JPH02998B2 - - Google Patents

Info

Publication number
JPH02998B2
JPH02998B2 JP5043981A JP5043981A JPH02998B2 JP H02998 B2 JPH02998 B2 JP H02998B2 JP 5043981 A JP5043981 A JP 5043981A JP 5043981 A JP5043981 A JP 5043981A JP H02998 B2 JPH02998 B2 JP H02998B2
Authority
JP
Japan
Prior art keywords
reaction space
water
methane
organic matter
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5043981A
Other languages
Japanese (ja)
Other versions
JPS5710394A (en
Inventor
Aburahamu Ryukenzu Berendo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSUCHI BUURU BEWAARINGU EN FUERUERUKINGU FUAN RANDOBU PURODEYUKUTEN
Original Assignee
INSUCHI BUURU BEWAARINGU EN FUERUERUKINGU FUAN RANDOBU PURODEYUKUTEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSUCHI BUURU BEWAARINGU EN FUERUERUKINGU FUAN RANDOBU PURODEYUKUTEN filed Critical INSUCHI BUURU BEWAARINGU EN FUERUERUKINGU FUAN RANDOBU PURODEYUKUTEN
Publication of JPS5710394A publication Critical patent/JPS5710394A/en
Publication of JPH02998B2 publication Critical patent/JPH02998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/50Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

【発明の詳細な説明】 本発明は植物又は動物又はこの両方から由来す
る固体有機物に少なくとも2段階からなる処理を
行ない、その第1段階では、これを嫌気的条件下
で行なつて水溶性生成物に分解し、そして低分子
量脂肪酸が生じ、一方次の段階(複数)で嫌気的
条件下前記の有機化合物からメタンが生ずる前記
の固体有機物の嫌気的転換法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves the treatment of solid organic matter derived from plants and/or animals in at least two stages, the first of which is carried out under anaerobic conditions to produce water-soluble products. The present invention relates to a process for the anaerobic conversion of solid organic substances as described above, in which methane is produced from the organic compounds under anaerobic conditions in the next step(s).

「Wiukler Prins Technische Encyclopedio」
(1)第119頁(1975)にはいわゆる嫌気的消化とは
固体有機廃棄物を堆肥に転換するために長く放置
する方法であることが記載される。堆肥を形成す
る方法は好気的条件下で容易に攻撃できる有機化
合物の微生物消化を含む。この堆肥形成法は通常
には開放空気又は土地充満法であり、ここで積重
ねを形成することによつて廃棄物を処置する。こ
の処理中これらの積重ねを湿潤し、そして掘削機
又はグラグクレーンにより数回ひつくり返す。
"Wiukler Prins Technische Encyclopedio"
(1) Page 119 (1975) states that so-called anaerobic digestion is a method of leaving solid organic waste for a long time in order to convert it into compost. The method of forming compost involves microbial digestion of easily attackable organic compounds under aerobic conditions. This composting method is usually an open air or land filling method in which waste is disposed of by forming stacks. During this process, the stacks are moistened and turned over several times with an excavator or gulag crane.

後者の方法は労力、時間及び空間を要し、この
ためその費用は著しい。この方法の他の欠点は好
気的消化では一方では価値ある有機物が一部価値
のない二酸化炭素と水に転換し、他方では地下水
の汚染を避ける条件を必要とすることである。
The latter method is labor-intensive, time-consuming and space-intensive, so its cost is significant. Another disadvantage of this method is that aerobic digestion requires conditions that, on the one hand, partially convert valuable organic matter into worthless carbon dioxide and water and, on the other hand, avoid contamination of groundwater.

“H2O”Tijdschrift Voor Watervoorziening
en afvalwaterbehandeling(水供給と廃棄水処理
のための定期刊行物)(22)531(1977)は低粘度と
低固体含量を有する有機廃棄物と無機塩の水性懸
濁液及び溶液に嫌気的発酵を行なうことを記載す
る。この記載によれば存在する多糖類の一部(例
えばセルロース)は厳密でない嫌気的条件下任意
に嫌気的バクテリアの影響下前の段階で可溶性単
量体に水解し、続いてこの可溶性単量体を脂肪酸
に転換する。次に嫌気的条件下反応器で前記の脂
肪酸からメタンが生ずる。この方法は堆肥を形成
する有機廃棄物の消化に対して適用できない。
“H 2 O”Tijdschrift Voor Watervoorziening
en afvalwaterbehandeling (Periodical for Water Supply and Waste Water Treatment) (22) 531 (1977) uses anaerobic fermentation to aqueous suspensions and solutions of organic wastes and inorganic salts with low viscosity and low solids content. Describe what to do. According to this description, some of the polysaccharides present (e.g. cellulose) are hydrolyzed into soluble monomers in a previous step under the influence of anaerobic bacteria under non-strict anaerobic conditions, and subsequently this soluble monomer is Converts into fatty acids. Methane is then produced from the fatty acids in a reactor under anaerobic conditions. This method is not applicable for the digestion of organic waste to form compost.

