JPH0299803A - Measuring apparatus for floating amount of transparent film - Google Patents

Measuring apparatus for floating amount of transparent film

Info

Publication number
JPH0299803A
JPH0299803A JP25306388A JP25306388A JPH0299803A JP H0299803 A JPH0299803 A JP H0299803A JP 25306388 A JP25306388 A JP 25306388A JP 25306388 A JP25306388 A JP 25306388A JP H0299803 A JPH0299803 A JP H0299803A
Authority
JP
Japan
Prior art keywords
transparent film
reflected
light
flying height
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25306388A
Other languages
Japanese (ja)
Inventor
Ryoji Ebisawa
海老澤 良二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP25306388A priority Critical patent/JPH0299803A/en
Publication of JPH0299803A publication Critical patent/JPH0299803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure the amount of float excellently without being affected by vibration by a method wherein a laser light is made to fall obliquely on the surface of a transparent film, a light reflected on the surface of the film and a light reflected on the surface of a support are made incident simultaneously and a distance between them is detected. CONSTITUTION:When a laser light 4 is made to fall on a transparent film 2, a part of the light is reflected as a reflected light 4a on a surface 2a, while the light transmitted through the film 2 is reflected on a support surface 1a and projected as a reflected light 4b. A light-detecting means (incorporated in a TV camera) 5 detects the lights 4a and 4b separately and measures a distance l1 between them. Prior to this operation, a distance l0 between reflected lights 4a' and 4b' is measured likewise with respect to a transparent film 2' which is made of the same material and has the same thickness as the film 2 and whose amount of float is zero, and it is stored in a memory 10. An arithmetic unit 6 calculates the amount x1 of float of the film 2 from an equation x1=(l1-l0)/(2x1sin theta) (theta is an incident angle of the light 4) by using the distances l0 and l1. With the angle theta (the distance l0) set at a prescribed value, the amount x1 of float can be measured only by determining the distance l1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は不透明な支持面上に配された透明フィルムの、
支持面上からの浮上量を測定する装置に関し、特に詳細
には振動等に影響されずに浮上量を正確に求めることの
できる浮上量の測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a transparent film disposed on an opaque support surface.
The present invention relates to a device for measuring a flying height from a support surface, and particularly relates to a flying height measuring device that can accurately determine a flying height without being affected by vibrations or the like.

(従来の技術) ポリエステル等からなるフィルムを搬送ラインに沿って
搬送する際には、該フィルムの支持体表面からの浮上量
を測定することが必要となる場合がある。また、エアに
より前記フィルムを浮上させつつ搬送する場合には前記
浮上量の測定は特に必要となる。
(Prior Art) When conveying a film made of polyester or the like along a conveyance line, it may be necessary to measure the flying height of the film from the surface of a support. Furthermore, when the film is transported while being floated by air, it is especially necessary to measure the flying height.

前記フィルムの浮上量は、まずレーザ光を斜め方向から
搬送路の所定の位置に入射させて前記支持体のフィルム
支持面で反射させ、この反射光を変位検出器に入射させ
てその入射位置に基づいて前記支持面の基準位置を求め
ておき、続いて前記フィルムが上記所定の位置を通過す
る際に再び前記レーザ光を照射してフィルム表面での反
射光を前記変位検出器に入射させ、その入射位置に基づ
いて前記フィルム表面位置を検出し、検出されたフィル
ム表面位置と前記基準位置の差からさらに予め求められ
ているフィルムの厚さを引くことにより求められる。
The flying height of the film is determined by first making a laser beam enter a predetermined position on the conveyance path from an oblique direction and reflecting it on the film support surface of the support body, and then making the reflected light enter a displacement detector and directing it to the incident position. based on the reference position of the support surface, and then, when the film passes the predetermined position, the laser beam is irradiated again to cause the reflected light on the film surface to enter the displacement detector, It is determined by detecting the film surface position based on the incident position and further subtracting the predetermined film thickness from the difference between the detected film surface position and the reference position.

