiyama
実 秋山
Masao Ecchu
昌夫 越中
Hideki Komori
秀樹 古森
Toshimasa Tomota
友田 利正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1145831A priority Critical patent/JP2711140B2/en
Publication of JPH0310144A publication Critical patent/JPH0310144A/en
Application granted granted Critical
Publication of JP2711140B2 publication Critical patent/JP2711140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the signal caused by a stray light component and to improve S/N by overlapping laser light beams having the same wavelength on a rotating wafer, and forming interference fringes. CONSTITUTION:The linearly polarized laser light emitted from a laser light source 1 is split into two luminuous fluxes through a beam splitter 2. Thereafter, the light beams are overlapped on a wafer 6 through mirrors 3 and 4 at an angle theta, and interference fringes having a constant interval are formed. At this time, scattered light whose intensity depends on the grain size is generated when a corpuscle 7 which is attached on the wafer 6 crosses the interference fringes at a velocity V. The electric signal corresponding to the intensity of the scattered light and the electric signal component corresponding to the stray light other than the light caused by the laser light and the scattered light caused by gas on the laser light path are overlapped, and the result is outputted from a photodetector 8. The signal is filtered through a filter 9 so as to pass the frequency component. Thus, the signal corresponding to the scattered light caused by the corpuscle 7 is measured in a processing part 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ウェハ上の微細粒子を検出する微細粒子測
定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fine particle measuring device for detecting fine particles on a wafer.

〔従来の技術〕[Conventional technology]

、第3図は特開昭62−297747号公報に示された
従来のウェハ表面の異物を検査する検査方法および装置
を示す説明図であり、図において、21は試料台、22
はウェハ、23は検査光、24は光源、25は対物レン
ズ、26は光−電気変換手段、27は散乱光又は反射光
、28は第1の信号線、29は第2の信号線、30は比
較部、31は判定部、32は遅延部である。
, FIG. 3 is an explanatory diagram showing a conventional inspection method and apparatus for inspecting foreign matter on a wafer surface disclosed in Japanese Patent Application Laid-Open No. 62-297747. In the figure, 21 is a sample stage, 22
is a wafer, 23 is an inspection light, 24 is a light source, 25 is an objective lens, 26 is a light-to-electric conversion means, 27 is scattered light or reflected light, 28 is a first signal line, 29 is a second signal line, 30 31 is a comparison section, 31 is a determination section, and 32 is a delay section.

次に動作について説明する。Next, the operation will be explained.

光源24より出射された光を試料台21によって回転す
るウェハ22上に照射することにより、ウェハの表面が
検査光23によって連続的に走査され、この時被検査物
の表面において、検査光23が照射される所定の領域か
ら発生される散乱光。
By irradiating the light emitted from the light source 24 onto the wafer 22 rotated by the sample stage 21, the surface of the wafer is continuously scanned by the inspection light 23, and at this time, the inspection light 23 is applied to the surface of the object to be inspected. Scattered light generated from a predetermined area to be illuminated.

又は反射光27は、対物レンズ25を介して光電気変換
手段26に入射される。そして第1の時刻T、に検出さ
れる散乱光または反射光27が発生される被検査物22
の部位に異物が存在すると、光−電気変換手段26にお
いては異物からの散乱光または反射光7と迷光とが混在
して信号S、とじて検出され、第2の時刻T2において
光−電気変換手段26に検出される散乱光又は反射光2
7の信号S2は迷光の信号のみとすると、それぞれ例え
ば第4図(a)及びCb)に示す波形となる。第4図中
41は異物からの信号、42は迷光信号である。
Alternatively, the reflected light 27 is incident on the photoelectric conversion means 26 via the objective lens 25. Then, the object to be inspected 22 generates the scattered light or reflected light 27 detected at the first time T.
If a foreign object is present in the region, the optical-to-electrical conversion means 26 detects a mixture of scattered light or reflected light 7 from the foreign object and stray light as a signal S, and the optical-to-electrical conversion is performed at the second time T2. Scattered light or reflected light 2 detected by means 26
If the signal S2 of No. 7 is only a signal of stray light, it will have the waveforms shown in FIGS. 4(a) and 4(Cb), for example. In FIG. 4, 41 is a signal from a foreign object, and 42 is a stray light signal.

比較部30において、Slと32との差信号S。In the comparator 30, a difference signal S between Sl and 32 is generated.