低粘度と低固体含量を有する、水性懸濁液と溶
液の前記の嫌気的発酵は嫌気的条件下タンク中で
前の段階を行なうことによつて得られるが、
“H2O”(10)、296(1977)に記載されるこの方法で
さえ固体有機廃棄物の消化に対して適していな
い。
Said anaerobic fermentation of aqueous suspensions and solutions with low viscosity and low solids content is obtained by carrying out the previous step in a tank under anaerobic conditions,
Even this method described in "H 2 O" (10), 296 (1977) is not suitable for the digestion of solid organic wastes.

メタン反応器中で低粘度と低固体含量を有する
有機物の水性懸濁液と溶液の嫌気的発酵のこれら
の二つの具体例ではバクテリア豊有スラツジ、好
ましくは粒状生成物が排出液及びガスから分離さ
れる。
In these two embodiments of anaerobic fermentation of aqueous suspensions and solutions of organic matter with low viscosity and low solids content in a methane reactor, a bacteria-rich sludge, preferably a granular product, is separated from the effluent and gases. be done.

低粘度と低固体含量を有する有機物の水性懸濁
液又は溶液からの代りに固体有機物から単一段階
でメタンを生ずることが望ましい場合には、反応
速度が非常に小さいようである。それ故に、媒体
が酸発生微生物、並びにメタン発生微生物に対し
て強い伝達阻害効果を有する理由は高い酸性度が
はやく到達することにある。結果的に、更に酸発
生はなくそしてメタン発生の何れもないが、悪臭
の発生が生ずる(H2S、他のイオウ化合物及び
NH3)(参照、Journal of the environmental
engineering division、June1978、第415−422
頁)。
If it is desired to produce methane in a single step from a solid organic material instead of from an aqueous suspension or solution of the organic material with low viscosity and low solids content, the reaction rate is likely to be very low. Therefore, the reason why the medium has a strong transfer inhibiting effect on acid-producing microorganisms as well as methanogenic microorganisms is that high acidity is reached quickly. As a result, there is no further acid generation and no methane generation, but there is an odor evolution (H 2 S, other sulfur compounds and
NH 3 ) (Reference, Journal of the environmental
engineering division, June 1978, No. 415-422
page).

溶解したCODの百分率及びこの転換における
酵発生対時間の曲線を第1図に示し、ここで点線
は溶解した脂肪酸−COD含量を示す。
The percentage of dissolved COD and the curve of fermentation vs. time for this conversion are shown in FIG. 1, where the dotted line indicates the dissolved fatty acid-COD content.

この図からこの場合には25%以上の最大可溶性
CODが3日間予備アシドリシス(acidolysis)後
にわら+ビートパルプ+乾燥した牛ふんの接種し
た混合物から既に溶解していることが明らかであ
る。次にこのCODは14%の脂肪酸+CODを含む。
30日後にこれは約25%に増加した。この段階では
メタンガスは発生しない。
From this figure the maximum solubility in this case is more than 25%
It is clear that the COD is already dissolved from the inoculated mixture of straw + beet pulp + dried cow dung after 3 days of pre-acidolysis. Next, this COD contains 14% fatty acids + COD.
After 30 days this increased to approximately 25%. No methane gas is generated at this stage.

乾燥物質を最初に粉砕すること、次にこの粉砕
した物質を水に分散させ、続いてこれを嫌気的に
発酵することによつて低粘度と低固体含量を有す
る有機物の懸濁液又は溶液に対して前記の方法に
より固体有機廃棄物の嫌気的発酵を行なう試みも
なされている。しかしながら、このスラリの乾燥
固体含量から重量%を越えることができないこと
が判明した。
A suspension or solution of organic matter having a low viscosity and low solids content is obtained by first grinding the dry material, then dispersing this ground material in water, and subsequently fermenting it anaerobically. On the other hand, attempts have also been made to carry out anaerobic fermentation of solid organic waste using the above-mentioned method. However, it was found that the dry solids content of this slurry could not exceed % by weight.

更に1976年8月付の米国商務省のPB−258499
の刊行物の第36頁に固体廃棄物のスラリの製造の
ためにメタン反応器の排出液を使用することによ
つて12重量%の固体含量を有するスラリを製造す
る方法が記載される。同様に必要に応じて水解処
理を受けた、廃棄物、例えば肥料、都市ごみ、生
の下水、一次スラツジ、活性化スラツジ又はバイ
オマスを16ないし160g/lの量で反応の第1段
階に連続して供給し、そこからかきまぜと嫌気的
条件下で低分子量脂肪酸が形成される方法が米国
特許第4,022,665号に記載される。
Additionally, US Department of Commerce PB-258499 dated August 1976.
On page 36 of the publication, a method is described for producing a slurry with a solids content of 12% by weight by using the effluent of a methane reactor for producing a slurry of solid waste. Wastes, such as fertilizers, municipal solid waste, raw sewage, primary sludge, activated sludge or biomass, which have likewise been subjected to a hydrolysis treatment if necessary, are added to the first stage of the reaction in amounts of 16 to 160 g/l. A method is described in US Pat. No. 4,022,665 in which low molecular weight fatty acids are formed under agitation and anaerobic conditions.