(発明が解決しようとする課題) しかしながら、前記フィルムが不透明なものである場合
には、前記フィルムに入射する前記レーザ光の多くが前
記フィルム表面で反射するため、前記測定は良好に行な
われるが、前記フィルムが不透明である場合には、該フ
ィルムに前記レーザ光を入射させると、前記フィルム表
面で反射する光より、該フィルムを透過して前記支持面
上で反射する光の光量の方が多くなり、上述した変位検
出器は最も強い光の入射位置のみを検出してしまうので
、上記の方法により浮上量を測定することは困難になる
(Problem to be Solved by the Invention) However, when the film is opaque, most of the laser light incident on the film is reflected on the film surface, so the measurement is performed well. When the film is opaque, when the laser beam is incident on the film, the amount of light that passes through the film and is reflected on the support surface is greater than the amount of light that is reflected on the film surface. Since the displacement detector described above detects only the incident position of the strongest light, it becomes difficult to measure the flying height using the above method.

また、−最的に上記方法では、前記フィルム表面の位置
を測定する際に、振動等により前記支持体や前記変位検
出器の位置が変動すると正確な浮上量が測定できなくな
るという不都合も認められていた。
Furthermore, - lastly, the above method has the disadvantage that when measuring the position of the film surface, if the position of the support body or the displacement detector changes due to vibration etc., it becomes impossible to accurately measure the flying height. was.

本発明は上記の問題点に鑑みてなされたものであり、振
動等に影響されることなく、透明フィルムの支持面から
の浮上量を良好に測定することのできる浮上量測定装置
を提供することを目的とするものである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a flying height measuring device that can satisfactorily measure the flying height of a transparent film from a supporting surface without being affected by vibrations, etc. The purpose is to

(課題を解決するための手段および作用)本発明の透明
フィルムの浮上量測定装置は、透明フィルムに対し、フ
ィルム表面に非垂直な方向からレーザ光を入射させるレ
ーザ光源、該レーザ光のうち前記フィルム表面で反射し
た第1の反射光と、該レーザ光のうち前記透明フィルム
を透過して前記支持面上で反射した第2の反射光を同時
に入射させて再反射光の距離を検出する光検出手段、予
め浮上量が求められている前記透明フィルムあるいは基
準浮上量としたい位置での前記透明フィルムにおける前
記光検出手段により検出された前記距離を拭準値として
2俤しておくメモリ、および前記基準値と、各透明フィ
ルムについて前記光検出手段により検出された前記距離
に基づいて前記各透明フィルムの前記浮上量を算出する
演算部を備えたことを特徴とするものである。
(Means and Effects for Solving the Problems) The flying height measuring device for a transparent film of the present invention includes a laser light source that makes a laser beam incident on the transparent film from a direction non-perpendicular to the film surface; A first reflected light reflected on the film surface and a second reflected light of the laser light that is transmitted through the transparent film and reflected on the support surface are incident simultaneously to detect the distance of the re-reflected light. a detection means, a memory for storing the distance detected by the light detection means on the transparent film whose flying height is determined in advance or the transparent film at a position desired to be the reference flying height as a standard value; The present invention is characterized by comprising a calculation unit that calculates the flying height of each transparent film based on the reference value and the distance detected by the light detection means for each transparent film.

本発明によれば、前記透明フィルム上での前記第1の反
射光と前記支持面上での前記第2の反射光を同時に検出
してその距離を測定する前記光検出手段を用いることに
より、前記第1の反射光が前記第2の反射光に比べて弱
いものであっても再反射光を良好に検出して、検出値に
基づいて前記透明フィルムの浮上量を求めることができ
る。また再反射光は前記光検出手段により同時に検出さ
れるので、振動等が生じて前記支持面や前記光検出手段
の位置が変動しても、前記支持面と前記透明フィルムの
相対的な位置関係は正しく測定することができる。
According to the present invention, by using the light detection means that simultaneously detects the first reflected light on the transparent film and the second reflected light on the support surface and measures the distance between them, Even if the first reflected light is weaker than the second reflected light, the re-reflected light can be detected favorably and the flying height of the transparent film can be determined based on the detected value. Furthermore, since the re-reflected light is simultaneously detected by the light detection means, even if the positions of the support surface and the light detection means change due to vibrations, etc., the relative positional relationship between the support surface and the transparent film will be maintained. can be measured correctly.