を算出し、迷光成分を相殺すると、第4図(C)に示さ
れるように散乱光又は反射光に含まれる異物からの信号
が相殺できなかった迷光成分と良好な対比で検出され、
異物からの信号が明瞭に検出される。
When the stray light component is canceled out, the signal from the foreign object contained in the scattered light or reflected light is detected in good contrast with the stray light component that could not be canceled out, as shown in FIG. 4(C).
Signals from foreign objects are clearly detected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のウェハ表面の異物を検出する微細粒子測定装置は
以上のように構成されていたので、その迷光強度相殺の
効果は迷光強度のうち時不変のもののみに有効であり、
異物が小さくなり、その散乱光強度が迷光強度の時間的
に変動する成分よりも弱くなったり、又迷光の多く存在
する環境下では検出が困難になるという問題点があった
Since the conventional microparticle measuring device for detecting foreign matter on the wafer surface is configured as described above, the effect of canceling the stray light intensity is effective only for the time-invariant part of the stray light intensity.
There are problems in that as the foreign matter becomes smaller, the intensity of its scattered light becomes weaker than the time-varying component of the stray light intensity, and it becomes difficult to detect it in an environment where there is a lot of stray light.

この発明は上記のような問題点を解消するためになされ
たもので、微細粒子が小さく、その散乱光が弱い場合や
迷光の多く存在する状況下、特にプロセス装置内でも測
定可能な微細粒子測定装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to measure fine particles even in process equipment, especially when the fine particles are small and their scattered light is weak, or when there is a lot of stray light. The purpose is to obtain equipment.

〔課題を解決するための手段] この発明に係る微細粒子測定装置は、同波長の2本のレ
ーザ光を回転するウェハで重畳させて一定間隔の干渉縞
を形成し、その干渉縞を横切るウェハ上微細粒子よりの
散乱光にある周波数成分を持たせ、光検出器の出力をそ
の周波数を通すようにフィルタリングするようにしたも
のである。
[Means for Solving the Problems] A fine particle measuring device according to the present invention superimposes two laser beams of the same wavelength on a rotating wafer to form interference fringes at regular intervals, and detects interference fringes on the wafer that cross the interference fringes. The scattered light from the fine particles has a certain frequency component, and the output of the photodetector is filtered to pass that frequency.

〔作用〕[Effect]

この発明においては、2本の同波長のレーザ光をウェハ
上で重畳して一定間隔の干渉縞を形成させ、その干渉縞
を横切るウェハ上微細粒子よりの散乱光に縞の間隔と微
細粒子の速さによって決定されるある周波数成分子を持
たせ、散乱光を検出する光検出器の出力うち少なくとも
fの周波数成分を通すようにフィルタリングした出力を
信号処理して微細粒子を検知する構成としたから、迷光
成分による信号を低減でき、SN比を向上できる。
In this invention, two laser beams of the same wavelength are superimposed on the wafer to form interference fringes at regular intervals, and the distance between the fringes and the difference between the fine particles are determined by the scattered light from the fine particles on the wafer that crosses the interference fringes. It has a certain frequency component determined by the speed, and the output of the photodetector for detecting scattered light is filtered to pass at least f frequency components, and the output is signal-processed to detect fine particles. Therefore, signals due to stray light components can be reduced and the S/N ratio can be improved.

〔実施例] 以下、この発明の一実施例を図について説明する。〔Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による微細粒子測定装置の構
成を示す図であり、図において、lはレーザ光源、2は
ビームスプリッタ、3,4はミラ、5はウェハを回転さ
せる回転台、6はウェハ、7はウェハ6の表面に付着し
た微細粒子、8は例えば光電子増倍管で構成される光検
出器、9は光検出器8からの出力される電気信号の中か
ら少なくともある周波数成分を通過させるフィルタ、1
0はフィルタ9の出力を信号処理して微細粒子を検知す
る処理部である。
FIG. 1 is a diagram showing the configuration of a fine particle measuring device according to an embodiment of the present invention. In the figure, l is a laser light source, 2 is a beam splitter, 3 and 4 are mirrors, and 5 is a rotary table for rotating a wafer. , 6 is a wafer, 7 is a fine particle attached to the surface of the wafer 6, 8 is a photodetector composed of, for example, a photomultiplier tube, and 9 is at least an electrical signal output from the photodetector 8. Filter that passes frequency components, 1
0 is a processing unit that performs signal processing on the output of the filter 9 to detect fine particles.

