JPH03100116A - Apparatus for vacuum degassing-molten metal - Google Patents

Apparatus for vacuum degassing-molten metal

Info

Publication number
JPH03100116A
JPH03100116A JP23708989A JP23708989A JPH03100116A JP H03100116 A JPH03100116 A JP H03100116A JP 23708989 A JP23708989 A JP 23708989A JP 23708989 A JP23708989 A JP 23708989A JP H03100116 A JPH03100116 A JP H03100116A
Authority
JP
Japan
Prior art keywords
molten steel
degassing
vacuum
vacuum chamber
vertical direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23708989A
Other languages
Japanese (ja)
Inventor
Hiroshi Okamoto
浩志 岡本
Masahiro Yoshida
正弘 吉田
Yutaka Ikeuchi
豊 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23708989A priority Critical patent/JPH03100116A/en
Publication of JPH03100116A publication Critical patent/JPH03100116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To increase degassing reaction area in a vacuum vessel and to promote the degassing-refining reaction by inclining the vacuum vessel in an RH type vacuum degassing-refining apparatus to the vertical direction and also fitting an uptake tube and a downtake tube for molten steel in the vertical direction to the molten steel in a ladle. CONSTITUTION:The vacuum vessel 1 in the RH type vacuum degassing apparatus is inclined by angle theta to the vertical direction, and the uptake submerged tube 2 and downtake submerged tube 3 for the molten steel 10 arranged to this vacuum vessel 1 are fitted in the vertical direction to the molten steel 10 surface in the ladle 9. Therefore, as the height of the vacuum vessel 1 can be made to low by the costheta X the height thereof in the case of setting this to the vertical direction, layout of the whole equipment can be made to low by this reduced height and also as the degassing reaction interface area in the vacuum vessel 1 is enlarged by (1/costheta)<2>, thus, the degassing reaction can be drastically accelerated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、熔融金属の真空脱ガス装置に関し、特に極低
炭素鋼の脱ガス処理を目的に真空槽内での溶鋼の環流を
行うRH式真空脱ガス装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a vacuum degassing device for molten metal, and in particular to an RH device for circulating molten steel in a vacuum chamber for the purpose of degassing ultra-low carbon steel. This relates to a type vacuum degassing device.

〈従来の技術〉 RH式真空脱ガス法は、真空槽あるいは取鍋を定位置に
移動させ、環流ガスで溶融金属例えば溶鋼を真空中に環
流させ溶鋼の脱ガスを行う方法である。一般には第3図
、第4図に示すような方法で脱ガス処理が行われている
が、溶鋼の攪拌強度を上げるための技術として、第5図
(特開昭58−81935号公報参照)、第6図(特開
昭58−6942号参照)に示す方法が提案されている
<Prior Art> The RH vacuum degassing method is a method in which a vacuum chamber or a ladle is moved to a fixed position, and molten metal, such as molten steel, is circulated in a vacuum using circulating gas to degas the molten steel. Degassing treatment is generally performed by the method shown in Figures 3 and 4, but as a technique to increase the stirring intensity of molten steel, Figure 5 (see Japanese Patent Application Laid-Open No. 58-81935) , a method shown in FIG. 6 (see Japanese Unexamined Patent Publication No. 58-6942) has been proposed.

第5図に示す方法は、真空槽1を支持フレーム8に対し
て傾斜させて設置し、大空槽内の溶鋼深さが上昇浸漬管
2側で浅く(第5図の溶鋼深さh+)、下降浸漬管3側
で深く(第5図の溶鋼深さh!)なるようにして脱ガス
能力を高めることを狙ったものである。
In the method shown in FIG. 5, the vacuum tank 1 is installed inclined with respect to the support frame 8, and the depth of the molten steel in the large tank is shallow on the rising immersion pipe 2 side (molten steel depth h+ in FIG. 5). This is aimed at increasing the degassing ability by making the depth (molten steel depth h in FIG. 5) deeper on the descending immersion pipe 3 side.