また前記基準値が前記予め浮上量が求められている透明
フィルムに基づいて検出されている場合には、前記演算
部において算出される測定を行ないたい各透明フィルム
の前記浮上量は、前記支持面からの浮上量の絶対値とな
り、前記基準値が基準浮上量としたい位置での透明フィ
ルムに基づいて検出されている場合には、前記演算部に
おいて算出される前記各フィルムの浮上量は、前記基準
l乎上量に対する相対値となる。従って各透明フィルム
についてその浮上量の絶対値を求めたい場合には前者の
方法を用いればよいし、基準浮上量としたい位置から各
透明フィルムがどの程度偏位しているのかを求めればよ
い場合には後者の方法を用いればよい。
Further, when the reference value is detected based on the transparent film whose flying height has been determined in advance, the flying height of each transparent film to be measured calculated in the calculation section is calculated from the support surface. If the reference value is detected based on the transparent film at the position where the reference flying height is desired, the flying height of each film calculated in the calculation unit is the absolute value of the flying height from the This is a relative value to the reference l increase amount. Therefore, if you want to find the absolute value of the flying height for each transparent film, you can use the former method, or if you want to find the deviation of each transparent film from the position you want to use as the reference flying height. You can use the latter method.

なお、前記透明フィルムの浮上量は、上述した予め求め
られた浮上量または基準浮上位置、および前記基準値を
用いなくても、浮上量を測定したい前記透明フィルムに
おける前記第1の反射光と前記第2の反射光の距離のみ
に基づいて算出することも可能であるが、その際には、
前記レーザ光の前記透明フィルム内での屈折角、前記透
明フィルムの厚さ、前記透明フィルムの屈折率、フィル
ム外部の屈折率等のデータが必要となり、演%が複雑な
ものとなる。これに対して本発明においては予め求めら
れている浮上量における上述した2つの反射光の距離を
基準値として予め求めておき、この基準値を用いて演算
を行なうようにしたので、演算を極めて簡単なものとす
ることができる。
Note that the flying height of the transparent film can be determined by combining the first reflected light on the transparent film whose flying height is to be measured and the above-mentioned without using the previously determined flying height or reference flying position and the reference value. It is also possible to calculate based only on the distance of the second reflected light, but in that case,
Data such as the refraction angle of the laser beam within the transparent film, the thickness of the transparent film, the refractive index of the transparent film, and the refractive index of the outside of the film are required, making the calculation complicated. In contrast, in the present invention, the distance between the two reflected lights described above at a predetermined flying height is determined in advance as a reference value, and the calculation is performed using this reference value, making the calculation extremely easy. It can be made simple.

(実 施 例) 以下、図面を参照して本発明の実施例について説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による透明フィルムの浮上量
測定装置の概略図である。
FIG. 1 is a schematic diagram of a flying height measuring device for a transparent film according to an embodiment of the present invention.

本測定装置は、支持面1aが鏡面加工されてなる金属の
支持体1上に配された、ポリエステル等の透明フィルム
2の、前記支持面1aからの浮上量を測定するものであ
る。
This measuring device measures the flying height from the support surface 1a of a transparent film 2 made of polyester or the like, which is placed on a metal support 1 whose support surface 1a is mirror-finished.

前記透明フィルム2の上方にはレーザ光源3が配されて
おり、このレーザ光源3は、前記透明フィルム2に斜め
方向からレーザ光4を入射させる。
A laser light source 3 is disposed above the transparent film 2, and this laser light source 3 makes laser light 4 incident on the transparent film 2 from an oblique direction.

また、前記レーザ光4の光路上には、該レーザ光を前記
透明フィルム2の表面2a付近で集束させる光学系7が
配設されている。前記透明フィルム2の前記表面2aに
入射した前記レーザ光4は、その一部が前記表面2aで
反射して第1の反射光4aとなり、残りの光が前記透明
フィルム2を透過する。
Further, on the optical path of the laser beam 4, an optical system 7 is arranged to focus the laser beam near the surface 2a of the transparent film 2. A portion of the laser beam 4 incident on the surface 2a of the transparent film 2 is reflected by the surface 2a to become first reflected light 4a, and the remaining light is transmitted through the transparent film 2.

