JPH0299608A - Production of precursor for producing carbon fiber - Google Patents

Production of precursor for producing carbon fiber

Info

Publication number
JPH0299608A
JPH0299608A JP24968588A JP24968588A JPH0299608A JP H0299608 A JPH0299608 A JP H0299608A JP 24968588 A JP24968588 A JP 24968588A JP 24968588 A JP24968588 A JP 24968588A JP H0299608 A JPH0299608 A JP H0299608A
Authority
JP
Japan
Prior art keywords
stretching
precursor
fiber
acrylonitrile
relaxing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24968588A
Other languages
Japanese (ja)
Inventor
Hidetoshi Chikuhi
築樋 英俊
Toshihiro Makishima
槙嶋 俊裕
Michiro Kawakami
川上 道郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP24968588A priority Critical patent/JPH0299608A/en
Publication of JPH0299608A publication Critical patent/JPH0299608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain the subject precursor having a high strand strength with hardly any fluffing by spinning a spinning solution of an acrylonitrile-based polymer, drawing the resultant fiber in a bath, drying and densifying the drawn fiber, secondarily drawing the fiber and thermally relaxing the obtained fiber using a wet-heat type far infrared heater relaxing device. CONSTITUTION:An acrylonitrile-based polymer containing at least 90wt.% acrylonitrile (preferably a copolymer containing 0.5-3wt.% copolymerized methacrylic acid) is dissolved in a solvent to provide a spinning solution, which is then spun into a fiber. The resultant tiber is subsequently drawn in a bath, dried and densified, then secondarily drawn so as to afford >=10 times total draw ratio. The drawn tiber is then thermally relaxed, preferably at 100-250 deg.C using a wet-heat type far infrared heater relaxing device (preferably <=2% relaxing shrinkage factor) to provide the objective precursor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素繊維製造用前駆体の新規な製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel method for producing a precursor for producing carbon fibers.

〔従来の技術〕[Conventional technology]

従業から、炭素繊維製造用前駆体はアクリロニトリル系
重合体の有機または無機溶媒溶液を凝固浴中に紡出し、
水洗後、延伸洛中で延伸するかあるいは延伸洛中で延伸
後、水洗し、しかる後、糸条を乾燥緻密化して製造され
るのが一般的であった。
From the company, the precursor for carbon fiber production is made by spinning a solution of acrylonitrile-based polymer in an organic or inorganic solvent into a coagulation bath.
After washing with water, the yarn is generally drawn in a drawing machine, or after stretching in a drawing machine, washing with water, and then drying and densifying the yarn.

ところが浴液延伸は液組成が水あるhは水溶液であるた
め、延伸温度に限界があり、糸条に高強度を与えるのに
充分な延伸倍率をとり得ない欠点があった。そこで浴延
伸、乾燥緻密化後の糸条を再度、二次延伸することが行
われている。この二次延伸する方法は、熱水延伸法、蒸
気延伸法、加圧飽和蒸気延伸法、加勲蒸気延伸法、乾熱
延伸法、熱ピン延伸法等のいずれかの延伸方法、または
これらの延伸方法を2つ以上組合せた方法が広く知られ
ている。
However, since the liquid composition of bath drawing is an aqueous solution, there is a limit to the drawing temperature, and there is a drawback that it is not possible to obtain a drawing ratio sufficient to impart high strength to the yarn. Therefore, the yarn after bath drawing and drying and densification is subjected to secondary drawing again. This secondary stretching method may be any of the following stretching methods: hot water stretching, steam stretching, pressurized saturated steam stretching, decorative steam stretching, dry heat stretching, hot pin stretching, or any of these stretching methods. A method that combines two or more stretching methods is widely known.

しかし上記の二次延伸により全延伸倍率を10倍以上に
すると、得られた炭素繊維製造用前駆体は、焼成工程に
おいて毛羽が発生しゃすくなる。そのため焼成工程にお
ける延伸比を低く下げて処理されるが、高強度の炭素繊
維は得られなかった。また高強度の炭素繊維を得るため
に、焼成工程における延伸比を下げないで処理をすると
、毛羽の多発とそれによる中途切断が起りやすく操業安
定性が著しく悪かった。
However, when the total stretching ratio is increased to 10 times or more by the above-mentioned secondary stretching, the obtained precursor for carbon fiber production tends to generate fuzz during the firing process. Therefore, carbon fibers with high strength could not be obtained, although the stretching ratio in the firing process was lowered to a low value. Furthermore, in order to obtain high-strength carbon fibers, if treatment was carried out without lowering the drawing ratio in the firing process, frequent fluffing and resulting mid-breaks were likely to occur, resulting in extremely poor operational stability.

