JPH0299668A - Method for deepening color and processing of fiber structure - Google Patents

Method for deepening color and processing of fiber structure

Info

Publication number
JPH0299668A
JPH0299668A JP25043188A JP25043188A JPH0299668A JP H0299668 A JPH0299668 A JP H0299668A JP 25043188 A JP25043188 A JP 25043188A JP 25043188 A JP25043188 A JP 25043188A JP H0299668 A JPH0299668 A JP H0299668A
Authority
JP
Japan
Prior art keywords
low
polyethylene glycol
fiber structure
temperature plasma
glycol derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25043188A
Other languages
Japanese (ja)
Inventor
Itsuo Tanaka
逸雄 田中
Miyuki Saito
斉藤 みゆき
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP25043188A priority Critical patent/JPH0299668A/en
Publication of JPH0299668A publication Critical patent/JPH0299668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To apply excellent color deepening effects to a colored fiber structure by applying a resin containing a silicone-based resin and a polyethylene glycol derivative in combination thereto and subjecting the resultant structure to low- temperature plasma treatment. CONSTITUTION:A resin containing a silicone-based resin, e.g., methylhydrogenpolysiloxane or dimethylpolysiloxane having amino or silanol groups, in an amount of 0.5-5% based on the fiber weight and a polyethylene glycol derivative in combination in an amount within the range of <=0.5% based on the fiber weight is applied to a colored fiber structure (e.g., polyester fiber dyed to black) and the resultant structure is then subjected to low-temperature plasma treatment. For example, compounds expressed by the formula (R1 is alkyl or alkylaryl; R2 is H or methyl; m and n are 3-30) are cited as the polyethylene glycol derivative.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は1着色された繊維構造物を深色化する加工法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a processing method for deep-coloring a colored fiber structure.

(従来の技術) 一般に合成繊維は、その表面が非常に平滑で。(Conventional technology) Generally, synthetic fibers have very smooth surfaces.

繊維表面の光の反射が太きく、?i4色、特に紺、黒等
においては色の深みが得られない。一方、天然繊維は、
−最に屈折率が合成繊維に比べて低く。
Is the reflection of light on the fiber surface thick? i4 colors, especially navy blue, black, etc., cannot provide depth of color. On the other hand, natural fibers
-Finally, the refractive index is lower than that of synthetic fibers.

濃色に見えるが1表面が平滑な織物等では2合成繊維と
同様に繊維表面の光沢が強く、白っぽく見えて色の深み
に乏しい。
Although it looks dark, 1) Fabrics with a smooth surface have a strong gloss on the fiber surface, similar to synthetic fibers, and appear whitish and lack depth of color.

従来から1色の深みを改良する試みは種々行われており
2例えば次のような深色加工法が知られている。
Various attempts have been made to improve the depth of one color, and for example, the following deep color processing methods are known.

(A)着色された合成繊維にシリコン系樹脂を付与した
後、酸素を含む低温プラズマ雰囲気で処理する方法(特
開昭60−162865号)(B)繊維表面に微粒子を
付着させた後、低温プラズマ処理を行い、繊維表面に凹
凸を形成させる方法(特開昭59−163471号)。
(A) A method in which colored synthetic fibers are coated with silicone resin and then treated in a low-temperature plasma atmosphere containing oxygen. A method of forming irregularities on the surface of fibers by plasma treatment (Japanese Patent Laid-Open No. 163471/1983).

(発明が解決しようとする課題) しかしながら、上記(B)の特開昭59−163471
号公報に記載の方法では、生産性の問題やチョークマー
ク(染色された繊維構造物の表面を先のとがったもので
こすった時におこる白化現象)の問題があり、また上記
(A)の特開昭60−162865号公報に記載の方法
では、深色化の程度が低く、現在ではさらに大きな濃色
効果が要求されている。
(Problem to be solved by the invention) However, the above (B) JP-A-59-163471
The method described in the publication has problems with productivity and chalk marks (a whitening phenomenon that occurs when the surface of a dyed fiber structure is rubbed with a sharp object), and also does not have the characteristics of (A) above. The method described in Japanese Patent Publication No. 162865/1983 produces only a low degree of deep coloring, and now a greater darkening effect is required.

本発明は、このような従来技術の問題点を解決するもの
で2着色された繊維構造物を、その種類を問わず、後処
理によって深色化することができる着色された繊維構造
物の深色加工法を提供するものである。
The present invention solves the problems of the prior art, and is aimed at: (2) producing a deep-colored colored fiber structure that can be deep-colored by post-treatment regardless of the type of the colored fiber structure; It provides a color processing method.