透過した光の大部分は前記支持面la上で反射し、反射
した光の大部分が再び前記透明フィルム2を透過して第
2の反射光4bとして射出される。前記第1および前記
第2の反射光4a、4bを受ける位置には光検出手段5
が配されており、入射した2本の前記反射光4a、4b
の距離を測定するようになっている。すなわち、本実施
例の前記光検出手段5は、−例として顕微鏡レンズ等を
備えることにより、充分な倍率が得られるようにしたT
V左カメラ内蔵しており、該TV左カメラ出力信号にお
いて前記反射光4a、4bを分離して検出し、両反射光
4a、4bの距離9,1を測定するものである。測定さ
れた前記距離9.sの情報は演算部6に人力され、該演
算部6は前記距離9Jsを用いて、後述するように前記
透明フィルム2の浮上Jixlを算出する。
Most of the transmitted light is reflected on the support surface la, and most of the reflected light passes through the transparent film 2 again and is emitted as second reflected light 4b. A light detection means 5 is provided at a position receiving the first and second reflected lights 4a and 4b.
are arranged, and the two incident reflected lights 4a, 4b
It is designed to measure the distance between. That is, the light detecting means 5 of this embodiment is equipped with, for example, a microscope lens or the like to obtain a sufficient magnification.
It has a built-in V left camera, which separates and detects the reflected lights 4a and 4b in the TV left camera output signal, and measures the distances 9 and 1 between both reflected lights 4a and 4b. The distance measured9. The information on s is input manually to the calculation unit 6, and the calculation unit 6 uses the distance 9Js to calculate the floating Jixl of the transparent film 2 as described later.

ところで、本測定装置では、前記浮上mx1を検出する
のに先立って、予め浮上量が測定された透明フィルム2
′における第1の反射光421′ と第2の反射光4b
’の距離力鋪1[定される。本実施例においては前記透
明フィルム2′として、前記支持体1上に停止せしめら
れ、その浮上量がゼロであるるものが用いられている。
By the way, in this measuring device, prior to detecting the floating height mx1, a transparent film 2 whose flying height has been measured in advance is used.
'The first reflected light 421' and the second reflected light 4b at
'The distance force 1 [is determined. In this embodiment, the transparent film 2' is stopped on the support 1 and has a floating amount of zero.

なお、前記透明フィルム2′としては、通常の浮上量測
定が行なわれる前記透明フィルム2と同じ祠質、厚さの
ものが用いられることは言うまでもない。浮上量がゼロ
である前記透明フィルム2′における前記第1の反射光
4a’ と前記第2の反射光4b’の距離は、第1図に
示すように免0となる。この距離は、基準値9Joとし
てメモ1月0に一旦記憶される。
It goes without saying that the transparent film 2' has the same abrasive quality and thickness as the transparent film 2 on which the normal flying height measurement is performed. The distance between the first reflected light 4a' and the second reflected light 4b' in the transparent film 2' whose flying height is zero is zero as shown in FIG. This distance is temporarily stored in the memo January 0 as a reference value 9Jo.

上記メモ1月0に記憶された距離の基準値免0および前
記各透明フィルム2毎に検出された前記距離9Jsに基
づく各透明フィルムの前記浮上量X1の検出について第
2図を参照してさらに具体的に説明する。
Regarding the detection of the flying height X1 of each transparent film based on the distance reference value Min0 stored in the memo January 0 and the distance 9Js detected for each transparent film 2, please refer to FIG. I will explain in detail.

第2図に示すように、前記光検出手段5内においては、
TV左カメラ出力に基づいて前記2つの反射光4a 、
 4bによる像の分離がなされた後、その重心の計算が
なされ、2つの重心の位置により、2点間の前記距離f
’lが求められる。求められた前記距離免1の値は前記
演算部6へ送られる。
As shown in FIG. 2, in the photodetecting means 5,
the two reflected lights 4a based on the TV left camera output;
4b, the center of gravity is calculated, and the distance f between the two points is determined by the positions of the two centers of gravity.
'l is required. The obtained value of the distance division 1 is sent to the calculation section 6.