これらの改良法として本出願人は先に特開昭6S−99
516号で遠赤外線ヒーター延伸機を用いて水蒸気雰囲
気中で2次延伸することを提案した。これらの改良法と
して本発明は二次延伸によシ、全延伸倍率を10倍以上
にした糸条をさらに加熱緩和することにより、焼成工程
における延伸比を下げないで処理しても、毛羽の発生が
著しく少なく、中途切断も起さず、高強度の炭素繊維が
得られる炭素繊維製造用前駆体の製造法を提案するもの
である。
As for these improved methods, the present applicant previously proposed Japanese Patent Application Laid-Open No. 6S-99.
No. 516 proposed secondary stretching in a steam atmosphere using a far-infrared heater stretching machine. As an improvement method for these, the present invention uses secondary drawing and further heats and relaxes the yarn with a total drawing ratio of 10 times or more, thereby reducing the amount of fuzz even if the drawing ratio in the firing process is not lowered. The present invention proposes a method for producing a precursor for producing carbon fibers, which produces carbon fibers with extremely low occurrence and no mid-cutting, and which yields high-strength carbon fibers.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

炭素m維製造用前駆体から炭素繊維を製造するに際し、
焼成工程において1〜1.15倍程度の延伸を行うこと
は広く知られている。
When producing carbon fiber from a carbon fiber production precursor,
It is widely known that stretching is performed by about 1 to 1.15 times in the firing process.

高強度の炭素繊維を得るためには、全延伸倍率を10倍
以上とした炭素繊維製造用前駆体を焼成工程において1
.2倍以上に延伸することが必要であることは予期され
ている。しかし従来技術により製造された全延伸倍率を
10倍以上とした炭素繊維製造用前駆体は、焼成工程で
の延伸性が低いため、焼成工程において1.2倍以上に
延伸して得られる炭素繊維は品質的に毛羽が多く、また
工程中の毛羽による暴走反応のため中途切断があり、操
業安定性も良好でなかった。
In order to obtain high-strength carbon fibers, a carbon fiber manufacturing precursor with a total stretching ratio of 10 times or more is used in the firing process.
.. It is anticipated that it will be necessary to stretch the film by a factor of two or more. However, precursors for producing carbon fibers manufactured by conventional techniques with a total stretching ratio of 10 times or more have low drawability in the firing process, so carbon fibers obtained by stretching the total stretching ratio of 1.2 times or more in the firing process are low. In terms of quality, there was a lot of fuzz, and there were some mid-cuts due to runaway reactions due to the fuzz during the process, and the operational stability was not good.

また毛羽を少なくするため、焼成工程の延伸比を落した
炭素繊維本工業的に生産されているが、強度、弾性率共
に低い値を示しているのが現状である。
Furthermore, in order to reduce fuzz, carbon fibers are produced industrially by lowering the drawing ratio in the firing process, but at present they exhibit low values for both strength and elastic modulus.

本発明の目的は、毛羽の発生が著しく少なく中途切断も
起さず、高強度の炭素繊維が得られる炭素繊維製造用前
駆体の製造法を提供することにある。
An object of the present invention is to provide a method for producing a precursor for producing carbon fibers, which produces highly strong carbon fibers with significantly less fuzz and no mid-cutting.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨とするところは、少なくとも90 wt4
のアクリロニトリルを含有するアクリロニトリル系重合
体を溶剤に溶解した紡糸原液を紡糸、浴中延伸、乾燥緻
密化したのち、二次延伸して全延伸倍率が10倍以上と
なるように延伸後、湿熱型遠赤外線ヒーター緩和装置を
用いて、加熱緩和することにより、炭素繊維製造用前駆
体を製造することにある。
The gist of the invention is that at least 90 wt4
A spinning solution prepared by dissolving an acrylonitrile polymer containing acrylonitrile of The objective is to produce a precursor for producing carbon fibers by heating and relaxing using a far-infrared heater relaxation device.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