続いて脂肪酸と他の分解生成物を含有する前記
の液体混合物を少なくとも一つの第2の(メタン
形成性)段階に反応の第1の(酸性化)段階から
有機物1.6ないし8g//日の量で間欠的に又
は連続的に供給し、ここで前記の酸性液体混合物
をかきまぜと嫌気的条件下二酸化炭素とメタンに
反応させる。必要に応じて水解処理を行なつた後
に、液体及び/又は固体物質からなる前記の液体
混合物の残りの部分を反応の第1段階に再循環さ
せて再び全工程を受けさせる。
Subsequently, said liquid mixture containing fatty acids and other decomposition products is passed into at least one second (methane-forming) stage from the first (acidifying) stage of the reaction in an amount of 1.6 to 8 g/day of organic matter. The acidic liquid mixture is stirred and reacted with carbon dioxide and methane under anaerobic conditions. After optional hydrolysis treatment, the remaining portion of said liquid mixture of liquid and/or solid substances is recycled to the first stage of the reaction and undergoes the entire process again.

現在反応空間中で、反応の第1段階で発生した
水溶性脂肪酸及び他の水溶性有機及び無機物を実
質上完全に除去すること、水性液体で水洗いしか
つ得られた溶液を少なくとも一つの補助の反応器
に供給し、ここで反応空間中になお存在する水不
溶性物質を前記の反応空間に残し、一方前記の補
助の反応器中で前記の水溶液の有機物を二酸化炭
素とメタンの混合物に転換しそして続いて安定化
堆肥の性質を有する反応空間中に残された物質を
前記の反応空間から除去することによつて固体有
機物のずつと有効な嫌気的転換が得られることが
判明した。
Currently in the reaction space, the water-soluble fatty acids and other water-soluble organic and inorganic substances generated in the first stage of the reaction are substantially completely removed, washed with an aqueous liquid and the resulting solution is washed with at least one auxiliary liquid. is fed to a reactor, where the water-insoluble substances still present in the reaction space are left in said reaction space, while in said auxiliary reactor the organic matter of said aqueous solution is converted into a mixture of carbon dioxide and methane. It has been found that an effective anaerobic conversion of the solid organic matter can be obtained by subsequently removing from said reaction space the substances left in the reaction space which have the properties of a stabilized compost.

本発明の方法と米国特許第4022665号の方法の
重要な差は次のとおりである: (1) 本発明の方法では廃棄物を反応空間へ連続し
て供給しない; (2) 本発明の方法では第1段階で嫌気的条件下で
生じた水溶性脂肪酸及び他の水溶性有機物、並
びにそこに存在する無機物を水性液体で水洗す
ることによつて反応マスから実質上完全に除去
する。結果として、水不溶性物質が反応空間に
留まる。この状態により反応空間中でPHが低く
なりすぎること及び/又は他の阻害生成物の濃
度が高くなつて微生物フローラの成長が高すぎ
る濃度の阻害物質又は低くすぎるPH値の媒体に
より阻害されることが避けられる。更に液体生
成物に分解されなかつた物質、例えばセルロー
ス含有物質を補助の反応器へ供給し、この反応
器中で分解しかつ転換し、そしてメタンの製造
に影響することが避けられる; (3) 本発明による方法の好適具体例により補助の
反応器中で水とガスの分離後丁度その水相を反
応空間に存在するマスを水洗するために使用す
る; (4) 本発明による方法において、安定化した堆肥
が反応空間に形成され、転換が完了した時にこ
の反応空間から堆肥を除去する。公知の方法で
は安定化したマスは反応空間で得られなかつ
た。
The important differences between the method of the present invention and the method of U.S. Pat. No. 4,022,665 are as follows: (1) The method of the present invention does not continuously feed waste to the reaction space; (2) The method of the present invention In the first step, the water-soluble fatty acids and other water-soluble organic substances produced under anaerobic conditions, as well as the inorganic substances present therein, are substantially completely removed from the reaction mass by washing with an aqueous liquid. As a result, water-insoluble substances remain in the reaction space. This condition results in the PH becoming too low in the reaction space and/or the concentration of other inhibitory products becoming so high that the growth of the microbial flora is inhibited by too high a concentration of inhibitory substances or by a medium with a PH value that is too low. can be avoided. Furthermore, it is avoided that substances that have not been decomposed into liquid products, such as cellulose-containing substances, are fed to an auxiliary reactor, in which they are decomposed and converted, and that they affect the production of methane; (3) According to a preferred embodiment of the process according to the invention, the aqueous phase is used just after the separation of water and gas in the auxiliary reactor to wash the mass present in the reaction space; A converted compost is formed in the reaction space, and the compost is removed from the reaction space when the conversion is complete. No stabilized mass could be obtained in the reaction space with the known method.