第6図に示す方法では、真空槽1を揺動させることによ
って上昇浸漬管2ならびに下降浸漬管3の下端を取鍋9
の深さ方向に沿って繰り返し移動させ、吸入、吐出のレ
ベルを上下方向に変化させることによって反応界面の更
新を連続的に行うことを狙ったものである。
In the method shown in FIG. 6, by rocking the vacuum chamber 1, a ladle 9 at the lower ends of the ascending dip tube 2 and the descending dip tube 3 is removed.
The aim is to continuously update the reaction interface by repeatedly moving it along the depth direction and changing the levels of suction and discharge in the vertical direction.

〈発明が解決しようとする課題〉 第3図、第4図に示す方法では、溶鋼の攪拌強度をあげ
るために浸漬管の内径を大きくするとか、環流ガス量を
増大させるなどの方法がとられてきたが、溶鋼の反応界
面積は真空槽1の内径面積と同じまでしか大きくできず
攪拌強度にも限界があり極低炭素鋼や高級鋼の製造には
不十分である。
<Problems to be Solved by the Invention> In the methods shown in Figures 3 and 4, methods such as increasing the inner diameter of the immersion tube or increasing the amount of circulating gas are used to increase the strength of stirring the molten steel. However, the reaction interface area of molten steel can only be increased to the same extent as the inner diameter area of the vacuum chamber 1, and the stirring strength is also limited, making it insufficient for producing ultra-low carbon steel or high-grade steel.

また、第3図に示す方法においては、スプラッシュ11
が飛散し排気ダクト7に付着することを防ぐために、真
空槽1を高く設計する必要があるので建屋が高くなると
いう問題がある。
In addition, in the method shown in FIG. 3, the splash 11
In order to prevent the vacuum chamber 1 from scattering and adhering to the exhaust duct 7, it is necessary to design the vacuum chamber 1 to be high, so there is a problem that the building becomes taller.

第5図に示す方法では、真空槽1が鉛直方向に対しであ
る傾斜角を持っているため反応界面積は第3図の方法よ
りも拡大する。しかしながら上昇浸漬管2.下降浸漬管
3も真空槽lと同様に傾斜角を持っているため溶鋼1G
の流れが阻害され、取鍋9内にデッドゾーンが形成され
てしまい、反応効率が十分に向上しない。
In the method shown in FIG. 5, the reaction interface area is larger than in the method shown in FIG. 3 because the vacuum chamber 1 has a certain inclination angle with respect to the vertical direction. However, the rising dip tube2. The descending immersion pipe 3 also has an inclination angle like the vacuum tank 1, so the molten steel 1G
flow is obstructed, a dead zone is formed within the ladle 9, and the reaction efficiency is not sufficiently improved.

第6図に示す方法では、真空槽lの機械的揺動によって
真空槽1内および取鍋9内の環流が非定常流となるため
反応効率は向上するが、真空槽1を揺動させるための装
置が複雑で大がかりとなるという問題がある。また、第
3図の方法と同様に建屋が高くなるという問題もある。
In the method shown in FIG. 6, the reaction efficiency is improved because the reflux in the vacuum chamber 1 and the ladle 9 becomes an unsteady flow due to the mechanical rocking of the vacuum chamber 1. However, since the vacuum chamber 1 is rocked, The problem is that the equipment is complicated and large-scale. Also, similar to the method shown in Figure 3, there is also the problem that the building becomes taller.

本発明は、前記の諸問題を解決し、溶鋼の反応界面積を
増大させて反応効率を増大させ、かつ設備全体を低くレ
イアウトできる真空脱ガス装置を提供するためになされ
たものである。
The present invention has been made in order to solve the above-mentioned problems, to provide a vacuum degassing apparatus that increases the reaction efficiency by increasing the reaction interface area of molten steel, and allows the entire equipment to be laid out low.

く課題を解決するための手段〉 本発明は、取鍋内溶融金属を上昇・下降浸漬管を具える
真空槽内に吸上げ、下降、吐出させる環流を施すことに
よって真空脱ガス処理を行う装置において、鉛直方向に
対して所定の傾斜角を持った真空槽と、該真空槽の下端
部に鉛直方向に吊設された上昇・下降浸漬管とからなる
ことを特徴とする溶融金属の真空脱ガス装置である。
Means for Solving the Problems The present invention provides an apparatus for performing vacuum degassing treatment by applying reflux to molten metal in a ladle by sucking it up into a vacuum chamber equipped with rising and falling immersion pipes, and then discharging it. , a vacuum desorption method for molten metal characterized by comprising a vacuum chamber having a predetermined inclination angle with respect to the vertical direction, and rising and descending immersion pipes vertically suspended from the lower end of the vacuum chamber. It is a gas device.

