JPH03100165A - Wear resistant member - Google Patents

Wear resistant member

Info

Publication number
JPH03100165A
JPH03100165A JP23953789A JP23953789A JPH03100165A JP H03100165 A JPH03100165 A JP H03100165A JP 23953789 A JP23953789 A JP 23953789A JP 23953789 A JP23953789 A JP 23953789A JP H03100165 A JPH03100165 A JP H03100165A
Authority
JP
Japan
Prior art keywords
ion implantation
transition metal
boron ions
base material
wear resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23953789A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
降矢 喬
Yasuaki Sugizaki
康昭 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23953789A priority Critical patent/JPH03100165A/en
Publication of JPH03100165A publication Critical patent/JPH03100165A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply and efficiently obtain a wear resistant hard member having superior wear resistance without degenerating the base material by implanting boron ions into the surface of a metal member made of a group IVa, Va or VIa transition metal or an alloy thereof. CONSTITUTION:Boron ions are implanted into the surface of a metal member made of a group IVa, Va or VIa transition metal such as Ti, Zr, V, Nb, Ta, Mo or W or an alloy contg. such metals. This ion implantation can be carried out at a relatively low temp. and the base material is not thermally degenerated. The pref. number of the boron ions implanted is about >=0.5X10<16>, especially about >=1X10<17> per 1cm<2>. A boride coating film formed by the ion implantation has high adhesion, very high hardness and extremely superior wear resistance and can be formed in a short time. A wear resistant member suitable for bearings, engine parts, etc., is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は遷移金属材料の表面にほう素をイオン注入して
硬質化された耐摩耗性部材に関し、この耐摩耗性部材は
、軽量軸受、耐熱性軸受、自動車のエンジン部品などの
耐摩耗性摺動機器部材等として有用である。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a wear-resistant member hardened by implanting boron ions into the surface of a transition metal material. It is useful as heat-resistant bearings, wear-resistant sliding equipment members such as automobile engine parts, etc.

[従来の技術] 周期律表の4A族、SA族、6A族に属する遷移金属(
たとえばTi、Zr、V、Nb、Ta。
[Prior Art] Transition metals belonging to Group 4A, Group SA, and Group 6A of the periodic table (
For example, Ti, Zr, V, Nb, Ta.

Mo、W等)もしくはそれらを含む合金は、高融点で高
温強度および耐酸化性に優れたものであるから、従来よ
り航空機や各種化学プラント、原子カプラント等の構造
材として多用されている。ところがこれらの遷移金属は
鋼材等に比べて耐摩耗性が悪く、しかも摩擦により焼付
きを起こし易いという欠点があるところから、摺動機器
部材としては殆んど実用化されていない。
Mo, W, etc.) or alloys containing them have a high melting point and excellent high-temperature strength and oxidation resistance, so they have been widely used as structural materials for aircraft, various chemical plants, atomic couplants, etc. However, these transition metals have poor wear resistance compared to steel materials and the like, and are moreover prone to seizure due to friction, so they are hardly ever put to practical use as sliding equipment components.

そこでこうした欠点を改善し耐摩耗性を改善するための
手段としてほう素化処理法が開発された。この方法は、
遷移金属材の表面を下記の様な手段によってほう素化し
硬質のほう化物皮膜を形成するものである。即ち遷移金
属のほう化物は、■比抵抗が小さい、■硬度がHv20
00以上と極めて硬質である、■高温で非常に安定であ
る、といった特徴を有しているので、このほう化物を遷
移金属表面に形成することにより耐摩耗性が改善される
ばかりでなく焼付きも起こし難くなり、摺動機器部材と
して非常に優れたものとなる。こうした表面ほう化物皮
膜の形成法としては下記の方法が知られている。
Therefore, a boron treatment method was developed as a means to overcome these drawbacks and improve wear resistance. This method is
The surface of the transition metal material is boronized by the following method to form a hard boride film. In other words, transition metal borides have: (1) low specific resistance, and (2) hardness of Hv20.
It has the characteristics of being extremely hard (more than 0.00) and extremely stable at high temperatures.By forming this boride on the surface of the transition metal, it not only improves wear resistance but also prevents seizure. This makes it difficult for the material to rise, making it an excellent member for sliding equipment. The following method is known as a method for forming such a surface boride film.