米国商務省のPB−258499及び米国特許第
4022665号から公知の方法の欠点は固体物質の
粉砕のためエネルギーを消費すること及び前記
のスラリ中に多くのコロイド状物質の存在によ
り非常に高価な反応器の使用を必要とすること
である。
U.S. Department of Commerce PB-258499 and U.S. Patent No.
The disadvantages of the process known from No. 4,022,665 are that the grinding of the solid material consumes energy and that the presence of a large amount of colloidal material in the slurry requires the use of very expensive reactors.

本発明による方法を適用する時に、水洗いは反
応器中の阻害物質の濃度を減少しかつPH値の減少
を避けるために有効である。このようにして、微
生物フローラの伝搬が阻害物質の高すぎる濃度又
は媒体の低くすぎるPH値により阻害されることが
避けられる。
When applying the method according to the invention, water washing is effective to reduce the concentration of inhibitors in the reactor and avoid a decrease in the PH value. In this way, it is avoided that the propagation of the microbial flora is inhibited by too high concentrations of inhibitors or by too low PH values of the medium.

新しく供給された水で水洗いを行なうことがで
きるが、存在する脂肪酸の転換後補助の反応器か
らの排出液を反応器のための水洗い液として再循
環させることによつてこれを使用することが好ま
しい。
The rinsing can be carried out with freshly supplied water, which can be used after conversion of the fatty acids present by recycling the effluent from the auxiliary reactor as a rinsing liquid for the reactor. preferable.

前記の嫌気的発酵を中温性の温度範囲(5〜45
℃)及び高温性の温度範囲(25〜70℃)で行なう
ことができる。
The above anaerobic fermentation was carried out in the mesophilic temperature range (5-45
C) and in the high temperature range (25-70 C).

分解されるべき固体有機物の例として家庭廃棄
物、わら、果物廃棄物、葉、リンス果物等の皮、
外皮、じやがいもの皮、草及び一般に10〜60重量
%の含水量を有する有機物が挙げられる。更に特
に閉鎖空間内に保存しなければならない湿性で腐
敗し易くかつ悪臭の動物及び/又は植物の廃棄物
のためにこの方法を使用する。
Examples of solid organic matter to be decomposed are household waste, straw, fruit waste, leaves, peels of rinsed fruits, etc.
Mention may be made of rinds, potato skins, grasses and organic materials generally having a water content of 10 to 60% by weight. Furthermore, this method is used especially for wet, perishable and malodorous animal and/or plant wastes which have to be stored in closed spaces.

本発明による方法でまたいわゆる“エネルギー
フアーミング植物”、例えばケルプを有機出発物
質として使用できる。
In the process according to the invention it is also possible to use so-called "energy-farming plants", such as kelp, as organic starting material.

半停滞操作の場合、即ち反応空間の液体の排出
と更新が1日に1度行なわれる場合には例えば第
2図に示すようなCOD−溶液曲線が得られるこ
とが判明した。この場合には溶解したCODは2
日後約30%の脂肪酸−CODそして7日後約35%
の脂肪酸−CODを含む。
It has been found that in the case of semi-stagnant operation, ie when the reaction space is drained and renewed once a day, a COD-solution curve such as that shown in FIG. 2 is obtained, for example. In this case, the dissolved COD is 2
About 30% fatty acids after days - COD and about 35% after 7 days
of fatty acids - including COD.

連続した水洗いを適用する時には、第3図に示
すような反応器の流出液中のCOD−曲線対時間
が得られる。
When applying continuous water washing, a COD-curve in the reactor effluent versus time as shown in FIG. 3 is obtained.

この場合には補助の反応器からの排出液を(一
次)反応空間のためのリンス剤として使用する。
In this case, the effluent from the auxiliary reactor is used as a rinsing agent for the (primary) reaction space.

それ故実線から10日後ごく僅かのCODが反応
空間から溶解しそして点線から脂肪酸−COD含
量を示しこの可溶性CODは殆んど脂肪酸からな
ることが判る。
Therefore, it can be seen from the solid line that after 10 days very little COD has dissolved from the reaction space, and the dotted line shows the fatty acid-COD content, which indicates that this soluble COD consists mostly of fatty acids.

中温性の温度範囲内のこの転換でメタン発生を
第4図に示した。実線は(一次の)反応空間にお
けるガス発生に関係する。点線は補助の反応器に
おけるガス発生を示す。
Methane evolution in this conversion within the mesophilic temperature range is shown in Figure 4. The solid line relates to gas evolution in the (primary) reaction space. The dotted line indicates gas evolution in the auxiliary reactor.

10日後発酵できる固体有機物の約75%が分解し
そしてこれは溶液の形で排出された。
After 10 days about 75% of the fermentable solid organic matter had decomposed and this was discharged in the form of a solution.

発酵できる有機物の残りの25%を分解するため
に30日を要する。
It takes 30 days to break down the remaining 25% of the fermentable organic matter.