本発明のアクリロニトリル系重合体は、アクリロニトリ
ルのホモポリマーあるいはコモノマーを少量共重合した
共重合体であシ、たとえばメタクリル酸がα5〜5壬程
度共重合した共重合体が好ましい。アクリロニ) IJ
v系重合体の溶媒は、有機、無機の公知の溶媒を使用す
ることができる。本発明においては、このアクリロニト
リル系重合体溶液を少なくとも紡糸、浴中延伸、乾燥緻
密化、二次延伸する必要がある。
The acrylonitrile polymer of the present invention is a homopolymer of acrylonitrile or a copolymer obtained by copolymerizing a small amount of a comonomer, and preferably a copolymer obtained by copolymerizing methacrylic acid with α5 to 5 μm. acryloni) IJ
As the solvent for the v-based polymer, known organic and inorganic solvents can be used. In the present invention, this acrylonitrile polymer solution must be subjected to at least spinning, bath stretching, drying and densification, and secondary stretching.

紡糸方式は、湿式、乾湿式いずれで本よい。浴中延伸は
、紡出糸を直接行ってもよいし、また−度水洗いして溶
媒を除去l−たのちに行って本よい。浴中延伸は好まし
くは80℃〜98℃の延伸浴中で約2〜6倍延伸する。
The spinning method may be wet or dry. The bath drawing may be carried out directly on the spun yarn, or may be carried out after washing with water to remove the solvent. Stretching in a bath is preferably carried out by about 2 to 6 times in a stretching bath at 80°C to 98°C.

乾燥緻密化は浴中延伸後の糸条を加熱ロール等で乾燥す
ることにより行れるが、乾燥温度、乾燥時間等は適宜選
択することができる。二次延伸では、全延伸倍率が10
倍以上となるように糸条を延伸させるが、その方法とし
ては、熱水延伸法、蒸気延伸法、加圧飽和蒸気延伸法、
加熱蒸気延伸法、乾熱延伸法、熱ビン延伸法等のいずれ
かの延伸方法、またはこれらの延伸方法を2つ以上組み
合せた延伸方法、あるbは糸条を気体以外のものく接触
させず加えて加圧気体の激しb流れの中を通すことなく
、糸条に高強度を与えるに必要な延伸に足る加熱方法を
とる遠赤外線ヒーター延伸機を用すた湿熱延伸方法を用
いることができるが、本発明は、これらの延伸方法に限
定されなり0木発明におりて最も特徴的なことは二次延
伸後の糸条を加熱緩和する際に、湿熱型遠赤外線ヒータ
ー緩和装置を用すて緩和させることである。加熱緩和の
加熱温度は100℃以上250℃・未満好ましくは11
0℃以上200℃以下で、緩和収縮率は24以下の範囲
で加熱緩和するのが好ましい。加熱温度が100℃未満
では緩和収縮率が小さいため緩和効果が発揮されない。
Drying and densification can be carried out by drying the yarn after drawing in a bath using a heating roll or the like, and the drying temperature, drying time, etc. can be selected as appropriate. In the secondary stretching, the total stretching ratio is 10
The yarn is drawn to be more than double in size, and the methods include hot water drawing method, steam drawing method, pressurized saturated steam drawing method,
One of the stretching methods such as heated steam stretching method, dry heat stretching method, hot bottle stretching method, etc., or a stretching method that combines two or more of these stretching methods; In addition, it is possible to use a moist heat drawing method using a far-infrared heater drawing machine, which uses a heating method sufficient for the drawing necessary to impart high strength to the yarn without passing it through a strong flow of pressurized gas. However, the present invention is limited to these stretching methods, and the most characteristic feature of the present invention is that a moist heat type far-infrared heater relaxation device is used when heating and relaxing the yarn after the secondary drawing. It is to ease the situation. The heating temperature for heating relaxation is 100°C or more and less than 250°C, preferably 11
It is preferable that the heating relaxation be performed at a temperature of 0° C. or more and 200° C. or less, and a relaxation shrinkage rate of 24 or less. When the heating temperature is less than 100° C., the relaxation effect is not exhibited because the relaxation shrinkage rate is small.

また緩和収縮率を2優より大きくすると、焼成工程の延
伸性は良好になるが、高強度の炭素繊維#i得られない
If the relaxation shrinkage rate is greater than 2, the stretchability in the firing process will be good, but high strength carbon fiber #i will not be obtained.