次に動作について説明する。レーザ光atより出射され
た波長λの直線偏光レーザ光はビームスプリッタ2によ
って2光束に分けられた後、ミラーによってウェハ上で
角度θで重畳させ、第2図(a)に示すように微細粒子
の移動方向15と平行ではない方向に一定間隔の干渉縞
13を形成する。
Next, the operation will be explained. A linearly polarized laser beam with a wavelength λ emitted from the laser beam at is split into two beams by a beam splitter 2, and then superimposed on the wafer by a mirror at an angle θ to form fine particles as shown in FIG. 2(a). Interference fringes 13 are formed at regular intervals in a direction that is not parallel to the moving direction 15 of the .

この時、干渉縞13と微細粒子の移動方向15との角度
をφとし、ウェハに付着している微細粒子7が速さ■で
干渉縞を横切った時には第2図(b)に示すように、 度が粒子の大きさに依存した散乱光が発生する。
At this time, the angle between the interference fringes 13 and the moving direction 15 of the fine particles is φ, and when the fine particles 7 attached to the wafer cross the interference fringes at a speed of ■, as shown in FIG. 2(b), , scattering light whose degree depends on the particle size is generated.

そして、この散乱光強度に対応した電気信号とレーザ光
に起因するもの以外の迷光(例えば外部から入射してく
る室内照明光など)とレーザ光線光路上の気体による散
乱光に対応した電気信号成分が重なって光検出器6より
出力される。この3つの信号成分のうち、微細粒子によ
らない第2.第3番目のものは周波数成分子を持たない
。従って、フィルタ9において周波数成分子を通すよう
にフィルタリングすれば、レーザ光に起因するもの以外
の迷光及びレーザ光線光路上の気体による散乱光に対応
した電子信号は除去され、微細粒子7による散乱光に対
応した信号のみが処理部10において測定される。こう
して本実施例では、従来例と比較して、より粒径の小さ
い微細粒子に対しても測定能力が高いものが得られる。
Then, an electrical signal corresponding to the intensity of this scattered light, stray light other than that caused by the laser beam (for example, indoor illumination light incident from the outside), and electrical signal components corresponding to the scattered light due to gas on the laser beam optical path. are outputted from the photodetector 6 in an overlapping manner. Of these three signal components, the second one is not caused by fine particles. The third one has no frequency components. Therefore, if filtering is performed in the filter 9 to pass the frequency components, electronic signals corresponding to stray light other than that caused by the laser beam and light scattered by gas on the laser beam optical path are removed, and light scattered by the fine particles 7 is removed. Only the signals corresponding to the above are measured in the processing section 10. In this way, in this example, compared to the conventional example, a device having a high measurement ability even for fine particles having a smaller particle size can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば微細粒子測定装置にお
いて、同一波長のレーザ光を回転するウェハ上で重畳さ
せ干渉縞を形成し、ウェハ上に付着した微細粒子による
散乱光に特定周波数成分子を持たせ、散乱光を受光して
電気信号に変換する光検出器の出力のうち少なくともf
の周波数成分を通すようにフィルタリングし、得られた
出力を信号処理する構成としたから、迷光成分による信
号を低減でき、SN比を向上させることができる効果が
ある。
As described above, in a microparticle measuring device according to the present invention, laser beams of the same wavelength are superimposed on a rotating wafer to form interference fringes, and a specific frequency component is added to the light scattered by the microparticles attached to the wafer. At least f of the output of a photodetector that receives scattered light and converts it into an electrical signal.
Since the filter is configured to pass the frequency component and the obtained output is subjected to signal processing, the signal due to the stray light component can be reduced, and the signal-to-noise ratio can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による微細粒子測定装置を示
す構成図、第2図(a)はウェハ上での干渉縞を示す図
、第2図(b)は出力信号の一例を示す図、第3図は従
来の検査装置の構成図、第4図は光−電気検出手段によ
って検出される散乱光又は反射光の光量の信号波形の一
例を示す図である。 1はレーザ光源、2はビームスプリッタ、3゜4はミラ
ー、5は回転台、6はウェハ、7は微細粒子、8は光検
出器、9はフィルタ、10は処理部、11はレーザ光束
、13は干渉縞、15は微細粒子進行方向である。
FIG. 1 is a configuration diagram showing a fine particle measuring device according to an embodiment of the present invention, FIG. 2(a) is a diagram showing interference fringes on a wafer, and FIG. 2(b) is an example of an output signal. 3 is a block diagram of a conventional inspection device, and FIG. 4 is a diagram showing an example of a signal waveform of the amount of scattered light or reflected light detected by the optical-electrical detection means. 1 is a laser light source, 2 is a beam splitter, 3.4 is a mirror, 5 is a rotating table, 6 is a wafer, 7 is a fine particle, 8 is a photodetector, 9 is a filter, 10 is a processing unit, 11 is a laser beam, 13 is an interference fringe, and 15 is a fine particle traveling direction.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体装置用基板の表面に付着した微細粒子を検
出する微細粒子測定装置において、 ウェハを移動させる台と、 同一波長のレーザ光をウェハ上にて重畳させ干渉じまを
形成させるレーザ光照射機構と、ウェハ上に付着した微
細粒子より散乱された光を受光して電気信号に変換する
光検出器と、この光検出器から出力される電気信号のう
ち、少なくとも特定の周波数信号を通過させるフィルタ
と、 上記フィルタの出力を信号処理する信号処理部とを備え
た微細粒子測定装置。
(1) A microparticle measuring device that detects microparticles attached to the surface of a semiconductor device substrate includes a table that moves the wafer, and a laser beam that superimposes laser beams of the same wavelength on the wafer to form interference fringes. An irradiation mechanism, a photodetector that receives light scattered by fine particles attached to the wafer and converts it into an electrical signal, and a device that passes at least a specific frequency signal among the electrical signals output from this photodetector. A fine particle measuring device comprising: a filter that performs signal processing; and a signal processing section that performs signal processing on the output of the filter.
JP1145831A 1989-06-08 1989-06-08 Fine particle measuring device Expired - Fee Related JP2711140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145831A JP2711140B2 (en) 1989-06-08 1989-06-08 Fine particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145831A JP2711140B2 (en) 1989-06-08 1989-06-08 Fine particle measuring device