本発明による方法を実施する時に、各補助の反
応器に対して一つ以上の(一次の)反応空間を使
用することが適切であるようである。この操作の
方法を適用する時に、補助の反応器の最適性能を
得るために補助の反応器へ均質な組成物の流入液
を供給することができる。
When carrying out the process according to the invention, it seems appropriate to use one or more (primary) reaction spaces for each auxiliary reactor. When applying this method of operation, an influent of homogeneous composition can be fed to the auxiliary reactor in order to obtain optimal performance of the auxiliary reactor.

一次反応空間で特定の物質の分解を促進するた
めに補助の物質を加えることができる。
Auxiliary substances can be added to accelerate the decomposition of certain substances in the primary reaction space.

かくして、セルロースの加水分解を促進するた
めに、セルラーゼ又は微生物、即ちバクテリア又
は菌のセルラーゼ発生培地を分解されるべきセル
ロース含有物質に加えることができる。
Thus, in order to accelerate the hydrolysis of cellulose, cellulase or microbial, ie bacterial or fungal, cellulase generation medium can be added to the cellulose-containing material to be degraded.

他の水解促進添加剤は殿粉を分解するジアスタ
ーゼ又はアミラーゼ、ペクチンの水解のためのペ
クチナーゼ及びイヌリンの水解のためのイヌラー
ゼである。
Other hydrolysis-promoting additives are diastase or amylase for the hydrolysis of starch, pectinase for the hydrolysis of pectin and inulase for the hydrolysis of inulin.

一次反応空間は悪臭のない貯蔵ヤードとして使
用できる。廃棄物を反応空間の中に間欠的に移送
する場合には、この反応空間は完全に密封される
ので、悪臭を発生し始めず、一方存在する酸と生
じた酸が防腐効果を有する。
The primary reaction space can be used as an odor-free storage yard. If the waste is transferred intermittently into the reaction space, this reaction space is completely sealed so that no foul odors begin to develop, while the acid present and the acid produced have a preservative effect.

所望の任意の時に水性液体で水洗いすることに
よつてこの反応空間を操作に置く。この反応空間
を使用するこの方法は能率的な連続でためられる
廃棄物に作業するため週末には準備が必要である
古い方法と比較して重要な利点を供する。
Place the reaction space into operation by flushing with an aqueous liquid at any time desired. This method of using this reaction space offers significant advantages compared to older methods that require preparation on weekends to work with accumulated waste in efficient succession.

(一次)反応空間と補助の反応器のこの組合わ
せにおいて(一次)反応空間をバツチ方式で操作
しそして補助の反応器を連続して操作することを
示すために何ら説明を殆んど必要としない。本発
明による系において、補助の反応器は上向流反応
器の通常の適用におけるより速く作動し、その理
由は低粘度と小百分率の固体を有する分散に対す
る公知の方法とは異なつて(一次)反応空間から
の流出液が緩徐に分解可能な物質のコロイド状粒
子を含有しないからである。
In this combination of (primary) reaction space and auxiliary reactor, little explanation is needed to show that the (primary) reaction space is operated in batch mode and the auxiliary reactor is operated in series. do not. In the system according to the invention, the auxiliary reactor operates faster than in normal applications of upflow reactors, because unlike the known methods for dispersions with low viscosity and a small percentage of solids (primary) This is because the effluent from the reaction space does not contain colloidal particles of slowly decomposable substances.

反応空間からスラツジとして得られた堆肥物は
悪臭が実質上ないようなC:N比を有しそして固
体有機出発物質に存在する食品の塩を含有する。
The compost obtained as a sludge from the reaction space has a C:N ratio such that it is substantially free of malodor and contains food salts present in the solid organic starting material.

実施例 フレークト(Fla¨kt)装置で、木材、靴、タイ
ヤ等の大きな部品を家庭廃棄物から除去した。
EXAMPLE Large parts such as wood, shoes, tires, etc. were removed from domestic waste with a Flakt device.

更にこの家庭廃棄物から金属廃棄物、紙及びプ
ラツチツクの主な部品を除去した。
Additionally, metal waste, paper and major plastic parts were removed from this household waste.

残りの部品は100mmのメツシユ寸法を有するふ
るいを定量的に通過する湿性のふわりと柔い塊り
であつた。分析により下記の組成を有することが
判明した: 水 47.6重量% エーテル抽出物 1.6重量% 水抽出物 7.4重量% 水溶性タンパク質 1.6重量% ペクチン 0.3重量% ヘミセルロース 1.9重量% セルロース 7.1重量% リグニン 4.2重量% 灰分 28.1重量% 99.8重量% 前記の分析から前記の家庭廃棄物1Kgは359
g/KgのCODを有することが計算できる。
The remaining part was a moist, fluffy mass that quantitatively passed through a sieve with a mesh size of 100 mm. Analysis revealed the following composition: Water 47.6% by weight Ether extract 1.6% by weight Water extract 7.4% by weight Water-soluble protein 1.6% by weight Pectin 0.3% by weight Hemicellulose 1.9% by weight Cellulose 7.1% by weight Lignin 4.2% by weight Ash content 28.1% by weight 99.8% by weight From the above analysis, 1 kg of the above household waste is 359%
It can be calculated to have a COD of g/Kg.

