JPH03100647A - Optical memory element - Google Patents

Optical memory element

Info

Publication number
JPH03100647A
JPH03100647A JP1239004A JP23900489A JPH03100647A JP H03100647 A JPH03100647 A JP H03100647A JP 1239004 A JP1239004 A JP 1239004A JP 23900489 A JP23900489 A JP 23900489A JP H03100647 A JPH03100647 A JP H03100647A
Authority
JP
Japan
Prior art keywords
recording medium
temperature
light
recording
optical memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1239004A
Other languages
Japanese (ja)
Inventor
Kazuo Ban
和夫 伴
Kenji Ota
賢司 太田
Akira Takahashi
明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1239004A priority Critical patent/JPH03100647A/en
Publication of JPH03100647A publication Critical patent/JPH03100647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To prevent deterioration of reproduced signal quality by forming a recording medium allowing glass transition point of the recording medium, its temperature raised by photoirradiation at the time of recording, and its temperature raised by photoirradiation at the time of reproduction to satisfy specified conditions. CONSTITUTION:The recording medium 2 satisfies Tr<Tg<Tw, where Tg is its glass transition point, Tw is its temperature raised by photoirradiation at the time of recording, and Tr is its temperature raised by photoirradiation at the time of reproduction. The temperature Tr is lower than that Tr and mobility in the polymer chain of the polymer solid around the organic compound is suppressed and the photochromic reaction of the organic compound is restricted, thus permitting the difference of light absorbances between the recorded area and the nonrecorded area to be kept constant even at the time of repeating reproduction of the optical memory element, and accordingly, deterioration of quality of the reproduced signal to be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学手段により情報の記録、再生、或いは消
去を行い得る光メモリ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical memory element that can record, reproduce, or erase information using optical means.

〔従来の技術〕[Conventional technology]

近年、光メモリ素子は高密度大容量メモリ素子として年
々その必要性が高まっている。この光メモリ素子は、通
常、使用形態により再生専用メモリ、追加記録可能メモ
リ、及び書き換え可能メモリの3種に大別される。
In recent years, the need for optical memory devices as high-density, large-capacity memory devices has been increasing year by year. Optical memory devices are generally classified into three types depending on their usage: read-only memory, additionally recordable memory, and rewritable memory.

このうち、追加記録可能メモリとして使用する光メモリ
素子は、レーザ光等の光を光メモリ素子中の記録媒体に
照射し、その照射した部分の記録媒体に融解又は分解等
を生じさせ、上記記録媒体に形状変化としての穴を形成
することにより情報を光メモリ素子に記録するものであ
る。
Among these, the optical memory element used as additional recordable memory irradiates the recording medium in the optical memory element with light such as a laser beam, and causes the irradiated part of the recording medium to melt or decompose. Information is recorded in an optical memory element by forming a hole as a shape change.

また、それ以外に、追加記録可能メモリにおいて、レー
ザ光等の光を光メモリ素子中の記録媒体に照射し、照射
した部分の記録媒体を結晶化又は非結晶化させることに
より、照射した部分における反射率等の光学的性質を変
化させ、これにより、情報の記録を行うものである。
In addition, in additionally recordable memory, by irradiating the recording medium in the optical memory element with light such as a laser beam, and crystallizing or non-crystallizing the recording medium in the irradiated area, reflections in the irradiated area can be generated. It records information by changing optical properties such as optical properties.

次に、書き換え可能メモリとして使用する光メモリ素子
では、光磁気効果を利用したものや記録媒体の相変化を
利用したものが知られている。前者の光磁気効果を利用
したものは、記録媒体の表面に対して垂直な方向に磁化
された磁性膜を含む記録媒体にレーザ光等の光を照射し
、照射部分の温度をキュリー温度以上に上昇させた状態
で外部から磁界を印加することにより、その部分の磁化
の向きを光の照射を行っていない部分の磁化の向きと逆
にし、これにより、情報の記録を行うようになっている
Next, as optical memory elements used as rewritable memories, there are known ones that utilize the magneto-optical effect and those that utilize the phase change of a recording medium. The former, which utilizes the magneto-optical effect, irradiates a recording medium containing a magnetic film that is magnetized in a direction perpendicular to the surface of the recording medium with light such as a laser beam, raising the temperature of the irradiated area to a temperature higher than the Curie temperature. By applying a magnetic field from the outside while it is raised, the direction of magnetization in that part is reversed from the direction of magnetization in the part that is not irradiated with light, thereby recording information. .

一方、後者の相変化を利用したものでは、記録媒体にレ
ーザ光等の光を照射し、照射した部分の記録媒体を非結
晶状態から結晶状態へ、又は結晶状態から非結晶状態へ
相転移させることにより情報の記録を行う。なお、以上
の光メモリ素子における情報の記録方法は、いずれもレ
ーザ光等の光を熱源として利用していることがらヒート
モード記録として−まとめにすることができる。
On the other hand, in the latter type of phase change, the recording medium is irradiated with light such as a laser beam, and the irradiated portion of the recording medium undergoes a phase transition from an amorphous state to a crystalline state, or from a crystalline state to an amorphous state. This records information. Note that the above methods for recording information in optical memory elements all utilize light such as laser light as a heat source, and therefore can be summarized as heat mode recording.

ところで、最近、上述したヒートモード記録とは別にフ
ォトンモード記録方式による光メモリ素子の研究開発が
活発に進められている。そして、このフォトンモード記
録として、フォトクロミック現象を呈する有機化合物を
利用したものが知られている。フォトクロミック現象と
は、ある種の物質が固体または液体の状態で光の照射に
より可逆的に色彩を変化させる現象であり、このような
現象を示す有機化合物としては、例えば、ヒドラゾン、
オサゾン、スチルベン、サルチルアルデヒド、スピロピ
ラン、フルシト、アゾベンゼンおよびその誘導体等の多
くの化合物が挙げられる。
Incidentally, in addition to the heat mode recording described above, research and development of optical memory elements using a photon mode recording method has recently been actively conducted. As this photon mode recording, one that utilizes an organic compound exhibiting a photochromic phenomenon is known. Photochromic phenomenon is a phenomenon in which certain substances in a solid or liquid state reversibly change color when irradiated with light. Organic compounds that exhibit this phenomenon include, for example, hydrazone,
Many compounds include osazone, stilbene, salicylaldehyde, spiropyran, flucyto, azobenzene and its derivatives.

このような化合物のうち、良く知られているスピロピラ
ンを記録媒体として利用した光メモリ素子を例示する。
Among such compounds, an optical memory element using well-known spiropyran as a recording medium will be exemplified.

スピロピランは紫外光および可視光の照射により第3図
(b)に示す分子内開環および同図(a)に示す閉環反
応が交互に起こり、それに伴って第4図に実線■及び仮
想線■で示したような吸収スペクトルの変化が可逆的に
生じることが知られている。
When spiropyran is irradiated with ultraviolet light and visible light, the intramolecular ring-opening reaction shown in Figure 3(b) and the ring-closing reaction shown in Figure 3(a) occur alternately, resulting in solid lines ■ and virtual lines ■ in Figure 4. It is known that changes in the absorption spectrum as shown in (2) occur reversibly.

そこで、例えば、スピロピランに予め紫外光を照射する
ことにより、前記の実線Iで示す吸収スペクトルを持た
せておき、これを初期状態として52 Onm付近の波
長を有する比較的出力の大きな記録用光により記録を行
う。記録用光が照射された部分においては、スピロピラ
ンが閉環変化を起こし、仮想線■で示す吸収スペクトル
に変化する。即ち、吸収スペクトルの異なる微小領域が
形成される。
Therefore, for example, by irradiating spiropyran with ultraviolet light in advance, it has the absorption spectrum shown by the solid line I above, and with this as an initial state, it is exposed to relatively high output recording light having a wavelength of around 52 Onm. Make a record. In the area irradiated with the recording light, spiropyran undergoes a ring-closing change and changes to the absorption spectrum shown by the virtual line (■). That is, minute regions with different absorption spectra are formed.

従って、例えば、52 Onm付近の弱い光である再生
用光を、第5図(a)に示すように、レンズ5にて集光
して記録媒体6に照射し、Aで示される未記録部→Bで
示される記録部→Cで示される未記録部へと順に走査す
るとき、同図(b)において実線で示すように、ΔTで
示す吸光度の差が生じることになるので、これに基づい
て、記録された信号の再生を行うことができる。
Therefore, for example, as shown in FIG. 5(a), the reproduction light, which is a weak light of around 52 Onm, is focused by the lens 5 and irradiated onto the recording medium 6 to remove the unrecorded area indicated by A. →When scanning in order from the recorded area indicated by B to the unrecorded area indicated by C, there will be a difference in absorbance indicated by ΔT, as shown by the solid line in Figure (b), so based on this, The recorded signal can then be played back.

また、記録した信号を消去する際には、記録部分に紫外
光を照射すると、スピロピランが開環変化を起こし、前
記の実線Iで示す吸収スペクトルに戻る。以上のように
、フォトクロミック現象は可逆的に生じるため、上記記
録媒体は消去可能な光メモリ素子として利用できる。
Furthermore, when erasing a recorded signal, when the recorded portion is irradiated with ultraviolet light, spiropyran undergoes a ring-opening change and returns to the absorption spectrum shown by the solid line I above. As described above, since the photochromic phenomenon occurs reversibly, the recording medium can be used as an erasable optical memory element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記フォトクロミック現象による記録は、以
上に述べたとおり、フォトンモードで行われるため、た
とえ再生時に弱い光を用いたとしても、弱い光なりのフ
ォトクロミズl、反応を起こし、何回か繰り返している
うちに、前記のスピロピランにおいては閉環変化物が累
積されることとなり、第5図(b)において破線で示す
ように、前記吸光度の差がΔTからΔT′へと小さくな
るため、得られる信号品質が低下するという欠点が指摘
されている。
However, as mentioned above, recording by the photochromic phenomenon is performed in photon mode, so even if weak light is used during playback, the photochromic reaction of the weak light will occur and be repeated several times. Over time, ring-closing products accumulate in the spiropyran, and as shown by the broken line in FIG. 5(b), the difference in absorbance decreases from ΔT to ΔT', resulting in a decrease in the signal quality obtained. It has been pointed out that the disadvantage is that the

また、フォトクロミック現象を呈する材料の殆どのもの
が、着色状態を安定に維持し難いものであり、熱により
容易に消色していくという欠点も存している。
Furthermore, most materials exhibiting a photochromic phenomenon have the disadvantage that it is difficult to maintain a stable colored state, and the color easily fades due to heat.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る光メモリ素子は、上記の課題を解決するた
めに、フォトクロミック現象を呈する有機化合物を高分
子固体中に分散させて形成した記録媒体に光を照射して
情報の記録、再生、或いは消去を行う光メモリ素子にお
いて、記録媒体のガラス転移温度をTg、記録時の光照
射に伴う記録媒体の昇温時の温度をTw、再生時の光照
射に伴う記録媒体の昇温時の温度をTrとした場合に、
Tr<Tg<Twを満足するような記録媒体が備えられ
ていることを特徴としている。
In order to solve the above problems, the optical memory element according to the present invention records, reproduces, or erases information by irradiating light onto a recording medium formed by dispersing an organic compound exhibiting a photochromic phenomenon in a polymer solid. In an optical memory element, the glass transition temperature of the recording medium is Tg, the temperature when the temperature of the recording medium increases due to light irradiation during recording is Tw, and the temperature when the temperature of the recording medium increases due to light irradiation during reproduction is Tr. In this case,
It is characterized by being equipped with a recording medium that satisfies Tr<Tg<Tw.

〔作 用〕[For production]

上記の構成によれば、再生用光によるフォトクロミズム
反応の不用意な進行は確実に阻止されることになる。即
ち、再生時の光照射に伴う記録媒体の昇温時の温度Tr
は記録媒体のガラス転移温度Tgよりも低く、光照射を
受けている有機化合物周りの高分子固体における高分子
鎖の動きは抑止されているので、有機化合物のフォトク
ロミズム反応も抑止されることになる。
According to the above configuration, the inadvertent progress of the photochromism reaction due to the reproducing light is reliably prevented. That is, the temperature Tr when the temperature of the recording medium increases due to light irradiation during reproduction.
is lower than the glass transition temperature Tg of the recording medium, and the movement of polymer chains in the polymer solid around the organic compound that is irradiated with light is suppressed, so the photochromic reaction of the organic compound is also suppressed. .

よって、かかる光メモリ素子について再生を何度繰り返
しても、記録部と未記録部とでの吸光度の差は一定に保
たれることとなり、再生信号品質が低下するといった問
題は解消される。また、記録した情報の熱に対する保存
性能も向上する。
Therefore, no matter how many times reproduction is repeated for such an optical memory element, the difference in absorbance between the recorded portion and the unrecorded portion is kept constant, and the problem of deterioration of reproduced signal quality is resolved. Furthermore, the storage performance of recorded information against heat is also improved.

一方、記録時の光照射を受けたときの記録媒体の温度T
wは、記録媒体のガラス転移温度Tgよりも高いので、
光照射を・受けている有機化合物周りの高分子固体にお
ける高分子鎖の動きは許容され、有機化合物のフォトク
ロミズム反応は促進されることになり、所定の記録が行
われることになる。
On the other hand, the temperature T of the recording medium when it is irradiated with light during recording
Since w is higher than the glass transition temperature Tg of the recording medium,
The movement of polymer chains in the polymer solid around the organic compound that is irradiated with light is allowed, the photochromic reaction of the organic compound is promoted, and a prescribed recording is performed.

〔実施例〕〔Example〕

本発明の一実施例を第1図ないし第3図に基づいて説明
すれば、以下の通りである。なお、従来例で用いた第3
図をここで再び使用する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Note that the third
We will use the diagram again here.

本発明に係る光メモリ素子は、第2図に示すように、プ
ラスチック、或いは、ガラスからなる基板1と、この基
板1の面上に形成された記録媒体2とを備えて構成され
るものである。
As shown in FIG. 2, the optical memory element according to the present invention includes a substrate 1 made of plastic or glass, and a recording medium 2 formed on the surface of this substrate 1. .

記録媒体2は、光の照射により分子の開環・閉環を伴う
フォトクロミンク現象を示す有機化合物、例えば、スチ
ルベン誘導体、スピロピラン類、フルシト類、アゾ系化
合物等のうち、1種類を、ポリスルホン樹脂、ポリアミ
ド樹脂、ポリエーテルスルホン樹脂、或いはポリカーボ
ネート樹脂からなる高分子固体(バインダー)中に分散
させた構成になっている。そして、かかる記録媒体2は
そのガラス転移温度をTg、記録時の光照射に伴う昇温
時の温度をTw、再生時の光照射に伴う昇温時の温度を
Trとした場合に、Tr<Tg<Twを満足するように
形成されている。
The recording medium 2 is a polysulfone resin containing one type of organic compound that exhibits a photochromic phenomenon accompanied by ring opening and closing of molecules upon irradiation with light, such as stilbene derivatives, spiropyrans, flucyto compounds, and azo compounds. It has a structure in which it is dispersed in a polymeric solid (binder) made of polyamide resin, polyether sulfone resin, or polycarbonate resin. In such a recording medium 2, when Tg is the glass transition temperature, Tw is the temperature when the temperature rises due to light irradiation during recording, and Tr is the temperature when the temperature rises due to light irradiation during reproduction, Tr< It is formed to satisfy Tg<Tw.

ここで、10mWの記録用光(波長520nm付近)を
ビーム径1μmに集光させ、記録媒体2に100ns照
射した場合、記録媒体2の厚みが1um、モル吸光係数
をlXl0’ 42/mol −(m、有機化合物濃度
を0,1mol/f、記録媒体2の密度を1.2g/c
d、比熱を0.1kcal/kg′Cとすると、約20
0°C上昇するので、記録媒体2の初期温度を40°C
としてこれに上記の200°Cを加えた240°Cが記
録時の光照射に伴う記録媒体2の昇温時の温度Twとな
る。
Here, when recording light of 10 mW (wavelength around 520 nm) is focused to a beam diameter of 1 μm and irradiated onto the recording medium 2 for 100 ns, the thickness of the recording medium 2 is 1 μm, and the molar absorption coefficient is lXl0' 42/mol - ( m, the organic compound concentration is 0.1 mol/f, and the density of the recording medium 2 is 1.2 g/c.
d, assuming the specific heat to be 0.1 kcal/kg'C, approximately 20
Since the temperature increases by 0°C, the initial temperature of recording medium 2 is set to 40°C.
240°C, which is obtained by adding the above-mentioned 200°C, becomes the temperature Tw when the temperature of the recording medium 2 is increased due to light irradiation during recording.

一方、前記の光を1mWに引き下げてこれを再生用光と
すると、約20°C上昇するので、記録媒体2の初期温
度を40°Cとしてこれに20°Cを加えた60°Cが
再生時の光照射に伴う記録媒体2の昇温時の温度Trと
なる。
On the other hand, if the above-mentioned light is reduced to 1 mW and used as the reproduction light, the temperature will rise by about 20°C, so if the initial temperature of the recording medium 2 is 40°C and 20°C is added to this, 60°C is the reproduction light. This is the temperature Tr when the temperature of the recording medium 2 increases due to light irradiation.

従って、記録媒体2のガラス転移温度Tgは60°C〜
240°Cの間に設定されることになる。
Therefore, the glass transition temperature Tg of the recording medium 2 is 60°C ~
It will be set between 240°C.

有機化合物がスピロピラン化合物である記録媒体2の場
合、スピロピラン化合物を分散させた高分子膜に、例え
ば、約10mW出力の紫外・光を照射しながら基板1上
に成膜することとしており、成膜後のスピロピラン化合
物は、前記の紫外線を受けて第3図(b)に示すような
開環状態になっている。
In the case of the recording medium 2 in which the organic compound is a spiropyran compound, the polymer film in which the spiropyran compound is dispersed is formed on the substrate 1 while being irradiated with ultraviolet light with an output of about 10 mW, for example. The subsequent spiropyran compound is exposed to the ultraviolet rays and is in a ring-opened state as shown in FIG. 3(b).

上記の構成によれば、再生光によるフォトクロミズム反
応の不用意な進行は確実に阻止されることになる。即ち
、再生時の光照射に伴う記録媒体2の昇温時の温度Tr
(60″C)は記録媒体2のガラス転移温度Tgよりも
低く、このとき、光照射を受けているスピロピラン化合
物周りの高分子固体の高分子鎖の動きは抑止されている
ので、スピロピラン化合物のフォトクロミズム反応、こ
の場合、スピロピラン化合物の閉環変化は抑止されるこ
とになる。
According to the above configuration, the inadvertent progress of the photochromism reaction due to reproduction light is reliably prevented. That is, the temperature Tr when the temperature of the recording medium 2 increases due to light irradiation during reproduction.
(60″C) is lower than the glass transition temperature Tg of the recording medium 2, and at this time, the movement of the polymer chains of the polymer solid around the spiropyran compound that is irradiated with light is suppressed, so the spiropyran compound The photochromic reaction, in this case the ring closure change of the spiropyran compound, will be inhibited.

よって、かかる光メモリ素子について再生を何度繰り返
しても、記録部と未記録部とでの吸光度の差は一定に保
たれることとなり、再生信号品質が低下するといった問
題は解消される。また、記録した情報の熱に対する保存
性能も向上する。
Therefore, no matter how many times reproduction is repeated for such an optical memory element, the difference in absorbance between the recorded portion and the unrecorded portion is kept constant, and the problem of deterioration of reproduced signal quality is resolved. Furthermore, the storage performance of recorded information against heat is also improved.

一方、記録時の光照射を受けたときの記録媒体2の温度
Tw(240°C)は、記録媒体2のガラス転移温度T
gよりも高いので、このとき、光照射を受けているスピ
ロピラン化合物周りの高分子固体の高分子鎖の動きは許
容されることになる。
On the other hand, the temperature Tw (240°C) of the recording medium 2 when it is irradiated with light during recording is the glass transition temperature T of the recording medium 2.
Since it is higher than g, at this time, the movement of the polymer chains of the polymer solid around the spiropyran compound that is irradiated with light is allowed.

よって、スピロピラン化合物のフォトクロミズム反応、
この場合、第3図(a)に示すスピロピラン化合物の閉
環変化は促進され、所定の記録が行われる。
Therefore, the photochromic reaction of spiropyran compounds,
In this case, the ring-closing change of the spiropyran compound shown in FIG. 3(a) is promoted and predetermined recording is performed.

なお、高分子鎖の動きはガラス転移温度Tgの数十皮下
の温度から徐々に活発になること、及び熱に対する情報
保持の高信頬性化を考慮すれば、ガラス転移温度は、温
度Twに近い方が望ましく、前述したように、温度Tw
、が240°Cである場合、温度Tgは150°C〜2
00°C程度が好適である。
In addition, considering that the movement of polymer chains gradually becomes active from several tens of subcutaneous temperatures below the glass transition temperature Tg, and that information retention becomes more sensitive to heat, the glass transition temperature increases as the temperature Tw increases. The closer the temperature Tw
, is 240°C, the temperature Tg is 150°C ~ 2
Approximately 00°C is suitable.

温度Tgを上昇させることに関して、温度Tgと高分子
構造との関係は明らかではないが、一般的に分子の動き
が制限されるような構造のものは温度Tgが高いといえ
る。たとえば、ベンゼン環の導入による高分子鎖の屈曲
性の低下は温度Tgの上昇に効果があり、極性基の導入
は分子間の相互作用を増すのでTgを上昇させる効果が
ある。
Regarding increasing the temperature Tg, although the relationship between the temperature Tg and the polymer structure is not clear, it can be said that the temperature Tg is generally high for a structure in which the movement of molecules is restricted. For example, reducing the flexibility of a polymer chain by introducing a benzene ring has the effect of increasing the temperature Tg, and introducing a polar group has the effect of increasing the Tg because it increases the interaction between molecules.

また、架橋を導入することによってもTgを上昇させる
ことができる。
Furthermore, the Tg can also be increased by introducing crosslinking.

ここで、温度Tgが150℃近傍に設定された高分子固
体中にスピロピラン化合物を分散させてなる記録媒体に
、前述の通り、紫外線を照射して初期化した後、可視光
を照射し、この照射エネルギーの強弱変化に対する可視
光域の吸光度変化を見ると、第1図において、実線で示
すように、ある照射エネルギーを越えたところから吸光
度の急激な変化が始まるという特性が示された。すなわ
ち、同図において破線(従来例)で示すように、比較的
弱い照射エネルギーを受けても弱いなりの吸光度変化を
生じ、再生の繰り返しにより記録部と未記録部との間の
吸光度の差が徐々に小さくなるというフォトンモードの
持つ欠点が除去されたことがわかる。
Here, a recording medium made of a spiropyran compound dispersed in a polymer solid whose temperature Tg is set at around 150°C is initialized by irradiation with ultraviolet rays as described above, and then irradiated with visible light. Looking at the change in absorbance in the visible light range with respect to changes in the intensity of irradiation energy, we found that, as shown by the solid line in Figure 1, a rapid change in absorbance begins when a certain irradiation energy is exceeded. In other words, as shown by the broken line (conventional example) in the same figure, even when receiving relatively weak irradiation energy, a slight change in absorbance occurs, and the difference in absorbance between the recorded and unrecorded areas increases with repeated reproduction. It can be seen that the drawback of the photon mode, which is that it gradually becomes smaller, has been eliminated.

〔発明の効果〕〔Effect of the invention〕

本発明に係る光メモリ素子は、以上のように、フォトク
ロミック現象を呈する有機化合物を高分子固体中に分散
させて形成した記録媒体に光を照射して情報の記録、再
生、或いは消去を行う光メモリ素子において、記録媒体
のガラス転移温度をTg、記録時の光照射に伴う記録媒
体の昇温時の温度をTw、再生時の光照射に伴う記録媒
体の昇温時の温度をTrとした場合に、Tr<Tg<T
Wを満足するような記録媒体が備えられている構成であ
る。
As described above, the optical memory element according to the present invention is an optical memory element that records, reproduces, or erases information by irradiating light onto a recording medium formed by dispersing an organic compound exhibiting a photochromic phenomenon in a polymer solid. When the glass transition temperature of the recording medium is Tg, the temperature when the temperature of the recording medium increases due to light irradiation during recording is Tw, and the temperature when the temperature of the recording medium increases due to light irradiation during reproduction is Tr. , Tr<Tg<T
This configuration includes a recording medium that satisfies W.

これにより、かかる光メモリ素子について再生を何度繰
り返しても、記録部と未記録部とでの吸光度の差は一定
に保たれることとなり、再生信号品質が低下するといっ
た問題は解消される。また、熱に対する記録情報の保存
性能も向上するという効果も併せて奏する。
As a result, no matter how many times reproduction is repeated for such an optical memory element, the difference in absorbance between the recorded portion and the unrecorded portion is maintained constant, and the problem of deterioration of the reproduced signal quality is resolved. In addition, it also has the effect of improving the storage performance of recorded information against heat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示すものであ
る。 第1図は記録媒体に照射する可視光照射エネルギーと可
視光吸光度との関係を従来との対比で示すグラフである
。 第2図は光メモリ素子の要部の断面図である。 第3図(a)はスピロピラン化合物の閉環状態を示す説
明図、同図(b)はスピロピラン化合物の開環状態を示
す説明図である。 第4図はスピロピラン化合物の開環状態および閉環状態
について、照射光波長と吸光度との関係を示すグラフで
ある。 第5図は従来例を示すものであって、同図(a)は光メ
モリ素子にレーザ光を照射している様子を示す説明図、
同図(b)は記録部と未記録部との間の吸光度の差異が
記録当初に比べて小さくなることを示す説明図である。 1は基板、2は記録媒体である。 高 第 図
1 and 2 show one embodiment of the present invention. FIG. 1 is a graph showing the relationship between visible light irradiation energy irradiated onto a recording medium and visible light absorbance in comparison with a conventional method. FIG. 2 is a sectional view of essential parts of the optical memory element. FIG. 3(a) is an explanatory diagram showing a ring-closed state of a spiropyran compound, and FIG. 3(b) is an explanatory diagram showing a ring-opening state of a spiropyran compound. FIG. 4 is a graph showing the relationship between irradiation light wavelength and absorbance for the ring-opened state and ring-closed state of the spiropyran compound. FIG. 5 shows a conventional example, and FIG. 5(a) is an explanatory diagram showing how the optical memory element is irradiated with laser light;
FIG. 5B is an explanatory diagram showing that the difference in absorbance between the recorded portion and the unrecorded portion becomes smaller than that at the beginning of recording. 1 is a substrate, and 2 is a recording medium. high diagram

Claims (1)

【特許請求の範囲】 1、フォトクロミック現象を呈する有機化合物を高分子
固体中に分散させて形成した記録媒体に光を照射して情
報の記録、再生、或いは消去を行う光メモリ素子におい
て、 記録媒体のガラス転移温度をTg、記録時の光照射に伴
う記録媒体の昇温時の温度をTw、再生時の光照射に伴
う記録媒体の昇温時の温度をTrとした場合に、Tr<
Tg<Twを満足するような記録媒体が備えられている
ことを特徴とする光メモリ素子。
[Scope of Claims] 1. An optical memory element in which information is recorded, reproduced, or erased by irradiating light onto a recording medium formed by dispersing an organic compound exhibiting a photochromic phenomenon in a polymer solid, comprising: When the glass transition temperature is Tg, the temperature when the temperature of the recording medium increases due to light irradiation during recording is Tw, and the temperature when the temperature of the recording medium increases due to light irradiation during reproduction is Tr, Tr<
An optical memory element comprising a recording medium that satisfies Tg<Tw.
JP1239004A 1989-09-14 1989-09-14 Optical memory element Pending JPH03100647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1239004A JPH03100647A (en) 1989-09-14 1989-09-14 Optical memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1239004A JPH03100647A (en) 1989-09-14 1989-09-14 Optical memory element

Publications (1)

Publication Number Publication Date
JPH03100647A true JPH03100647A (en) 1991-04-25

Family

ID=17038466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1239004A Pending JPH03100647A (en) 1989-09-14 1989-09-14 Optical memory element

Country Status (1)

Country Link
JP (1) JPH03100647A (en)

Similar Documents

Publication Publication Date Title
JP3057517B2 (en) Method of reproducing signal from optical recording medium
US5604002A (en) Optical recording medium and reproducing method therefor
KR100719431B1 (en) Optical recording medium and recording and/or reproducing apparatus employing the optical recording medium
US5234799A (en) Photochromic material and rewritable optical recording medium
KR920006312B1 (en) Optical recording medium and the method of recording, reading and erasing information using it
CA2090136C (en) Optical memory medium and a method of recording information on the same
JPH07169057A (en) Optical recording medium and its recording and reproducing method
JPH03100647A (en) Optical memory element
US5164287A (en) Photochromic material and rewritable optical recording medium
US5060222A (en) Method of overwriting information on recording medium
JPS63259850A (en) Optical recording method
KR100342622B1 (en) Phase change optical disk and a method for recording and pi aybacking optical information on or from an optical disk
JPS62162254A (en) Optical recording and reading method
JPH01162245A (en) Memory medium
JP2001067731A (en) Optical information recording medium
JPH03200957A (en) Rewritable photochromic optical disk
JP2001243657A (en) Optical recording medium
JPH03192345A (en) Optical recording medium and recording method
JP2003308634A (en) Optical recording medium and optical recording/ reproducing method
JPS61239444A (en) Laser light heat-sensitive recording medium
JPH0573961A (en) High-density optical recording medium having molten mask layer
KR100257890B1 (en) Organic optical recording medium
JPH0980681A (en) Photochromic optical recording medium
JPH01184640A (en) Optical recording medium
KR100275692B1 (en) Phase change type optical disk