(課題を解決するだめの手段) 本発明者らは、上記の課題を解決するため鋭意検討の結
果、シリコン系樹脂とポリエチレングリコール誘導体を
併用し、これに低温プラズマ処理を組み合わせることに
より優れた深色効果が得られることを見出し1本発明に
到達した。
(Means for Solving the Problems) In order to solve the above problems, the present inventors have made extensive studies and found that by combining a silicone resin and a polyethylene glycol derivative, and combining this with low-temperature plasma treatment, an excellent deep The present invention was achieved by discovering that a color effect can be obtained.

すなわち2本発明は1着色された繊維構造物に。That is, 2) the present invention is 1) a colored fiber structure;

シリコン系樹脂を主体としてこれにポリエチレングリコ
ール誘導体を併用した樹脂を付与し2次いで低温プラズ
マ処理を施すことを特徴とする繊維構造物の深色加工法
を要旨とするものである。
The gist of this paper is a deep color processing method for fibrous structures, which is characterized by applying a resin consisting mainly of silicone resin in combination with a polyethylene glycol derivative and then subjecting it to low-temperature plasma treatment.

以下1本発明の詳細な説明する。Hereinafter, one aspect of the present invention will be explained in detail.

本発明において着色された繊維構造物とは、染料で染色
した天然繊維、再生繊維1合成繊維や製造時に顔料を混
入して着色した。いわゆる原着繊維等の糸、織物・9編
物並びにこれらの繊維の混紡。
In the present invention, colored fiber structures include natural fibers dyed with dyes, recycled fibers 1 synthetic fibers, and colored fibers mixed with pigments during production. Yarns such as so-called spun-dyed fibers, woven and knitted fabrics, and blends of these fibers.

交織、交編笠の布帛をいう。Refers to fabrics with a mixed weave or knitted hat.

本発明方法においては、まず第1工程として上述の着色
された繊維構造物に、シリコン系樹脂を主体とし、これ
にポリエチレングリコール誘4体を併用した樹脂液をパ
ッド−ドライ法により付与し、乾燥する。
In the method of the present invention, as a first step, a resin liquid mainly composed of silicone resin and a polyethylene glycol derivative is applied to the above-mentioned colored fiber structure by a pad-dry method, and then dried. do.

ここで用いるシリコン系樹脂としては1例えばメチルハ
イドロジエンポリシロキサンやアミノ基またはシラノー
ル基を官能基として有するジメチルポリシロキサン等を
挙げることができる。これらは、一般に繊維の加工用と
して市販されてぃろ水エマルジヨン系樹脂を用いること
ができる。
Examples of the silicone resin used here include methylhydrodienepolysiloxane and dimethylpolysiloxane having an amino group or a silanol group as a functional group. For these, dill water emulsion resins, which are generally commercially available for processing fibers, can be used.

シリコン系樹脂に併用するポリエチレングリコール誘導
体としては、下記(I)式、 (■)式等に示す化合物
等を挙げることができる。
Examples of the polyethylene glycol derivative used in combination with the silicone resin include compounds shown in the following formulas (I) and (■).

(ただし+R1はアルキル基またはアルキルアリール1
5.  R2は水素またはメチル基、R1は二価の有機
基、m、nは3〜30の整数を示す。)シリコン系樹脂
の使用量は、繊維重量当り0.5〜5%用い、この範囲
で着色された繊維構造物に応じて最適使用量を決定する
。ポリエチレングリコール誘導体は、繊維重量当り0.
5%以下の範囲で用いる。これより過剰に使用すると、
堅牢度低下のおそれがあるので注意を要する。特に堅牢
な摩擦堅牢度を必要とする場合には、繊維重量当り0.
2%以下とすることが望ましい。
(However, +R1 is an alkyl group or alkylaryl1
5. R2 represents hydrogen or a methyl group, R1 represents a divalent organic group, and m and n represent integers of 3 to 30. ) The amount of silicone resin to be used is 0.5 to 5% based on the weight of the fiber, and the optimum amount to be used is determined within this range depending on the colored fiber structure. The polyethylene glycol derivative has a content of 0.0% per fiber weight.
Use within a range of 5% or less. If you use more than this,
Care must be taken as there is a risk of a decrease in fastness. When particularly strong abrasion fastness is required, 0.
It is desirable that it be 2% or less.

乾燥条件は1通常の樹脂加工時の乾燥条件でよく、用い
る着色された繊維構造物に応じて最適条件を決定する。
The drying conditions may be those normally used in resin processing, and the optimum conditions are determined depending on the colored fiber structure used.