Publications (2)

Publication Number Publication Date
JPH0310144A true JPH0310144A (en) 1991-01-17
JP2711140B2 JP2711140B2 (en) 1998-02-10

Family

ID=15394125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145831A Expired - Fee Related JP2711140B2 (en) 1989-06-08 1989-06-08 Fine particle measuring device

Country Status (1)

Country Link
JP (1) JP2711140B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249773A (en) * 1993-02-23 1994-09-09 Ebara Corp Measuring apparatus for particle on substrate surface
JP2004513364A (en) * 2000-11-13 2004-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Measurement of surface defects
CN109073566A (en) * 2016-03-31 2018-12-21 统半导体公司 For being used for the method and system of microelectronics or optical plate by laser doppler detection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249773A (en) * 1993-02-23 1994-09-09 Ebara Corp Measuring apparatus for particle on substrate surface
JP2004513364A (en) * 2000-11-13 2004-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Measurement of surface defects
CN109073566A (en) * 2016-03-31 2018-12-21 统半导体公司 For being used for the method and system of microelectronics or optical plate by laser doppler detection
JP2019518197A (en) * 2016-03-31 2019-06-27 ユニティ セミコンダクターUnity Semiconductor Method and system for inspecting a substrate for microelectronics or optics by laser Doppler effect

Also Published As

Publication number Publication date
JP2711140B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
US8305568B2 (en) Surface inspection method and surface inspection apparatus
US8416292B2 (en) Defect inspection apparatus and method
JP2006098154A (en) Defect inspection method and its device
JPH0650903A (en) Apparatus and method for detecting surface particle
JP4001653B2 (en) Optical inspection of samples using multichannel response from the sample
JPS6312943A (en) Method and device for analyzing surface
JPH0317378B2 (en)
JP2003017536A (en) Pattern inspection method and inspection apparatus
JPH0518889A (en) Method and device for inspecting foreign matter
JPH0310144A (en) Corpuscle measuring apparatus
JP3053096B2 (en) Foreign object detection method and device
JP2004069571A (en) Surface inspection apparatus
JPH05142156A (en) Foreign matter inspecting device
JPH03102249A (en) Method and apparatus for detecting foreign matter
JP3336392B2 (en) Foreign matter inspection apparatus and method
JPH02183147A (en) Fine foreign matter inspecting device
JPS6280507A (en) Measuring method for cracking on road surface
RU2035721C1 (en) Method of checking transparency of flat light-translucent materials
JPH06180293A (en) Foreign matter inspection apparatus
JPH01314953A (en) Optical surface inspection apparatus
JPS6382348A (en) Foreign matter inspector
JPH06317535A (en) Semiconductor inspection device and manufacture of semiconductor using same
JPS63118640A (en) Foreign matter detector
JPH01121740A (en) Optical surface inspecting device
JPS6293636A (en) Inspection apparatus

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees