JPH03100322A - Intake control device of internal combustion engine - Google Patents

Intake control device of internal combustion engine

Info

Publication number
JPH03100322A
JPH03100322A JP23492889A JP23492889A JPH03100322A JP H03100322 A JPH03100322 A JP H03100322A JP 23492889 A JP23492889 A JP 23492889A JP 23492889 A JP23492889 A JP 23492889A JP H03100322 A JPH03100322 A JP H03100322A
Authority
JP
Japan
Prior art keywords
intake
amplitude
flow velocity
flow speed
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23492889A
Other languages
Japanese (ja)
Inventor
Hideyuki Takeda
英之 武田
Yuuichi Iriya
祐一 入矢
Satoru Takeyama
武山 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23492889A priority Critical patent/JPH03100322A/en
Publication of JPH03100322A publication Critical patent/JPH03100322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress a rapid change in a flow speed so as to reduce intake noise by controlling intake energy in such a manner that amplitude of the directly detected intake flow speed can stay below a certain fixed value. CONSTITUTION:A physical quantity detecting means 5, constituted of a full pressure pickup and a static pressure pickup, is mounted to an intake pipe 3. Here in a control unit 20, an intake flow speed and its amplitude are calculated being based on an output of the physical quantity detecting means 5 in accordance with a program stored in a memory in the inside. A control value for controlling the intake flow speed is calculated so that the amplitude obtains a predetermined value, and a control signal is output to a step motor 14. Thus, by driving a variable valve 13 by the step motor 14 being based on the control signal, an inlet passage to a branch chamber 12 is controlled to open and close with intake energy controlled. Accordingly, intake noise can be reduced by suppressing a rapid change of the intake flow speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内燃機関の吸気制御装置に係り、詳しくは、
吸気流速を直接検出して吸気を制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake control device for an internal combustion engine.
The present invention relates to a device that controls intake by directly detecting intake flow velocity.

(従来の技術) 一般に、4サイクルエンジン等の内燃機関にあっては、
燃焼室内に吸入される混合気の体積と内燃機関の行程体
積との比、すなわち体積効率がエンジンの出力特性に大
きく影響すること、また、該体積効率が吸・排気管の長
さを初めとする吸・排気系の構成とエンジンの回転数に
影響されることが知られている。
(Prior art) Generally, in internal combustion engines such as four-stroke engines,
The volumetric efficiency, which is the ratio between the volume of the air-fuel mixture drawn into the combustion chamber and the stroke volume of the internal combustion engine, greatly affects the output characteristics of the engine. It is known that this is affected by the configuration of the intake and exhaust systems and the engine speed.

そのために吸気を制御する装置が開発されており、従来
のこの種の内燃機関の吸気制御装置としては、例えば特
開昭62−45928号公報に記載の排気管長可変装置
がある。この装置では、燃焼室内の圧力を圧力センサに
よって検出し、その検出結果に基づいて排気管長を制御
することにより、内燃機関の体積効率の予測的な検出を
可能にし、排気管長の可変制御を高精度に行って、結果
的に吸気の効率を高めるようにしている。
For this purpose, devices for controlling intake air have been developed, and a conventional intake control device for this type of internal combustion engine includes, for example, an exhaust pipe length variable device described in Japanese Patent Application Laid-Open No. 62-45928. This device detects the pressure inside the combustion chamber with a pressure sensor and controls the exhaust pipe length based on the detection result, making it possible to predict the volumetric efficiency of the internal combustion engine and improve variable control of the exhaust pipe length. The aim is to improve accuracy and increase intake efficiency as a result.

(発明が解決しようとする課題) しかしながら、このような従来の内燃機関の吸気制御装
置にあっては、筒内の圧力を圧力センサにより検出し、
その検出結果から排気管長を制御しているが、筒内の圧
力はその燃焼状態やノンキング等により変化が大きく、
体積効率を正確に予測するのは困難であることから、特
に、吸気流速が急に変化する場合(例えば、機関別・減
速時)に流速の振幅が大きくなると、これに起因する吸
気騒音を低減できないという問題点があった。
(Problem to be Solved by the Invention) However, in such a conventional intake control device for an internal combustion engine, the pressure inside the cylinder is detected by a pressure sensor,
The exhaust pipe length is controlled based on the detection results, but the pressure inside the cylinder varies greatly depending on the combustion state, non-king, etc.
Since it is difficult to accurately predict the volumetric efficiency, it is necessary to reduce the intake noise caused by the large amplitude of the flow velocity, especially when the intake flow velocity changes suddenly (for example, during engine deceleration). The problem was that it couldn't be done.

(発明の目的) そこで本発明は、吸気流速を直接検出して、この情報を
基に吸気流速の振幅をある一定値以内に納め、吸気騒音
を低減することのできる内燃機関の吸気@御装置を提供
することを目的としている。
(Object of the Invention) Therefore, the present invention provides an intake @ control device for an internal combustion engine that can directly detect the intake air flow velocity, keep the amplitude of the intake air flow velocity within a certain value based on this information, and reduce intake noise. is intended to provide.

(課題を解決するための手段) 本発明による内燃機関の吸気制御装置は上記目的達成の
ため、その基本概念図を第1図に示すように、吸気の流
速に関連する物理量を検出する物理量検出手段aと、物
理量検出手段aの出力に基づいて吸気の流速を算出する
流速算出手段すと、吸気流速の振幅を算出する振幅算出
手段Cと、吸気流速の振幅が所定値以下となるように吸
気流速を制御する制御値を演算する制御手段dと、制御
手段dの出力に基づいて吸気エネルギを操作する吸気エ
ネルギ操作手段eと、を備えている。
(Means for Solving the Problems) In order to achieve the above object, the intake control device for an internal combustion engine according to the present invention detects a physical quantity related to the flow velocity of intake air, as the basic conceptual diagram is shown in FIG. means a, a flow velocity calculation means for calculating the intake air flow velocity based on the output of the physical quantity detection means a; an amplitude calculation means C for calculating the amplitude of the intake air flow velocity; It includes a control means d that calculates a control value for controlling the intake air flow rate, and an intake energy operation means e that operates the intake energy based on the output of the control means d.

(作用) 本発明では、吸気流速が直接検出され、吸気流速の振幅
がある一定値以内に納まるように吸気エネルギが制御さ
れる。
(Function) In the present invention, the intake flow rate is directly detected, and the intake energy is controlled so that the amplitude of the intake flow rate is within a certain value.

したがって、急激な流速変化が抑制されて吸気騒音が低
減する。
Therefore, rapid changes in flow velocity are suppressed and intake noise is reduced.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜6図は本発明に係る内燃機関の吸気制御装置の一
実施例を示す図である。まず、構成を説明する。第2図
において、1は直列4気筒のエンジンであり、吸入空気
はエアクリーナ2がら吸気管3を通して各気筒に供給さ
れ、燃料はインジェクタ(図示路)により噴射される。
2 to 6 are diagrams showing an embodiment of an intake air control device for an internal combustion engine according to the present invention. First, the configuration will be explained. In FIG. 2, reference numeral 1 denotes an in-line four-cylinder engine, in which intake air is supplied to each cylinder through an air cleaner 2 and an intake pipe 3, and fuel is injected by an injector (path shown).

気筒内の混合気は点火プラグの放電作用によって爆発、
燃焼し、排気になって排気マニホールド4から排出され
る。
The mixture in the cylinder explodes due to the discharge action of the spark plug.
It is burned, becomes exhaust gas, and is discharged from the exhaust manifold 4.

エンジン1に吸入される空気の流速に関連する物理量(
本実施例では吸気の静圧と全圧)は物理量検出手段5に
より検出される。
Physical quantity related to the flow rate of air taken into engine 1 (
In this embodiment, the static pressure and total pressure of intake air are detected by the physical quantity detection means 5.

ここで、物理量検出手段5は第3図に示すように、吸気
管3に取り付けられた全圧ピックアップ10および静圧
ピックアップIIにより構成される。
Here, as shown in FIG. 3, the physical quantity detection means 5 is composed of a total pressure pickup 10 and a static pressure pickup II attached to the intake pipe 3.

これらはいわゆるピトー管の原理を応用して吸気管3内
における吸気の流速を測定するためのもので、具体的に
は、例えば第4図に示すように先端部に圧電素子10a
、llaを設け、この圧電素子10a、llaによりそ
れぞれ吸気の静圧P1および全圧(総圧)pzを測定し
、電気信号に変換して外部に取り出す。
These are for measuring the flow velocity of intake air in the intake pipe 3 by applying the principle of a so-called Pitot tube. Specifically, as shown in FIG.
, lla are provided, and the static pressure P1 and total pressure (total pressure) pz of intake air are measured by the piezoelectric elements 10a and 10a, respectively, and converted into electrical signals and taken out to the outside.

一方、吸気管3における物理量検出手段5の下流側には
吸気管3から分岐して分岐チャンバ12が設けられ、分
岐チャンバ12の入口通路には可変バルブ13が配置さ
れている。可変バルブ13は吸気管3に対する分岐チャ
ンバ12の連通面積を制御するもので、ステップモータ
14により駆動され、ステップモータ14は後述のコン
トロールユニット20カらの制御信号Scに基づいて可
変バルブ13を駆動する。上記分岐チャンバ12、可変
バルブ13およびステップモータ14は吸気エネルギを
操作する吸気エネルギ操作手段15を構成している。
On the other hand, on the downstream side of the physical quantity detection means 5 in the intake pipe 3, a branch chamber 12 is provided branching from the intake pipe 3, and a variable valve 13 is arranged in the inlet passage of the branch chamber 12. The variable valve 13 controls the communication area of the branch chamber 12 with respect to the intake pipe 3, and is driven by a step motor 14. The step motor 14 drives the variable valve 13 based on a control signal Sc from a control unit 20, which will be described later. do. The branch chamber 12, variable valve 13, and step motor 14 constitute an intake energy operating means 15 for operating intake energy.

物理量検出手段5の出力信号はバイパスフィルタ1Gに
入力され、所定の高周波成分のみがコントo−ルーy−
ニット20に送出される。コントロールユニット20は
流速算出手段、振幅算出手段および制御手段としての機
能を有し、主にマイクロコンピュータにより構成され、
内部のメモリに格納されているプログラムに従って吸気
の流速およびその振幅を算出するとともに、該振幅を所
定値とするように吸気流速を制御する制御値を演算して
制御信号Scをステップモータ14に出力する。
The output signal of the physical quantity detection means 5 is input to the bypass filter 1G, and only a predetermined high frequency component is controlled.
It is sent to the knit 20. The control unit 20 has functions as a flow velocity calculation means, an amplitude calculation means, and a control means, and is mainly composed of a microcomputer.
Calculates the intake air flow velocity and its amplitude according to a program stored in internal memory, calculates a control value for controlling the intake air flow velocity so that the amplitude is a predetermined value, and outputs a control signal Sc to the step motor 14 do.

次に、作用を説明する。Next, the effect will be explained.

第5図は吸気振幅制御のプログラムを示すフローチャー
トであり、本プログラムは所定時間毎に一度実行される
。まず、ステップSlで吸気の流速Uを算出するが、こ
れは次のようにして行う。
FIG. 5 is a flowchart showing an intake amplitude control program, and this program is executed once every predetermined time. First, in step Sl, the intake air flow velocity U is calculated as follows.

静圧ピックアップ11の出力から吸気管3における静圧
P1を読み込むとともに、全圧ピンクアンプ10の出力
から全圧P2を読み込み、さらに全圧P2と静圧P、の
差から動圧を次式に従って求め、ρu”  =Pz  
−PH 但し、ρ:排気の密度 として算出する。なお、以上の式はベルヌーイの定理に
基づくものであり、圧力から速度を求めることができる
のは周知である。
Read the static pressure P1 in the intake pipe 3 from the output of the static pressure pickup 11, read the total pressure P2 from the output of the total pressure pink amplifier 10, and calculate the dynamic pressure from the difference between the total pressure P2 and static pressure P according to the following formula. Find, ρu” = Pz
-PH However, ρ: Calculated as the density of exhaust gas. Note that the above equation is based on Bernoulli's theorem, and it is well known that velocity can be calculated from pressure.

次いで、ステップS2で流速Uの変化率U、を求める。Next, in step S2, the rate of change U of the flow velocity U is determined.

これは、単位時間当りのUの変化量を求めればよく、例
えば 0丁 =U−U 但し、U:所定の単位時間前の値 なる式で演算する。ステップS、では流速変化率u7の
正・負を判別し、u7≧Oのときは流速Uが増加する方
向であると判断し、ステップS4で流速Uの最大値をu
8とおいてステップS6に進む。u7〈0のときは流速
Uが減少する方向であると判断し、ステップS、で流速
Uの最小値をuLとおいてステップS6に進む。ステッ
プS6では流速Uの振幅ΔUを Δu=uI4−uL なる式から演算し、ステップS7でこれを所定値(制御
の判定値)Kと比較する。Δu<Kのときは振幅が小さ
く吸気騒音が許容できると判断し、ステップS、で A=O(A:前回の振幅の値) F=0(F:制御フラグ) とする処理を行ってステップS1に戻る。なお、プログ
ラムの開始時には初期設定としてA−0゜F=Oの処理
が行われる。ΔU≧にのときは騒音抑制の必要があると
判断し、ステップS9でΔU≧Aが成立しているか否か
を判別する。これは、前回の振幅より大きくなっている
か否かを判断するものである。成立しているときは流速
制御の方向を判断するためにステップ3+11で制御フ
ラグFを判別し、F=1のときはステップSI+′?:
F=0とおき、F=OのときはステップS1□でF=1
とおいてステップS13に進む。一方、成立していない
ときはステップSI3にジャンプする。ステップS13
では制御フラグFを判別し、F=1のときはステップ3
14で可変バルブ13を予め定めた所定開度だけ閉じる
方向に駆動する。また、F=0のときはステップSI5
で可変バルブ13を所定開度だけ開く方向に駆動する。
This can be done by finding the amount of change in U per unit time, and is calculated using the formula, for example, 0 = U - U, where U is the value before a predetermined unit time. In step S, it is determined whether the flow velocity change rate u7 is positive or negative, and when u7≧O, it is determined that the flow velocity U is increasing, and in step S4, the maximum value of the flow velocity U is
8 and proceeds to step S6. When u7<0, it is determined that the flow velocity U is decreasing, and in step S, the minimum value of the flow velocity U is set as uL, and the process proceeds to step S6. In step S6, the amplitude ΔU of the flow velocity U is calculated from the formula Δu=uI4-uL, and in step S7 this is compared with a predetermined value (control determination value) K. When Δu<K, it is determined that the amplitude is small and the intake noise is tolerable, and in step S, processing is performed to set A=O (A: previous amplitude value) and F=0 (F: control flag). Return to S1. Note that at the start of the program, the process of A-0°F=O is performed as an initial setting. When ΔU≧, it is determined that noise suppression is necessary, and in step S9, it is determined whether ΔU≧A holds true. This is to determine whether the amplitude is larger than the previous amplitude. When it is true, the control flag F is determined in step 3+11 in order to determine the direction of flow velocity control, and when F=1, step SI+'? :
Set F=0, and when F=O, set F=1 in step S1□
The process then proceeds to step S13. On the other hand, if this is not true, the process jumps to step SI3. Step S13
Then, determine the control flag F, and if F=1, proceed to step 3.
At step 14, the variable valve 13 is driven in the direction of closing by a predetermined opening degree. Moreover, when F=0, step SI5
The variable valve 13 is driven in the direction of opening by a predetermined opening degree.

その後、ステップSI6でΔUをAとおいてルーチンを
終了する。
Thereafter, in step SI6, ΔU is set to A and the routine ends.

これにより、吸気管3に対して分岐チャンバ12が可変
バルブ13の開度で定まる通路面積を通して連通し、吸
気管3全体の共鳴周波数が変化する。
As a result, the branch chamber 12 communicates with the intake pipe 3 through a passage area determined by the opening degree of the variable valve 13, and the resonance frequency of the entire intake pipe 3 changes.

なお、共鳴周波数は 但し、a:音速 r:管路の断面積 ■ニジリンダ容積 !=管長 という式で与えられ、分岐チャンバ12の連通により近
似的にシリンダ容積■が増大して共鳴周波数が変化する
ものである。この共鳴周波数が変化すると、吸気管3内
における吸気の疎・密の位置が変わり、実質的に流速が
変化する。したがって、吸気流速が共鳴周波数の影響を
受けて変化し、本実施例の場合、第6図に示すように流
速の振幅が常に所定値以内に納まるようなフィードバン
ク制御がなされ、結果的に吸気騒音の源となる振幅がき
め細かく十分に抑制される。この制御を従来例と比較す
ると、従来例が筒内圧により間接的に体積効率を予測し
ていたのに対し、本実施例では吸気流速という騒音に直
接的に関連するパラメータを検出して吸気制御を行って
いることになり、吸気振幅の低減に伴って吸気騒音を低
減することができる。
In addition, the resonant frequency is, however, a: sound speed r: cross-sectional area of the pipe ■ Nijilinda volume! = pipe length, and the cylinder volume (2) approximately increases due to the communication of the branch chamber 12, and the resonance frequency changes. When this resonant frequency changes, the position of the sparse/dense intake air in the intake pipe 3 changes, and the flow velocity substantially changes. Therefore, the intake flow velocity changes under the influence of the resonance frequency, and in the case of this embodiment, feedbank control is performed such that the amplitude of the flow velocity is always within a predetermined value, as shown in FIG. The amplitude that is the source of noise is finely and sufficiently suppressed. Comparing this control with the conventional example, we can see that while the conventional example predicts the volumetric efficiency indirectly using the in-cylinder pressure, this example detects the intake flow rate, a parameter directly related to noise, and controls the intake air. This means that intake noise can be reduced as the intake amplitude is reduced.

なお、吸気エネルギ操作手段15の構成は上記実施例に
限るものではなく、例えばバイパス通路を開閉したり、
あるいは吸気管3の通路面積を直接的に絞るようなもの
であってもよい。そのときには吸気抵抗が上昇しないよ
うな管径が定められる。
Note that the configuration of the intake energy operating means 15 is not limited to the above embodiment; for example, it may open and close a bypass passage,
Alternatively, the passage area of the intake pipe 3 may be directly reduced. At that time, the pipe diameter is determined so that the intake resistance does not increase.

また、物理量検出手段5として上記実施例ではピトー管
を用いているが、これに限らず、レゾネータを用いたり
するものや他のものであってもよい。
Further, although a pitot tube is used as the physical quantity detection means 5 in the above embodiment, the present invention is not limited to this, and a resonator or other means may be used.

(効果) 本発明によれば、吸気に対し直接的に流速を検出し、流
速の振幅を所定値以下に納めているので、急激な流速変
化を抑制して吸気騒音を低減することができる。
(Effects) According to the present invention, since the flow velocity of intake air is directly detected and the amplitude of the flow velocity is kept below a predetermined value, it is possible to suppress rapid changes in flow velocity and reduce intake noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本概念図、第2〜6図は本発明に係
る内燃機関の吸気制御装置の一実施例を示す図であり、
第2図はその全体構成図、第3図はその物理量検出手段
の配置を示す図、第4図はその物理量検出手段の構成を
示す図、第5図はその吸気振幅制御のプログラムを示す
フローチャート、第6図はその作用を説明する図である
。 l・・・・・・エンジン、 3・・・・・・吸気管、 5・・・・・・物理量検出手段、 10・・・・・・全圧ピックアップ、 11・・・・・・静圧ピックアップ、 12・・・・・・分岐チャンバ、 13・・・・・・可変バルブ、 14・・・・・・ステップモータ、 15・・・・・・吸気エネルギ操作手段、16・・・・
・・バイパスフィルタ、 20・・・・・・コン1−ロールユニット(流速XHt
i手段、振幅算出手段、制御手段)。
FIG. 1 is a basic conceptual diagram of the present invention, and FIGS. 2 to 6 are diagrams showing an embodiment of an intake air control device for an internal combustion engine according to the present invention.
FIG. 2 is a diagram showing the overall configuration, FIG. 3 is a diagram showing the arrangement of the physical quantity detecting means, FIG. 4 is a diagram showing the configuration of the physical quantity detecting means, and FIG. 5 is a flowchart showing the intake amplitude control program. , FIG. 6 is a diagram illustrating its operation. l...Engine, 3...Intake pipe, 5...Physical quantity detection means, 10...Total pressure pickup, 11...Static pressure Pick-up, 12... Branch chamber, 13... Variable valve, 14... Step motor, 15... Intake energy operating means, 16...
...Bypass filter, 20...Control 1-roll unit (flow rate XHt
i means, amplitude calculation means, control means).