方、この演算部6には、前述したメモリ10から、浮上
量がゼロである場合の2点間の距離が、前記基準値見。
On the other hand, this calculation unit 6 stores the distance between two points when the flying height is zero from the aforementioned reference value from the memory 10.

とじて送られており、この基準値免。This standard value is exempt.

と、前記光検出手段5から出力される前記距離見!とを
用いて前記浮上mx1が算出される。すなわち、第1図
に示すように、前記透明フィルム2への前記レーザ光4
の入射角をθとすると、前記浮上量xlは第2図中A、
 A’で示す2点の距離AA’ によってAA’ −2
Xx1 tanθとなるので、Qrl−9Jo −AA
’ cosθ=2x1sinθがなり立つ。また前記入
射角θは一定の値とすることができるので、 となり、前記浮上mXlは免!と免0とにより求めるこ
とができる。なお、本実施例においては前記浮上量の基
準値がゼロであるので、前記透明フィルム2の浮上mx
1は、基準位置にある前記透明フィルム2′から、測定
を行なう透明フィルム2までの距離と等しくなっている
が、基準となる浮上量がゼロでない場合には、上述した
(1)式により求められた浮上量に基準とする前記透明
フィルムの浮上量を加えた値か求められるべき浮上量と
なる。
and the distance reading outputted from the light detection means 5! The floating height mx1 is calculated using the above. That is, as shown in FIG.
When the incident angle of is θ, the flying height xl is A in FIG.
AA' -2 by the distance AA' between the two points indicated by A'
Since Xx1 tanθ, Qrl-9Jo -AA
'cos θ=2x1 sin θ holds true. Also, since the incident angle θ can be set to a constant value, the above levitation mXl is exempted! It can be found by and 0. In addition, in this embodiment, since the reference value of the flying height is zero, the flying height mx of the transparent film 2
1 is equal to the distance from the transparent film 2' at the reference position to the transparent film 2 to be measured, but if the reference flying height is not zero, it can be calculated using the above equation (1). The value obtained by adding the flying height of the transparent film as a reference to the flying height obtained is the flying height to be determined.

このように、本測定方法によれば、上述した2つの反射
光4a、4bを同時に検出して、その距離を測定するよ
うにしたので、前記フィルム表面2aでの前記反射光4
aが前記支持面Ia上での前記反射光4bより弱いもの
であっても、両反射光の距離Lxに基づいて、前記浮上
量x lを良好に検出することができる。また、前記距
離flxは、前記支持体1と前記透明フィルム2との相
対位置に対応するものであるので、振動等により前記支
持体1の位置が所定の位置から変動した場合にもかかる
変動に影響されることなく前記浮上mx1を検出するこ
とができる。さらに本発明の装置においては、予め浮上
量が求められている前記透明フィルム2′における前述
した2つの反射光の距離を基準値免0としてメモリに記
憶させておき、この基準値を用いて前記各透明フィルム
2の浮上量を算出するようにしたので、前記透明フィル
ム2の屈折率、厚さ等のデータを用いることなく、極め
て簡単な演算により前記浮上titxtの測定を行なう
ことができる。
As described above, according to the present measurement method, the above-mentioned two reflected lights 4a and 4b are detected simultaneously and the distance between them is measured, so that the reflected light 4 on the film surface 2a is
Even if a is weaker than the reflected light 4b on the support surface Ia, the flying height xl can be detected satisfactorily based on the distance Lx between both reflected lights. In addition, since the distance flx corresponds to the relative position between the support 1 and the transparent film 2, even if the position of the support 1 changes from a predetermined position due to vibration or the like, it will not be affected by the change. The floating mx1 can be detected without being affected. Furthermore, in the apparatus of the present invention, the distance between the two reflected lights on the transparent film 2' whose flying height is determined in advance is stored in the memory as a reference value minus 0, and this reference value is used to Since the flying height of each transparent film 2 is calculated, the floating titxt can be measured by extremely simple calculations without using data such as the refractive index and thickness of the transparent film 2.