前記の前処理廃棄物100Kgを48重量%の含水量
を有する嫌気的に腐敗させた家庭廃棄物5Kgと混
和した。ふるい底を備えた一次反応空間にこの混
和物を供給した。次に反応空間中の水レベルが家
庭廃棄物レベルより約10cm高くなるまで35℃の水
を前記の反応空間に供給した。50の容量を有す
る容器中で反応空間のふるい底の下に流出液を回
収した。この流出液は第1日に32g/のCOD
値を有し、そして続く日々ではこのCOD値は第
3図に示すコースを有した。
100 kg of the pretreated waste described above was mixed with 5 kg of anaerobically decayed domestic waste having a water content of 48% by weight. This mixture was fed into a primary reaction space equipped with a sieve bottom. Water at 35° C. was then fed into the reaction space until the water level in the reaction space was about 10 cm above the domestic waste level. The effluent was collected under the sieve bottom of the reaction space in a vessel with a capacity of 50 mL. This effluent had a COD of 32g/day on the first day.
and in subsequent days this COD value had the course shown in FIG.

前記の液体を71/日の割合で補助の反応器
(メタン反応器)の下方側部に前記の50容器か
らポンプで入れた。
The liquid was pumped from the 50 vessel into the lower side of the auxiliary reactor (methane reactor) at a rate of 71/day.

前記のメタン反応器は200の容量を有した。
補助の反応器の外被を加熱することによつて、そ
の内容物を35℃の温度に保つた。
The methane reactor had a capacity of 200.
The contents of the auxiliary reactor were maintained at a temperature of 35° C. by heating the jacket.

前記の補助の反応器の頂部にバクテリヤスラツ
ジ排出液(水)及びバイオマスを分離するための
セパレータを設けた。
A separator was provided at the top of the auxiliary reactor to separate the bacterial sludge effluent (water) and biomass.

分離されたバクテリヤスラツジを通常の方法で
補助の反応器の中に戻した。バイオマスをガスホ
ルダーに供給した。補助の反応器(メタン反応
器)が十分に高く用いられることにより、排出液
を一次反応器へ重力の影響下供給できる(71/
日の割合で)。
The separated bacterial sludge was returned to the auxiliary reactor in the usual manner. Biomass was fed into the gas holder. If an auxiliary reactor (methane reactor) is used sufficiently high, the effluent can be fed under the influence of gravity to the primary reactor (71/
(in percentage of days).

補助の反応器へ一次反応空間から71の排出液
の供給により、第1日に全部で825のメタンを
有する量のバイオマスが製造された。補助の反応
器で10日間の間作られたバイオマスの量は全部で
6417のメタンを含有した。前記のメタン製造は
第4図に示したコースを有した。10日後補助の反
応器へ液体の供給を完了した。
By feeding 71 effluents from the primary reaction space to the auxiliary reactor, a total of 825 methane quantities of biomass were produced on the first day. The total amount of biomass produced in the auxiliary reactor during 10 days was
Contained 6417 methane. The methane production described above had the course shown in FIG. After 10 days, the supply of liquid to the auxiliary reactor was completed.

3日後一次反応空間中でバイオマスの製造が開
始した。生じたメタンの全量は第4図に示すコー
スを有した。一次反応空間中で30日以内に生じた
バイオマスは全部で2140のメタンを含有した。
After 3 days, biomass production started in the primary reaction space. The total amount of methane produced had the course shown in FIG. The biomass produced within 30 days in the primary reaction space contained a total of 2140 methane.

30日後この家庭廃棄物はこれを堆肥として使用
できるレベルまで腐敗した。堆肥77.8Kgが得られ
た。これは49.2重量%の水分の百分率、39重量%
の灰分の百分率及び10.9重量%の有機物の百分率
を有した。
After 30 days, the household waste had decayed to the point that it could be used as compost. 77.8 kg of compost was obtained. This has a moisture percentage of 49.2% by weight, 39% by weight
It had a percentage of ash and a percentage of organic matter of 10.9% by weight.

実施例 10×5mの表面及び1mの高さをする反応空間
の壁と底にプラスチツクホイルを内部に被覆し
た。この反応空間の底ホイルの上に排水パイプの
系を適用した。続いてこの排水系の上に厚さ60cm
を有する砂層を適用した。この砂層の上にだめに
なつたトマト苗木100m3を積重ねた。
EXAMPLE The walls and bottom of a reaction space with a surface of 10 x 5 m and a height of 1 m were internally covered with plastic foil. A system of drainage pipes was applied on the bottom foil of this reaction space. Next, a 60cm thick layer is placed on top of this drainage system.
A sand layer with a sand layer was applied. 100 m 3 of failed tomato seedlings were stacked on top of this sand layer.