く作 用〉 本発明では、真空槽lを鉛直方向に対しθ(度)だけ傾
斜させて設置する。したがって脱ガス設備の高さは、第
3図のように真空槽lを鉛直に設置する場合のcosθ
倍に抑えることができる。また、真空槽には、排気ダク
ト7、合金鉄添加ホッパ18.酸素上吹ランス19等の
付帯設備を真空処理待鋼浴面の上方に位置するように取
付けるが、これらも低い位置に設置することができ、結
果として建屋は低くてすむ。
Effects> In the present invention, the vacuum chamber 1 is installed with an inclination of θ (degrees) with respect to the vertical direction. Therefore, the height of the degassing equipment is cosθ when the vacuum chamber l is installed vertically as shown in Figure 3.
It can be doubled. The vacuum chamber also includes an exhaust duct 7, a ferroalloy addition hopper 18. Ancillary equipment such as the oxygen top blowing lance 19 is installed above the surface of the vacuum treatment steel bath, but these can also be installed at a lower position, resulting in a lower building.

また、真空槽lを傾けることによって反応界面積が(1
/cogθ)8に拡大するため反応効率が上昇する。
In addition, by tilting the vacuum chamber l, the reaction interface area can be increased by (1
/cogθ)8, the reaction efficiency increases.

さらに、上昇浸漬管2.下降浸漬管3は溶鋼lOの中に
鉛直方向から浸漬させられているので、上昇浸漬管2.
下降浸漬管3が傾斜していたり揺動していたりする場合
に比べて溶鋼10の吸上、吐出の流れがスムーズになる
ため、反応効率が向上する。
Furthermore, the rising dip tube 2. Since the descending immersion tube 3 is immersed vertically into the molten steel lO, the ascending immersion tube 2.
Compared to the case where the descending immersion pipe 3 is inclined or swings, the flow of sucking up and discharging the molten steel 10 becomes smoother, so that the reaction efficiency is improved.

〈実施例〉 第1図、第2図に本発明に係る真空脱ガス装置(例)を
示す。
<Example> FIG. 1 and FIG. 2 show a vacuum degassing apparatus (example) according to the present invention.

真空槽1の下端部に上昇浸漬管2.下降浸漬管3が取付
けられている。真空槽lは支持ブラケット6を介して支
持フレーム8に接続されている。
At the bottom end of the vacuum chamber 1 there is a rising dip tube 2. A descending dip tube 3 is installed. The vacuum chamber l is connected to a support frame 8 via a support bracket 6.

この真空槽1は鉛直方向に対し角度θ(度)だけ傾いて
おり、上部には排気ダクト7、合金鉄添加ホッパ18.
酸素上吹ランス19が取付けられている。
This vacuum chamber 1 is inclined at an angle θ (degrees) with respect to the vertical direction, and has an exhaust duct 7 and a ferroalloy addition hopper 18 at the top.
An oxygen top blow lance 19 is attached.

この設備を用いて脱ガス処理を行うには、上昇浸漬管2
.下降浸漬管3のそれぞれの下端を取鍋9内の溶鋼10
の深さ200〜500m程度の位置に浸漬させる。その
後、排気ダクト7を介して真空排気を行い真空槽1内を
0.1〜0.5m1g程度の真空下に保持する。一方、
切換バルブ16を開き、上昇浸漬管2の中間部分に設け
られた不活性ガス配管4より不活性ガス5を吹込み、溶
鋼10に比重差を生じさせることによって上昇させ循環
攪拌する。
To perform degassing using this equipment, the rising dip tube 2
.. Molten steel 10 in ladle 9 at the lower end of each descending dip tube 3
The water is immersed at a depth of approximately 200 to 500 m. Thereafter, the vacuum chamber 1 is evacuated through the exhaust duct 7 to maintain a vacuum of about 0.1 to 0.5 ml/g. on the other hand,
The switching valve 16 is opened, and an inert gas 5 is blown into the molten steel 10 from the inert gas pipe 4 provided in the middle portion of the rising dipping tube 2 to cause a difference in specific gravity in the molten steel 10, thereby causing the molten steel 10 to rise and be circulated and stirred.