次に2本発明では、第2工程として、上記繊維構造物を
低温プラズマ処理する。
Next, in the second invention, as a second step, the fiber structure is subjected to low temperature plasma treatment.

低温プラズマ処理とは、低圧下のアルゴン、窒素、酸素
、−酸化炭・素、空気等の気体中でグロー放電を起こす
ことにより生起される気体粒子が。
Low-temperature plasma treatment refers to gas particles generated by glow discharge in a gas such as argon, nitrogen, oxygen, carbon/carbon oxide, or air under low pressure.

電離状態で励起活性化状態にある非平衡プラズマの雰囲
気中に被処理物をさらすことを意味するものである。
This means that the object to be processed is exposed to an atmosphere of non-equilibrium plasma that is in an ionized state and in an excited and activated state.

低温プラズマの発生方法としては、試料を入れた真空容
器を真空ポンプにより排気・減圧してから所定の気体を
導入し、0.1〜2. OTorrの範囲で一定の真空
度に調整した後、電気エネルギーを印加してグロー放電
を起こさせる方法を採用する。
As a method for generating low-temperature plasma, a vacuum container containing a sample is evacuated and depressurized using a vacuum pump, and then a predetermined gas is introduced, and a temperature of 0.1 to 2. After adjusting the degree of vacuum to a certain degree within the OTorr range, a method is adopted in which electrical energy is applied to cause glow discharge.

この時のエネルギー源としては、直流電圧印加。The energy source at this time is DC voltage application.

交流電圧印加のいずれの方法でもよいが、一般にはI 
K llz 〜3000 M Hzの高周波が使われ2
通常13.56MHzの高周波を0.1〜I W/an
t (電極面積)の出力で印加する方法が代表的である
。本発明でも、上述の方法で生起する低温プラズマを使
用するとよい。
Any method of applying an AC voltage may be used, but generally I
A high frequency of ~3000 MHz is used2
Usually the high frequency of 13.56MHz is 0.1~I W/an
A typical method is to apply with an output of t (electrode area). Also in the present invention, it is preferable to use the low-temperature plasma generated by the method described above.

本発明における低温プラズマ処理条件は特に限定されず
1例えば、アルゴン、空気、窒素、酸素等の気体を用い
て、真空度0.5〜2.0 Torrにて。
The low-temperature plasma processing conditions in the present invention are not particularly limited; for example, a gas such as argon, air, nitrogen, or oxygen is used at a vacuum degree of 0.5 to 2.0 Torr.

13、56 MtlzO高周波を0.5W/cnlの出
力で印加し1発生ずるプラズマで30秒〜3分間処理す
ることにより良好な結果を得る0とができる。
13,56 Good results can be obtained by applying MtlzO high frequency at an output of 0.5 W/cnl and processing with plasma generated once for 30 seconds to 3 minutes.

(作 用) 本発明の上記構成による作用は2次のように考えられる
(Function) The function of the above structure of the present invention can be considered as follows.

すなわち、前記(1)式や(II)式に示す化合物のポ
リエチレングリコール誘導体の末端に存在する炭素−炭
素二重結合が、低温プラズマ雰囲気中においてシリコン
系樹脂と相互作用しつつ反応を起こし、形成された化合
物が繊維構造物の表面の低屈折率化に寄与していると考
えられる。
That is, the carbon-carbon double bond present at the end of the polyethylene glycol derivative of the compound represented by formula (1) or formula (II) causes a reaction while interacting with the silicone resin in a low-temperature plasma atmosphere, and is formed. It is thought that these compounds contribute to lowering the refractive index of the surface of the fiber structure.

また、上記のような反応は、低温プラズマ雰囲気中にお
いては一部気相中でも起きていると考えられ、気相中で
形成された低屈折率物質が繊維構造物の表面を覆うこと
により1表面反射光が減少し、優れた深色効果を発揮す
るようになる。
In addition, the above reaction is thought to occur partly in the gas phase in a low-temperature plasma atmosphere, and the low refractive index substance formed in the gas phase covers the surface of the fiber structure, causing one surface Reflected light is reduced and an excellent deep color effect is achieved.

(実施例) 次に、実施例によって本発明の説明を行うが。(Example) Next, the present invention will be explained by examples.

実施例における試料の性能の測定は1次の方法で行った
The performance of the samples in Examples was measured by the first method.

(1) L“値 色彩色差計CR−110(ミノルタカメラ■製)により
測定し、L9値を求めた。L9値は、小さいほど深色効
果が優れていることを示す。
(1) L" value The L9 value was determined by measuring with a color difference meter CR-110 (manufactured by Minolta Camera ■). The smaller the L9 value, the better the bathochromic effect.

(2)摩擦堅牢度 JIS  L−0849に基づき、摩擦試験機■形(掌
握型)を使用して200gの加圧下にて綿布で試料に1
00回の往復摩擦を行った結果、その綿布に生じた汚染
度をグレースケールにて判定した。
(2) Rubbing fastness Based on JIS L-0849, test the sample with cotton cloth under a pressure of 200 g using a friction tester ■ type (handheld type).
As a result of performing 00 reciprocating frictions, the degree of contamination that occurred on the cotton cloth was determined on a gray scale.

実施例1〜2 着色された繊維構造物として、黒色に染色されたポリエ
ステル強撚糸織物(経糸110D/36F/2本、撚数
S 1300T/M、密度70本/2.54cm、緯糸
110D/36F/3本、撚数51300T/MとZ1
300T/Mを2本ずつ交互打込み、密度50本/2.
54 cm、組織ジョーゼット)を用意した。
Examples 1-2 As a colored fiber structure, a polyester strong twist fabric dyed black (warp 110D/36F/2, number of twists S 1300T/M, density 70/2.54cm, weft 110D/36F /3 pieces, number of twists 51300T/M and Z1
300T/M is alternately implanted two by two, density 50/2.
54 cm, tissue georgette) was prepared.

この織物を2分割し、それぞれ別個に下記処方1、処方
2の樹脂液に浸漬し、マングルで絞った(絞り率100
%)後、ピンテンターにて110℃、2分の乾燥を行っ
た。
This fabric was divided into two parts, dipped separately in the following resin solutions 1 and 2, and squeezed with a mangle (squeezing ratio 100).
%), and then dried for 2 minutes at 110°C using a pin tenter.

〔処方1〕 〔処方2〕 ボロンMR2重量% ウルトラテックスESC2重量% 次に2本発明方法では、下記低温プラズマ処理条件1に
より、低温プラズマ処理を行った。
[Formulation 1] [Formulation 2] Boron MR 2% by weight Ultratex ESC 2% by weight Next, in the method of the present invention, low-temperature plasma treatment was performed under the following low-temperature plasma treatment conditions 1.

〔低温プラズマ処理条件1〕 使用ガス : 酸 素 ガス流量 :  200mn/min 真空度 :  0.7 Torr 出   力  :   0.5 KW/ cnl高周波
 :  13.56Ml1z 処理時間 : 30秒 この後、ピンテンターにて150℃、30秒の熱処理を
行って1本発明の深色化加工布2点(以下、それぞれ実
施例1 〔処方1〕、実施例2〔処方2〕とする。)を
得た。
[Low temperature plasma processing conditions 1] Gas used: Oxygen gas flow rate: 200 mn/min Degree of vacuum: 0.7 Torr Output: 0.5 KW/cnl High frequency: 13.56 Ml1z Processing time: 30 seconds After this, with a pin tenter Heat treatment was performed at 150° C. for 30 seconds to obtain two deep-colored fabrics of the present invention (hereinafter referred to as Example 1 [Formulation 1] and Example 2 [Formulation 2], respectively).

本発明との比較のため9本実施例における処方に代えて
下記処方3を用いるほかは1本実施例と全く同一の方法
により比較用の加工布(以下、比較例とする。)を得た
For comparison with the present invention, a processed fabric for comparison (hereinafter referred to as a comparative example) was obtained in exactly the same manner as in Example 1, except that the following formulation 3 was used in place of the formulation in Example 9. .

〔処方3〕 ポロンMR2重量% ウルトラテックスESC2重量% 上記実施例1.2および比較例の加工布の性能を測定し
、その結果を合わせて第1表に示した。
[Formulation 3] Poron MR 2% by weight Ultratex ESC 2% by weight The performance of the processed fabrics of Example 1.2 and Comparative Example was measured, and the results are shown in Table 1.

第   1   表 第1表より明らかなごとく2本発明方法の実施例1,2
は、非常に優れた深色効果を示していることがわかる。
Table 1 As is clear from Table 1, Examples 1 and 2 of the method of the present invention
It can be seen that this shows a very good bathochromic effect.

また、ポリエチレングリコール誘導体を使用する際に心
配される摩擦堅牢度も、ポリエチレングリコール誘導体
の使用量を0.2重量%以下にすることにより問題はな
かった。
In addition, there was no problem with the fastness to rubbing, which is a concern when using polyethylene glycol derivatives, because the amount of polyethylene glycol derivatives used was 0.2% by weight or less.

(発明の効果) 本発明は、ポリエチレングリコール誘導体の低温プラズ
マ雰囲気中での反応性を利用するものであり、かかる本
発明方法によれば2着色された繊維構造物に従来以上の
非常に優れた深色化効果を付与することが可能になる。
(Effects of the Invention) The present invention utilizes the reactivity of polyethylene glycol derivatives in a low-temperature plasma atmosphere, and according to the method of the present invention, a two-colored fiber structure is produced which is much superior to the conventional method. It becomes possible to impart a deep coloring effect.

特許出願人  ユニ子力株式会社Patent applicant: Unikorikiki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)着色された繊維構造物に、シリコン系樹脂を主体
としてこれにポリエチレングリコール誘導体を併用した
樹脂を付与し、次いで低温プラズマ処理を施すことを特
徴とする繊維構造物の深色加工法。
(1) A deep color processing method for a fibrous structure, which is characterized in that a colored fibrous structure is coated with a resin consisting mainly of a silicone resin in combination with a polyethylene glycol derivative, and then subjected to low-temperature plasma treatment.
JP25043188A 1988-10-04 1988-10-04 Method for deepening color and processing of fiber structure Pending JPH0299668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25043188A JPH0299668A (en) 1988-10-04 1988-10-04 Method for deepening color and processing of fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25043188A JPH0299668A (en) 1988-10-04 1988-10-04 Method for deepening color and processing of fiber structure

Publications (1)

Publication Number Publication Date
JPH0299668A true JPH0299668A (en) 1990-04-11

Family

ID=17207780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25043188A Pending JPH0299668A (en) 1988-10-04 1988-10-04 Method for deepening color and processing of fiber structure

Country Status (1)

Country Link
JP (1) JPH0299668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503492A (en) * 2001-04-04 2005-02-03 ヘルステックス アパレル コーポレイション Improved polymer grafted cotton fibers and products
CN105239366A (en) * 2015-09-28 2016-01-13 浙江理工大学 Fabric darkening agent and preparation method thereof, and applications of fabric darkening agent in polyester fabric darkening

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503492A (en) * 2001-04-04 2005-02-03 ヘルステックス アパレル コーポレイション Improved polymer grafted cotton fibers and products
JP4647188B2 (en) * 2001-04-04 2011-03-09 ヘルステックス アパレル コーポレイション Improved polymer-grafted cotton fibers and products
CN105239366A (en) * 2015-09-28 2016-01-13 浙江理工大学 Fabric darkening agent and preparation method thereof, and applications of fabric darkening agent in polyester fabric darkening

Similar Documents

Publication Publication Date Title
Wakida et al. Effect of low temperature plasma treatment on color of wool and nylon 6 fabrics dyed with natural dyes
Kim et al. Dyeing properties and color fastness of 100% meta-aramid fiber
CN110331599A (en) A kind of dyeing and finishing processing method of polyester filament flower precious jade fabric
Kim et al. Coloration of ultra high molecular weight polyethylene fibers using alkyl-substituted anthraquinoid blue dyes
Babel et al. Screen printing on silk fabric using natural dye and natural thickening agent
Liu et al. Study on the reduction properties of thiourea dioxide and its application in discharge printing of polyester fabrics
Yip et al. Study of physico‐chemical surface treatments on dyeing properties of polyamides. Part 1: Effect of tetrafluoromethane low temperature plasma
Wong et al. Effect of plasma and subsequent enzymatic treatments on linen fabrics
EP0281066B1 (en) Resin treatment of deep-coloured fibres
Ryu et al. The effect of sputter etching on the surface characteristics of black‐dyed polyamide fabrics
JPH0299668A (en) Method for deepening color and processing of fiber structure
CN112127177B (en) Special modified terylene cationic dye composition integrating level dyeing and deepening
Yuan et al. Sol-gel coatings with the fluorescence dye Rhodamine B for optical modification of cotton
El-Zeer et al. Effect of Atmospheric pressure glow discharge plasma on the surface modification and the printing properties of Wool/polyamide blend
JP2540173B2 (en) Durable deep-color processing method
JPS60162865A (en) Deep color processing method of synthetic fiber
JP2638585B2 (en) Method for producing high-strength, high-modulus polyester fiber dyed deeply
JPH0830308B2 (en) Method for deep color processing of colored fiber structure
JP2849743B2 (en) Deepening processing of worsted fabric
JPH01239179A (en) Bathochromic treatment of fiber structure
US2541839A (en) Process for improving vat dyed nylon fibers
JP2906656B2 (en) Processing method of fiber structure
JPH04174782A (en) Deep-color dyed woolen textile product and production thereof
JPS58115187A (en) Enhancing of dye fastness of polyester fiber product
Bydoon et al. Environmentally Plasma Treatment on Giza 86 Egyptian Cotton Fabric