なお、基準とする前記透明フィルム2′は必ずしもその
浮上量の絶対値が求められている必要はなく、予め決め
られた基準浮上量としたい位置において前記透明フィル
ム2′における前記2つの反射光の距離を検出しておき
、この距離9Joの値と前述した各透明フィルム2にお
ける前記距離免!の値とを用いることにより、前記各透
明フィルム2が前記基準浮上量としたい位置からどれだ
け上下に偏位しているかを検出するようにしてもよい。
Note that the absolute value of the flying height of the transparent film 2' used as a reference does not necessarily have to be determined, but the two reflected lights on the transparent film 2' at a predetermined position where the reference flying height is desired to be determined. The distance is detected, and the value of this distance 9Jo and the above-mentioned distance in each transparent film 2 are calculated. By using the value of , it may be possible to detect how far each transparent film 2 is deviated up and down from the position where the reference flying height is desired.

また、前記光検出手段5としては、必ずしもTVカメラ
を備えたものが用いられる必要はなく、CCDや1次元
の受光素子アレイを有してなるものが用いられてもよい
。また、前記2つの反射光4a、4bは必ずしも前記光
検出手段5に対して垂直に入射せしめられる必要はなく
、前記両反射光4a4bを斜め方向から前記光検出手段
5に入射させてもよい。その場合には、前記光検出手段
5への前記両反射光4a、4bの入射位置の距離から前
記両反射光4a、4bの距離を算出すればよい。
Furthermore, the light detection means 5 does not necessarily have to be equipped with a TV camera, but may be equipped with a CCD or a one-dimensional light-receiving element array. Further, the two reflected lights 4a and 4b do not necessarily need to be made perpendicularly incident on the photodetecting means 5, and both reflected lights 4a and 4b may be made incident on the photodetecting means 5 from an oblique direction. In that case, the distance between the two reflected lights 4a and 4b may be calculated from the distance between the incident positions of the two reflected lights 4a and 4b on the light detection means 5.

(発明の効果) 以上説明したように、本発明の透明フィルムの浮上量測
定方法および装置によれば、透明フィルム表面と支持体
表面で反射した光を光検出器により同時に検出して両反
射光の距離を求めるようにしたので、振動等に影響され
ることなく、常に正確に透明フィルムの浮上量を111
1定することができる。
(Effects of the Invention) As explained above, according to the method and apparatus for measuring the flying height of a transparent film of the present invention, the light reflected on the surface of the transparent film and the surface of the support is simultaneously detected by the photodetector, and both reflected light is detected simultaneously. The flying height of the transparent film can always be calculated accurately without being affected by vibrations, etc.
1 can be determined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による透明フィルムの浮上量
測定装置の概略図、 第2図は2つの反射光の距離の411定に基づく浮上量
の検出を説明するためのブロック図である。 1・・・支持体       1a・・・支持面2,2
′・・・透明フィルム 2a・・・表面3・・・レーザ
光源     4・・・レーザ光4a、 4a’・・・
第1の反射光 4b、 4b’・・・第2の反射光 5・・・光検出手段 10・・・メモリ 6・・演算部
FIG. 1 is a schematic diagram of a flying height measurement device for a transparent film according to an embodiment of the present invention, and FIG. 2 is a block diagram for explaining the detection of the flying height based on the 411 constant of the distance between two reflected lights. . 1...Support body 1a...Support surface 2, 2
'...Transparent film 2a...Surface 3...Laser light source 4...Laser light 4a, 4a'...
First reflected light 4b, 4b'...Second reflected light 5...Light detection means 10...Memory 6...Arithmetic unit

Claims (1)