この植物は下記の平均組成を有した: 水分 84.8% テーテル抽出物 0.43% 水抽出物 2.17% 不溶性タンパク質 1.26% ペクチン 1.07% ヘミセルロース 0.70% セルロース 3.31% リグニン 1.27% 灰分 4.54% 全部で99.55% 前記の組成から前記の植物が130g/KgのCOD
を有することが計算できる。
The plant had the following average composition: Water 84.8% Teter extract 0.43% Water extract 2.17% Insoluble protein 1.26% Pectin 1.07% Hemicellulose 0.70% Cellulose 3.31% Lignin 1.27% Ash 4.54% Total 99.55% Composition as above. The above plants have a COD of 130g/Kg.
It can be calculated that

形成したトマト苗木の堆積の上にスピリンクル
管の系を適用した。続いて前記の堆積の上にプラ
スチツクチルトを適用し、これは反応空間の底と
壁を被覆するホイルと気密接合を形成した。1500
/時の容量で前記の堆積の上に35℃の温度を有
するメタン反応器の排出液を前記のスプリンクル
管を通してまき散らした。
A system of spirinkle tubes was applied on top of the formed pile of tomato seedlings. A plastic tilt was then applied on top of the deposit, which formed an airtight connection with the foil covering the bottom and walls of the reaction space. 1500
The effluent of the methane reactor having a temperature of 35° C. was sprinkled through the sprinkle tube onto the pile at a volume of 1/h.

排水系を通して前記の反応空間から透過物を引
出した。この透過物は第1日後3.7g/のCOD
値を有した。前記の液体を10.000の容量を有す
る容器に供給した。前記の加熱した液体を10m3
容量を有するメタン反応器の下方部分へ1500/
時の割合で供給した。
The permeate was withdrawn from the reaction space through a drainage system. This permeate has a COD of 3.7 g/day after the first day.
It had value. The liquid described above was fed into a container with a capacity of 10.000. The heated liquid was transferred to the lower part of the methane reactor with a capacity of 10 m3/ 1500 m3.
Supplied at the rate of time.

前記の反応器で35℃の温度で嫌気性バクテリヤ
によつて有機物は通常の方法でバイオマスに転換
した。
The organic matter was converted into biomass in the conventional manner by anaerobic bacteria in the reactor at a temperature of 35°C.

前記の反応器の上方側部でバイオマスと精製し
た水を別々に除去した。この水を反応空間中のス
プリンクル管にポンプで送つた。この反応空間か
らメタン反応器へ前記の液体流を30日間保つた。
反応空間中で前記の30日後に1240KgのCOD値を
有する量の有機物が透過物に溶解しかつこれで除
去された。60%のメタン百分率を有するバイオマ
スが全部で750m3形成しそして前記の量の有機物
から除去された。前記の30日後トマス苗木は堆肥
として使用されるのに十分に腐敗した。15重量%
の固体百分率を有する堆肥13m3が得られた。
Biomass and purified water were removed separately in the upper side of the reactor. This water was pumped into a sprinkle tube in the reaction space. The liquid flow from this reaction space to the methane reactor was maintained for 30 days.
After said 30 days in the reaction space, an amount of organic matter having a COD value of 1240 Kg was dissolved in the permeate and thus removed. A total of 750 m 3 of biomass with a methane percentage of 60% was formed and removed from the above amount of organic matter. After 30 days, the Thomas seedlings were sufficiently rotten to be used as compost. 15% by weight
13 m 3 of compost were obtained with a solids percentage of .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶解したCODの百分率の曲線と転換
での酸発生対時間の曲線を示し、第2図は反応空
間を水洗いした場合に溶解したCOD対時間の曲
線を示し、第3図は連続した水洗いを行なつた時
に反応器の排出液中のCOD対時間の曲線を示し、
そして第4図は各反応器において転換でのメタン
発生対時間の曲線を示す。
Figure 1 shows the curves of percent dissolved COD and acid generation versus time for conversion, Figure 2 shows the curves of dissolved COD versus time when the reaction space is washed with water, and Figure 3 shows the curves of dissolved COD versus time for continuous shows the curve of COD in the reactor effluent versus time when washing with water is carried out.
and FIG. 4 shows the curves of methane production versus time at conversion for each reactor.

Claims (1)