(1)ガスボロン化法(三塩化ボロン法、ジボラン法) (2)溶融塩法 (3)ほう砂浴法 [発明が解決しようとする課題] ところが上記の各方法には次の様な問題がある。まず上
記(1)のガスボロン化法では、十分な厚さの硬質皮膜
が形成されるまでに長時間を要するという欠点があり、
更に表面改質に用いるガスが発火性で且つ毒性を有して
いるという問題がある為、設備の保全および管理に細心
の注意を払わなければならない。また上記(2) 、 
(3)の溶融塩法やほう砂浴法も上記と同じ様に硬質皮
膜の形成に長時間を要し、またこれらの方法ではほう化
処理の前後で特殊な表面処理を行なわなければならず、
工程が非常に煩雑である。しかもこれら(1)。
(1) Gas boronization method (boron trichloride method, diborane method) (2) Molten salt method (3) Borax bath method [Problems to be solved by the invention] However, each of the above methods has the following problems. be. First, the above gas boronization method (1) has the disadvantage that it takes a long time to form a hard film of sufficient thickness.
Furthermore, there is a problem that the gas used for surface modification is flammable and toxic, so careful attention must be paid to the maintenance and management of the equipment. Also, (2) above,
(3) Molten salt method and borax bath method also require a long time to form a hard film, and these methods require special surface treatment before and after boriding. ,
The process is extremely complicated. And these (1).

(2) 、 (3)の方法ではいずれも被処理材がかな
りの高温に曝らされるため熱変質を起こす恐れがあり、
また形成された硬質皮膜の密着性が悪いという問題も指
摘されている。
In both methods (2) and (3), the material to be treated is exposed to considerably high temperatures, which may cause thermal deterioration.
It has also been pointed out that the hard coating formed has poor adhesion.

本発明はこの様な従来技術の問題点に鑑みてなされたも
のであって、その目的は、基材を変質を伴わずに密着性
の優れた硬質皮膜が形成されることにより優れた耐摩耗
性を示す部材を提供しようとするものである。
The present invention was made in view of the problems of the prior art, and its purpose is to form a hard film with excellent adhesion without altering the quality of the base material, thereby providing excellent wear resistance. The purpose is to provide a member that shows the characteristics of the material.

[課題を解決するための手段] 上記課題を解決することのできた本発明の耐摩耗性部材
は、4A族、SA族および6A族よりなる群から選択さ
れる遷移金属もしくはそれらを含む合金よりなる金属部
材の表面に、ほう素がイオン注入されたものであるとこ
ろに要旨を有するものである。
[Means for Solving the Problems] The wear-resistant member of the present invention that can solve the above problems is made of a transition metal selected from the group consisting of Group 4A, Group SA, and Group 6A, or an alloy containing them. The gist is that boron ions are implanted into the surface of a metal member.

[作用] 本発明では、前述の様な特定の遷移金属もしくはその合
金を基材として選択し、その表面をほう素イオン注入法
によってほう化したものである。
[Function] In the present invention, a specific transition metal or an alloy thereof as described above is selected as a base material, and its surface is boronized by boron ion implantation.

ほう素イオン注入の特徴は、非熱プロセスで遂行し得る
点にあり、低温(室温)下のイオン注入処理でも十分な
厚さのほう化物皮膜を形成することができ、しかもこの
皮膜は優れた高温安定性を示すばかりでなく、極めて硬
質で耐摩耗性も非常に優れている。更にこの方法は、ほ
う素をイオン化させ、加速機で該イオンに高エネルギー
を与えて基材の表層部に突入させる方法であるから、イ
オンは基材内部に打込まれてアンカー効果を生じ、ほう
化物皮膜の密着性も従来技術に比べて大幅に改善される
A feature of boron ion implantation is that it can be performed using a non-thermal process, and a sufficiently thick boride film can be formed even with ion implantation at low temperatures (room temperature), and this film has excellent properties. In addition to exhibiting high temperature stability, it is extremely hard and has excellent wear resistance. Furthermore, this method involves ionizing boron, giving high energy to the ions using an accelerator, and causing them to enter the surface layer of the base material, so the ions are implanted into the base material and create an anchor effect. The adhesion of the boride film is also significantly improved compared to the prior art.

この様に本発明によれば、非加熱方式であるから基材金
属を熱変質させる恐れがなく、また短時間の処理で相当
の厚みを持った硬質皮膜を容易に形成することができ、
更に皮膜の密着性は良好で且つ皮膜自体の物性も非常に
優れたものであり、ほう化処理法の利点を享受しつつ従
来法において指摘されていた欠点をすべて解消すること
ができる。
As described above, according to the present invention, since it is a non-heating method, there is no risk of thermal deterioration of the base metal, and a hard film with a considerable thickness can be easily formed in a short treatment time.
Furthermore, the adhesion of the film is good and the physical properties of the film itself are also very good, making it possible to enjoy the advantages of the boriding method while eliminating all the drawbacks pointed out in the conventional method.

尚イオン注入法による表面改質法としては、ほう素置外
のイオン、たとえば炭素、窒素、酸素等をイオン注入す
ることも考えられる。しかし本発明で選択される遷移金
属のほう化物は、炭化物、窒化物、酸化物等に比べて格
段に優れた特性(特に耐熱性、耐摩耗性、耐焼付性等)
を有しており、ほう化物皮膜でなければ本発明で意図す
る様な耐熱性と耐摩耗性を満足することができない。
As a surface modification method using ion implantation, it is also possible to implant ions other than boron, such as carbon, nitrogen, oxygen, etc. However, the transition metal borides selected in the present invention have much superior properties (especially heat resistance, wear resistance, seizure resistance, etc.) compared to carbides, nitrides, oxides, etc.
Therefore, unless it is a boride film, the heat resistance and abrasion resistance as intended by the present invention cannot be satisfied.

イオン注入の具体的条件は特に限定されないが、実験に
より確認したところでは、ほう素イオンの注入量がlX
l0”イオン/cya”以上になるとほう化物の生成が
明確に確認でき、それに伴なって表面が硬質化するとこ
とから、イオン注入量はo、s x t oI6イオン
/CI2以上に設定するのがよく、より好ましいのは1
×101フイオン/C12以上である。イオン注入量の
上限は、注入層の目標厚さ、所要処理時間、イオン注入
処理設備の能力等に応じて適当に決めればよいが、−M
的なのは1xio”イオン/Cl1l!程度までである
Although the specific conditions for ion implantation are not particularly limited, it has been confirmed through experiments that the implantation amount of boron ions is 1X.
If the amount exceeds 10"ions/cya", the formation of borides can be clearly seen, and the surface becomes hardened accordingly, so it is recommended to set the ion implantation amount to 16 ions/CI2 or more. Good, more preferable is 1
×101 ions/C12 or more. The upper limit of the ion implantation amount may be determined appropriately depending on the target thickness of the implanted layer, the required processing time, the capacity of the ion implantation processing equipment, etc.
The target is up to about 1xio" ion/Cl1l!.

尚イオン注入は室温で行なうこともできるが、被処理基
材を適度に加熱しておくと、イオン注入時における基材
内へのほう素の拡散が促進されてほう化物が形成され易
くなり、またより短時間の処理で比較的厚肉の表面硬化
層を形成することができるので有利である。
Ion implantation can be performed at room temperature, but if the substrate to be treated is heated appropriately, the diffusion of boron into the substrate during ion implantation will be promoted, making it easier to form boride. It is also advantageous because a relatively thick hardened surface layer can be formed in a shorter treatment time.

本発明の基材として使用される4A族、SA族および6
A族遷穆金属の具体例としては、Ti。
Group 4A, Group SA and Group 6 used as substrates of the present invention
A specific example of a group A transition metal is Ti.

Zr、Hf、V、Nb、Ta、Cr、Mo、Wが挙げら
れ、これらは用途に応じて適宜選択して用いられる。ま
たこれらは必要により2f!以上を組合せ、あるいは上
記以外の金属と組合せた合金として用いることもできる
。またその形状にも一切制限がなく、最も一般的な板状
のほか、用途に応じて線状、棒状あるいは管状のもので
あってもよく、あるいは任意の形状に成形されたものを
基材として使用することも勿論可能である。
Examples include Zr, Hf, V, Nb, Ta, Cr, Mo, and W, and these are appropriately selected and used depending on the purpose. Also, these can be added to 2F if necessary! It is also possible to use a combination of the above or an alloy in combination with metals other than those mentioned above. There are no restrictions on its shape; in addition to the most common plate shape, it may be linear, rod-shaped, or tubular depending on the purpose, or it can be formed into any shape as a base material. Of course, it is also possible to use

[実施例] 第1表に示す遷移金属よりなる板材(25jx25wX
1t)を使用し、同表に示す条件でほう素イオン注入を
行ない、表面にほう化物層を形成した。
[Example] A plate material made of the transition metal shown in Table 1 (25jx25wx
1t) under the conditions shown in the same table to form a boride layer on the surface.

得られた各イオン注入処理材について、下記の方法で相
対硬度および相対摩耗量を調べた。
The relative hardness and relative wear amount of each of the obtained ion-implanted materials was investigated using the following method.

相対硬度:マイクロビッカース硬度計を使用し、付加荷
重10gf、保持時間 15秒の条件で表面硬度を測定し、 イオン注入前の硬度を1として相対 硬度を算出する。
Relative hardness: Using a micro Vickers hardness meter, measure the surface hardness under the conditions of an additional load of 10 gf and a holding time of 15 seconds, and calculate the relative hardness with the hardness before ion implantation set as 1.

相対摩耗量:アルミナボールを相手材とする摺動式摩耗
試験機で摩耗量を測定 し、イオン注入前の摩耗量を1と して相対摩耗量を算出する。
Relative wear amount: The wear amount is measured using a sliding wear tester using an alumina ball as the mating material, and the relative wear amount is calculated by setting the wear amount before ion implantation to 1.

結果は第1表に示す通りであり、表面硬度が高く耐摩耗
性の優れた表面処理材が得られている。
The results are shown in Table 1, and a surface treated material with high surface hardness and excellent wear resistance was obtained.

第 表 [発明の効果] 本発明は以上の様に構成されており、硬質で耐摩耗性の
優れた表面特性を有する遷移金属材を、ほう素イオン注
入法によって、基材に熱変質を及ぼすことなく簡JIL
な手順でしかも効率良く製造し得ることになった。
Table 1 [Effects of the Invention] The present invention is constructed as described above, and a transition metal material having hard and wear-resistant surface characteristics is subjected to thermal alteration of the base material by boron ion implantation method. Simple JIL
It became possible to manufacture it efficiently using a simple procedure.

Claims (1)

【特許請求の範囲】[Claims] (1) 4A族、5A族および6A族よりなる群から選
択される遷移金属もしくはそれらを含む合金よりなる金
属部材の表面に、ほう素をイオン注入したものであるこ
とを特徴とする耐摩耗性部材。
(1) Wear resistance characterized by boron ion implantation into the surface of a metal member made of a transition metal selected from the group consisting of Groups 4A, 5A, and 6A or an alloy containing them. Element.
JP23953789A 1989-09-14 1989-09-14 Wear resistant member Pending JPH03100165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23953789A JPH03100165A (en) 1989-09-14 1989-09-14 Wear resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23953789A JPH03100165A (en) 1989-09-14 1989-09-14 Wear resistant member

Publications (1)

Publication Number Publication Date
JPH03100165A true JPH03100165A (en) 1991-04-25

Family

ID=17046287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23953789A Pending JPH03100165A (en) 1989-09-14 1989-09-14 Wear resistant member

Country Status (1)

Country Link
JP (1) JPH03100165A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192763A (en) * 1982-02-16 1983-11-10 アイ・テイ・テイ・インダストリ−ズ・インコ−ポレ−テツド Manual tool
JPS61174372A (en) * 1984-09-14 1986-08-06 ユナイテツド キングドム アトミツク エナーヂイ オーソリテイ Surface treatment of metal
JPH02294464A (en) * 1989-05-06 1990-12-05 Agency Of Ind Science & Technol Ti material for use under hydrogen environment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192763A (en) * 1982-02-16 1983-11-10 アイ・テイ・テイ・インダストリ−ズ・インコ−ポレ−テツド Manual tool
JPS61174372A (en) * 1984-09-14 1986-08-06 ユナイテツド キングドム アトミツク エナーヂイ オーソリテイ Surface treatment of metal
JPH02294464A (en) * 1989-05-06 1990-12-05 Agency Of Ind Science & Technol Ti material for use under hydrogen environment

Similar Documents

Publication Publication Date Title
Meriç et al. Investigation of the effect on boride layer of powder particle size used in boronizing with solid boron-yielding substances
US7648588B2 (en) Method for carburizing steel components
Bejar et al. Abrasive wear resistance of boronized carbon and low-alloy steels
EP2847358B1 (en) Tough bainitic heat treatments on steels for tooling
Pellizzari et al. Thermal fatigue resistance of gas and plasma nitrided 41CrAlMo7 steel
Özbek et al. Characterization of borided AISI 316L stainless steel implant
Das et al. Influence of pretreatment on surface behavior of duplex plasma treated AISI H13 tool steel
JPH05163582A (en) Treatment of surface
Christiansen et al. Hard surface layers by pack boriding and gaseous thermo-reactive deposition and diffusion treatments
Torun Boriding of nickel aluminide
JPH03100165A (en) Wear resistant member
Tang et al. Methane and nitrogen plasma immersion ion implantation of titanium metal
RU2704345C1 (en) Method of inserting carbides and oxides of refractory metals into surface layer of carbon structural steels by combined plastic deformation
Wei et al. High Intensity plasma ion nitriding of AerMet 100 martensitic steel
Lee et al. Hardness and wear resistance of steel-based surface composites fabricated with Fe-based metamorphic alloy powders by high-energy electron beam irradiation
JP3193320B2 (en) Heat treatment method for machine parts
BRPI0820415B1 (en) Hot or hot uniaxial isostatic pressing process, graphite matrix for use in this process and the component produced by this process
JP2773092B2 (en) Surface coated steel products
Mashal et al. Titanium nitride coating on nickel produced by a powder immersion reaction-assisted coating method
JPH0472004A (en) Manufacture of porous metallic mold
He et al. Microstructure and phase evolution of ceramic layers on Ta-2.5 W alloy
JP4986402B2 (en) Method for forming Al diffusion coating layer and heat resistant member having Al diffusion coating layer
JP4641091B2 (en) Method of forming carbonitride layer on metal material surface and titanium-based metal material having carbonitride layer on surface
JPS61227153A (en) High nitrogen bearing austenitic sintered alloy and its manufacture
Souchard et al. Ionic nitriding and ionic carburizing of pure titanium and its alloys