上昇浸漬管2の上部では不活性ガス5により溶鋼10が
飛び散りスプラッシュ11が形成される。脱ガス効率を
高めるには真空槽!内での反応界面積の増大や、溶鋼の
滞留時間の延長が有効であり、真空槽1を傾斜させるこ
とにより反応界面積が増大する。
At the upper part of the rising dipping tube 2, the inert gas 5 causes the molten steel 10 to scatter, forming a splash 11. Vacuum chamber to increase degassing efficiency! It is effective to increase the reaction interface area within the chamber and extend the residence time of molten steel, and by tilting the vacuum chamber 1, the reaction interface area is increased.

真空槽の傾斜角θと反応界面積、設備の高さとの関係を
第1表に示したが、例えばθ−40(度)の場合、θ−
〇(度)の場合に比べて反応界面積は1.7倍に増大し
、一方、設備の高さは23%低減できる。
Table 1 shows the relationship between the inclination angle θ of the vacuum chamber, the reaction interface area, and the height of the equipment. For example, in the case of θ-40 (degrees), θ-
Compared to the case of 〇 (degrees), the reaction interface area increases by 1.7 times, while the height of the equipment can be reduced by 23%.

第1表 また、浸漬管は、第1図に示すように真空槽lの最下端
部に鉛直下向きに吊設される。これによって溶鋼lOの
環流がスムーズに行われるようになり、反応効率の向上
に寄与する。
Table 1 Also, as shown in FIG. 1, the immersion tube is suspended vertically downward from the lowest end of the vacuum chamber 1. This allows the molten steel IO to circulate smoothly, contributing to improvement in reaction efficiency.

〈発明の効果〉 本発明に係る真空脱ガス装置を用いると、反応界面積の
増大によって、脱ガス反応効率の向上ができ、また設備
全体を低くレイアウトでき建屋も低くレイアウトできる
<Effects of the Invention> When the vacuum degassing apparatus according to the present invention is used, the degassing reaction efficiency can be improved by increasing the reaction interface area, and the entire equipment can be laid out low, and the building can also be laid out low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る装置(例)の側面断面図、第2
図は、第1図のX−X規正面断面図、第3図は、従来の
装置(1)の正面断面図、第4図は、第3図のY−Y挽
断面図、第5図は、従来の装置(2)の正面断面図、第
6図は、従来の装置(3)の正面断面図である。 l・・・真空槽、      2・・・上昇浸漬管、3
・・・下降浸漬管、    4・・・不活性ガス配管、
5・・・不活性ガス(^r等)、6・・・支持ブラケッ
ト、7・・・排気ダクト、     8・・・支持フレ
ーム、9・・・取 鍋、      lO・・・溶 鋼
、lト°1スプラッシュ、   12・・・支持台、1
3・・・支持台、      14・・・取付ボルト、
15・・・取付ボルト、    16・・・切換バルブ
、17・・・合金鉄投入シュート、18・・・添加ホッ
パ、19・・・酸素上吹ランス、  h・・・溶鋼深さ
、h、・・・溶鋼深さ、     h8・・・溶鋼深さ
、S・・・定常流、      θ・・・真空槽の傾斜
角。
FIG. 1 is a side sectional view of a device (example) according to the present invention, and FIG.
The figures are a front sectional view taken along line X-X in Figure 1, Figure 3 is a front sectional view of the conventional device (1), Figure 4 is a Y-Y cross-sectional view in Figure 3, and Figure 5. is a front sectional view of a conventional device (2), and FIG. 6 is a front sectional view of a conventional device (3). l...Vacuum tank, 2...Rising dip tube, 3
... Descending dip pipe, 4... Inert gas piping,
5... Inert gas (^r, etc.), 6... Support bracket, 7... Exhaust duct, 8... Support frame, 9... Ladle, lO... Molten steel, l °1 splash, 12... support stand, 1
3...Support stand, 14...Mounting bolt,
15... Mounting bolt, 16... Switching valve, 17... Ferroalloy charging chute, 18... Addition hopper, 19... Oxygen top blow lance, h... Molten steel depth, h,. ... Molten steel depth, h8... Molten steel depth, S... Steady flow, θ... Inclination angle of the vacuum chamber.