Claims (1)

【特許請求の範囲】 a)吸気の流速に関連する物理量を検出する物理量検出
手段と、 b)物理量検出手段の出力に基づいて吸気の流速を算出
する流速算出手段と、 c)吸気流速の振幅を算出する振幅算出手段と、d)吸
気流速の振幅が所定値以下となるように吸気流速を制御
する制御値を演算する制御手段と、e)制御手段の出力
に基づいて吸気エネルギを操作する吸気エネルギ操作手
段と、 を備えたことを特徴とする内燃機関の吸気制御装置。
[Scope of Claims] a) physical quantity detection means for detecting a physical quantity related to the flow velocity of intake air; b) flow velocity calculation means for calculating the flow velocity of intake air based on the output of the physical quantity detection means; c) amplitude of the intake air flow velocity. d) a control means that calculates a control value for controlling the intake flow rate so that the amplitude of the intake flow rate is equal to or less than a predetermined value; and e) control means that operates the intake energy based on the output of the control means. An intake control device for an internal combustion engine, comprising: an intake energy operating means;
JP23492889A 1989-09-11 1989-09-11 Intake control device of internal combustion engine Pending JPH03100322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23492889A JPH03100322A (en) 1989-09-11 1989-09-11 Intake control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23492889A JPH03100322A (en) 1989-09-11 1989-09-11 Intake control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03100322A true JPH03100322A (en) 1991-04-25

Family

ID=16978477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23492889A Pending JPH03100322A (en) 1989-09-11 1989-09-11 Intake control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03100322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214525A (en) * 1997-01-30 1998-08-11 Matsushita Electric Ind Co Ltd Connection method between electronic equipments and connection cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214525A (en) * 1997-01-30 1998-08-11 Matsushita Electric Ind Co Ltd Connection method between electronic equipments and connection cable

Similar Documents

Publication Publication Date Title
JP4756968B2 (en) Internal combustion engine knock determination device
JPH08158966A (en) Noise control device of internal combustion engine
JPH01253543A (en) Air-fuel ratio control device for engine
JPH09170471A (en) Method for controlling air-fuel ratio of multi-cylinder engine
JPH02163443A (en) Controller for engine equipped with supercharger
JP3544197B2 (en) Electronic control unit for internal combustion engine
JPH03100322A (en) Intake control device of internal combustion engine
JPS6311832A (en) Knocking detector for multi-cylinder engine
KR920002456B1 (en) Fuel control system
JP2006138236A (en) Valve opening-area calculation device for internal combustion engine
JPH05302542A (en) Method of setting basic fuel injection volume for engine
JP4736403B2 (en) Flow rate calculation device for internal combustion engine
JPH0364623A (en) Exhaust controller of internal combustion engine
JPS63295864A (en) Knocking detecting device for internal combustion engine
JPS6098329A (en) Pressure detector of internal-combustion engine
JPH0364624A (en) Exhaust controller of internal combsution engine
JP4023084B2 (en) Intake air amount prediction apparatus and intake pressure prediction apparatus
JP3092725B2 (en) Engine knock detection method
JPS6023720Y2 (en) Exhaust component concentration detection device
JP2716054B2 (en) Fuel injection amount control method for internal combustion engine
JPS6082931A (en) Knocking detecting device of engine
JPH0510237A (en) Detection of knock of engine
JPH03100315A (en) Exhaust control device of internal combustion engine
JPH07239260A (en) Suction air flow detector for internal-combustion engine
JPH08189407A (en) Intake temperature estimating device for internal combustion engine