【特許請求の範囲】 1 植物又は動物又はこの両方から由来する固体
有機物に少なくとも2段階からなる処理を行な
い、その第1段階では、これを嫌気的条件下で行
なつて水溶性生成物に分解しそして低分子量脂肪
酸が生じ、一方次の段階(複数)で嫌気的条件下
前記の有機物からメタンが発生する固体有機物の
嫌気的転換法において、反応空間中で、反応の第
1段階で生じた水溶性脂肪酸及び他の水溶性有機
及び無機の物質を水性液体で水洗いにより除去し
かつ得られた液体を少なくとも一つの補助の反応
器に供給し、ここで反応空間になお存在する水不
溶性物質を前記の反応空間に残し、一方前記の補
助の反応器で、前記の水溶液の有機物を二酸化炭
素とメタンの混合物に転換し、そして続いて安定
化した堆肥の性質を有する前記の反応空間に残さ
れた物質を前記の反応空間から除去することを特
徴とする前記の方法。 2 各補助の反応器へ供給するため一つ以上の一
次反応空間を使用し、この一次反応空間に間欠的
に負荷しそしてしや断のため弁を備えた管によつ
て前記の補助の反応器へ接続することを特徴とす
る特許請求の範囲第1項に定義した方法。 3 少なくとも一つの一次反応空間を水洗いする
ため少なくとも一つの補助の反応器からの排出液
を使用することを特徴とする特許請求の範囲第1
項又は第2項に定義した方法。 4 反応空間中のメタン発生が自発的に生ずると
直ちに水洗い処理を抑制することを特徴とする特
許請求の範囲第1項に定義した方法。
[Scope of Claims] 1. Solid organic matter derived from plants or animals, or both, is subjected to at least two stages of treatment, the first of which is carried out under anaerobic conditions to decompose it into water-soluble products. In the anaerobic conversion process of solid organic matter, in which low molecular weight fatty acids are produced, while in the next stage(s) methane is evolved from said organic matter under anaerobic conditions, in the reaction space, the methane produced in the first stage of the reaction is The water-soluble fatty acids and other water-soluble organic and inorganic substances are removed by washing with an aqueous liquid and the resulting liquid is fed to at least one auxiliary reactor, where the water-insoluble substances still present in the reaction space are removed. left in said reaction space, while in said auxiliary reactor the organic matter of said aqueous solution is converted into a mixture of carbon dioxide and methane, and subsequently left in said reaction space with the properties of stabilized compost. 2. A method according to claim 1, characterized in that said substances are removed from said reaction space. 2 One or more primary reaction spaces are used to feed each auxiliary reactor, and the said auxiliary reactions are controlled by pipes provided with valves for intermittently loading and shutting off said primary reaction space. A method as defined in claim 1, characterized in that the method is connected to a device. 3. Claim 1, characterized in that the effluent from at least one auxiliary reactor is used for washing at least one primary reaction space.
or the method defined in paragraph 2. 4. A method as defined in claim 1, characterized in that the water washing process is inhibited as soon as methane generation in the reaction space occurs spontaneously.
JP5043981A 1980-04-03 1981-04-03 Anaerobic converting method for solid organic matter Granted JPS5710394A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL8001997A NL8001997A (en) 1980-04-03 1980-04-03 METHOD FOR ANAEROOB COMPOSTING OF SOLID ORGANIC WASTE MATERIAL.

Publications (2)

Publication Number Publication Date
JPS5710394A JPS5710394A (en) 1982-01-19
JPH02998B2 true JPH02998B2 (en) 1990-01-10

Family

ID=19835114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5043981A Granted JPS5710394A (en) 1980-04-03 1981-04-03 Anaerobic converting method for solid organic matter

Country Status (2)

Country Link
JP (1) JPS5710394A (en)
NL (1) NL8001997A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603379A (en) * 2012-03-20 2012-07-25 中国环境科学研究院 Processing method for organic solid waste

Also Published As

Publication number Publication date
NL8001997A (en) 1981-11-02
JPS5710394A (en) 1982-01-19

Similar Documents

Publication Publication Date Title
EP0037612B1 (en) A method for the anaerobic conversion of solid organic material
US5782950A (en) Device and process for composting and wet fermentation of biological waste
CA1198605A (en) Anaerobic digestion of organic waste for biogas production
US4684468A (en) Process and installation for anaerobic digestion
US1990523A (en) Method of producing methane
US2029702A (en) Process for the digestion of industrial wastes
US8894854B2 (en) Digester for high solids waste
HUE026329T2 (en) A process for the conversion of biomass of plant origin, and a combustion process
Razia et al. Agro-based sugarcane industry wastes for production of high-value bioproducts
EP0092882A1 (en) A one-step process for the controlled anaerobic fermentation of the organic fraction of municipal solid waste
JPH02998B2 (en)
JP3745978B2 (en) Method and apparatus for mixing and recycling food waste and wood waste
JPS6041593A (en) Treatment of waste liquid of shochu(low-class distilled spirits)
JPH0258999B2 (en)
EP0484867A1 (en) Process for the utilization of organic wastes for producing biogas and agricultural products
KR101327185B1 (en) A composite making method using both organic waste and sludge and the composite made by thereof
CN110373431A (en) A kind of preparation method of ashless high heating value biomass fuel
JP2003238278A (en) Method of composting sewer sludge
EP0473533B1 (en) A method of separating source-sorted organic domestic waste and other organic materials containing undesired foreign bodies
JPH0536393B2 (en)
JP3571273B2 (en) Circulation treatment method for sewage sludge
JPS5814995A (en) Methane fermentation of organic wastes
KR19980015649A (en) An apparatus for treating organic wastes by multi-stage continuous batch anaerobic composting and a method for treating organic wastes using the same
CN114478117A (en) Method for producing bio-organic fertilizer by resource utilization of sugar refinery filter mud
Chhabra et al. Techniques for anaerobic digestion of municipal and domestic solid wastes in India