Claims (1)

【特許請求の範囲】[Claims]  取鍋内溶融金属を上昇・下降浸漬管を具える真空槽内
に吸上げ、下降、吐出させる環流を施すことによって真
空脱ガス処理を行う装置において、鉛直方向に対して所
定の傾斜角を持った真空槽と、該真空槽の下端部に鉛直
方向に吊設された上昇・下降浸漬管とからなることを特
徴とする溶融金属の真空脱ガス装置。
A device that performs vacuum degassing treatment by applying reflux to suck up molten metal in a ladle into a vacuum chamber equipped with rising and falling immersion pipes, and then discharge it. 1. A vacuum degassing device for molten metal, comprising: a vacuum chamber; and an ascending/descending immersion tube vertically suspended from the lower end of the vacuum chamber.
JP23708989A 1989-09-14 1989-09-14 Apparatus for vacuum degassing-molten metal Pending JPH03100116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23708989A JPH03100116A (en) 1989-09-14 1989-09-14 Apparatus for vacuum degassing-molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23708989A JPH03100116A (en) 1989-09-14 1989-09-14 Apparatus for vacuum degassing-molten metal

Publications (1)

Publication Number Publication Date
JPH03100116A true JPH03100116A (en) 1991-04-25

Family

ID=17010247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23708989A Pending JPH03100116A (en) 1989-09-14 1989-09-14 Apparatus for vacuum degassing-molten metal

Country Status (1)

Country Link
JP (1) JPH03100116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103352102A (en) * 2013-07-08 2013-10-16 党浩然 Rotary vacuum degassing device
US9016471B2 (en) 2010-12-20 2015-04-28 Colgate-Palmolive Company Toothbrush including kit for decorating said toothbrush

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016471B2 (en) 2010-12-20 2015-04-28 Colgate-Palmolive Company Toothbrush including kit for decorating said toothbrush
CN103352102A (en) * 2013-07-08 2013-10-16 党浩然 Rotary vacuum degassing device

Similar Documents

Publication Publication Date Title
JPH03100116A (en) Apparatus for vacuum degassing-molten metal
SU1135773A1 (en) Method for batch vacuum treatment of steel
JP2915631B2 (en) Vacuum refining of molten steel in ladle
RU30142U1 (en) Vacuum Circulator
JPS62142715A (en) Immersion pipe for rh vacuum degassing apparatus
JP2003147423A (en) Method and apparatus for refining molten metal in vessel
JP3749622B2 (en) Dehydrogenation method for molten steel
JP2005264264A (en) Method and apparatus for vacuum-refining molten steel
JPS5919717Y2 (en) Vacuum degassing equipment
JP3252726B2 (en) Vacuum refining method for molten steel
JPH0741835A (en) Method for vacuum-refining molten steel by gas injection
JPH05339624A (en) Smelting method for dead soft steel by circular column type ladle degassing device
JP3374618B2 (en) Vacuum refining method for molten steel
JPH08134530A (en) Vacuum-degassing of molten steel
JPH06322430A (en) Vacuum refining method of molten metal
JPH04183814A (en) Production of extra-low carbon steel
JPH02247318A (en) Immersed pipe for degasification refining
JPH08120324A (en) Apparatus and method for vacuum-refining molten steel
JPH0610027A (en) Vacuum degassing refining method for molten metal
JPH02173204A (en) Vacuum vessel for rh-degassing apparatus
JP2978045B2 (en) Vacuum refining method for molten steel with high decarburization characteristics
JPH0280507A (en) Submerged tube in vacuum degassing apparatus
JPS57200514A (en) Method for degassing molten steel
JPH0696738B2 (en) Vacuum degassing apparatus for ultra-low carbon steel production and operating method
JPH0741834A (en) Method for vacuum-refining molten steel having high circulating flow characteristic