【特許請求の範囲】 鏡面処理された不透明な支持面上に配された透明フィル
ムの、該支持面からの浮上量を測定する透明フィルムの
浮上量測定装置において、 前記透明フィルムに対し、フィルム表面に非垂直な方向
からレーザ光を入射させるレーザ光源、該レーザ光のう
ち前記フィルム表面で反射した第1の反射光と、該レー
ザ光のうち前記透明フィルムを透過して前記支持面上で
反射した第2の反射光を同時に入射させて両反射光の距
離を検出する光検出手段、予め浮上量が求められている
前記透明フィルムあるいは基準浮上量としたい位置での
前記透明フィルムにおける前記光検出手段により検出さ
れた前記距離を基準値として記憶しておくメモリ、およ
び前記基準値と、各透明フィルムについて前記光検出手
段により検出された前記距離に基づいて前記各透明フィ
ルムの前記浮上量を算出する演算部を備えたことを特徴
とする透明フィルムの浮上量測定装置。
[Scope of Claim] A transparent film flying height measuring device for measuring the flying height of a transparent film disposed on a mirror-treated opaque support surface from the support surface, comprising: a laser light source that enters a laser beam from a direction non-perpendicular to the laser beam; a first reflected beam of the laser beam that is reflected on the film surface; and a first reflected beam of the laser beam that is transmitted through the transparent film and reflected on the support surface; a light detection means for detecting the distance between the two reflected lights by simultaneously making the second reflected light incident thereon; and the light detection means on the transparent film whose flying height is determined in advance or on the transparent film at a position where the reference flying height is desired. a memory for storing the distance detected by the means as a reference value, and calculating the flying height of each transparent film based on the reference value and the distance detected by the light detection means for each transparent film. What is claimed is: 1. A flying height measurement device for a transparent film, characterized in that it is equipped with a calculation section that performs the following steps.
JP25306388A 1988-10-07 1988-10-07 Measuring apparatus for floating amount of transparent film Pending JPH0299803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25306388A JPH0299803A (en) 1988-10-07 1988-10-07 Measuring apparatus for floating amount of transparent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25306388A JPH0299803A (en) 1988-10-07 1988-10-07 Measuring apparatus for floating amount of transparent film

Publications (1)

Publication Number Publication Date
JPH0299803A true JPH0299803A (en) 1990-04-11

Family

ID=17245977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25306388A Pending JPH0299803A (en) 1988-10-07 1988-10-07 Measuring apparatus for floating amount of transparent film

Country Status (1)

Country Link
JP (1) JPH0299803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405948B (en) * 2010-02-02 2013-08-21 Nat Univ Chung Hsing Non-contacting aligning method for planes in three-dimensional environment
KR20180049395A (en) * 2016-11-01 2018-05-11 한국해양대학교 산학협력단 Method and Apparatus for Diagnosing Sound Source via Measurements of Micro-vibrations of Objects Using Multi-beams of Invisible Infra-red Ray Laser and Infra-Red Camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405948B (en) * 2010-02-02 2013-08-21 Nat Univ Chung Hsing Non-contacting aligning method for planes in three-dimensional environment
KR20180049395A (en) * 2016-11-01 2018-05-11 한국해양대학교 산학협력단 Method and Apparatus for Diagnosing Sound Source via Measurements of Micro-vibrations of Objects Using Multi-beams of Invisible Infra-red Ray Laser and Infra-Red Camera

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
JPH0363001B2 (en)
EP0273717B1 (en) Method and apparatus for noncontact automatic focusing
EP0627610B1 (en) Two-stage detection noncontact positioning apparatus
US5315373A (en) Method of measuring a minute displacement
JPH0299803A (en) Measuring apparatus for floating amount of transparent film
JP2677351B2 (en) 3D object external inspection system
JPS60209106A (en) Flatness inspecting device
JPH0615972B2 (en) Distance measuring method and device
JPH0228505A (en) Method and instrument for measuring floating quantity of transparent film
JPS6370110A (en) Distance measuring apparatus
JPH10103915A (en) Apparatus for detecting position of face
JP4442843B2 (en) Refractive index measuring device for test lens
JPH10176927A (en) Inclination sensor
JPS60211304A (en) Measuring instrument for parallelism
SU1548669A1 (en) Optical roughness indicator
JP2544789B2 (en) Optical displacement measuring device
JPS5983116A (en) Adjustment device for optical system
JP2722247B2 (en) measuring device
JPH09280830A (en) Gap measuring device
JPS61172027A (en) Apparatus for inspecting prism
JPS60169707A (en) Surface-state measuring device
JPH0382907A (en) Optical measuring apparatus for minute displacement
JPS58165007A (en) Equipment for measuring position of surface
JPS6247525A (en) Radiation thermometer for fiber