第1図は本発明で使用する湿熱型遠赤外線ヒーター緩和
装置と糸条を示す概略図であり、遠赤外線ヒーター1、
温度計2、水蒸気3、供給o−1v4、引取a −A/
 5、圧力計6、糸条7を各示す。
FIG. 1 is a schematic diagram showing a wet heat type far infrared heater relaxation device and yarn used in the present invention, and shows a far infrared heater 1,
Thermometer 2, steam 3, supply o-1v4, withdrawal a-A/
5, a pressure gauge 6, and a thread 7 are shown.

〔実施例〕〔Example〕

以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

(1)  表面光沢度の測定法 i)炭素繊維製造用前駆体を平行に並ぺて試料面とする
(1) Method for measuring surface gloss i) The precursor for carbon fiber manufacturing is arranged in parallel to form a sample surface.

11)繊維軸方向く対して90°の角度を持つた平面内
において、試料面から45°方向より試料面に向って一
定光度の光線を与える。
11) In a plane having an angle of 90° with respect to the fiber axis direction, a beam of constant luminous intensity is applied toward the sample surface from a 45° direction from the sample surface.

l11)試料面を反射した上記平面内の反射角456の
光線の照度(L8)を測定する。
l11) Measure the illuminance (L8) of the light beam reflected from the sample surface within the above-mentioned plane at a reflection angle of 456.

1y)i)から111)までの操作により、二次延伸し
ない炭素繊維製造用前駆体から測定したL8をLOとし
て、LEI /1100比を求めて対比光沢度とした。
By the operations from 1y)i) to 111), L8 measured from a carbon fiber manufacturing precursor that was not secondarily stretched was taken as LO, and the LEI /1100 ratio was determined and used as the contrast gloss.

対比光沢度= (1−La/Lo)xlo 。Contrast gloss = (1-La/Lo)xlo.

i)から10の操作より求めた対比光沢度は下記のよう
に評価される。
The contrast gloss obtained from operations i) to 10 is evaluated as follows.

(2)糸いたみの測定法 ’)225〜260℃の範囲で温度勾配を有する熱風雰
囲気の耐炎化炉に炭素繊維製造用前駆体をローV駆動に
よって連続的に供給し34分間滞在させて、耐炎化処理
を行う。耐炎化処理での張力は約120岬/dであり、
繊維長さは、はぼ原長に保つ。耐炎化繊維の密度はいず
れも1.37〜1.399/cm”の範囲とする。
(2) Measuring method of yarn damage') A carbon fiber manufacturing precursor was continuously supplied by low V drive to a flameproofing furnace in a hot air atmosphere with a temperature gradient in the range of 225 to 260°C, and left to stay for 34 minutes. Perform flameproofing treatment. The tension in the flame-retardant treatment is approximately 120 cape/d,
The fiber length is kept at Habohara length. The density of the flame-resistant fibers is in the range of 1.37 to 1.399/cm''.

耐炎化繊維を窒素ガス雰囲気にある320〜700℃の
範囲の温度勾配を有する炭素化炉と1350℃の熱処理
炉をそれぞれ7分と4.5分間の滞在時間で通過させて
炭素繊維に焼成させる。
The flame-resistant fibers are passed through a carbonization furnace with a temperature gradient ranging from 320 to 700°C and a heat treatment furnace at 1350°C in a nitrogen gas atmosphere for residence times of 7 minutes and 4.5 minutes, respectively, to bake them into carbon fibers. .

11)サイズ剤を付けない炭素繊維に張力(1f/10
”d)を掛け、毛羽が浮き上がる程度の空気を当てる。
11) Tension (1f/10
Apply ``d)'' and apply enough air to lift the fluff.

11))浮き上がった毛羽を1m、10’本当りの本数
で表わす。求められた毛羽の本数は下記のように評価さ
れる。
11)) The raised fluff is expressed as the number of strands per 10' of fluff. The number of fluffs obtained is evaluated as follows.

(3)焼成時延伸性の測定法 i)ローVとロールの間に熱風を流したオープンを取り
付けた装置を用いて、オーブン温度を240℃とし、オ
ープン前後のロールの回転数比より延伸比を求める。
(3) Method for measuring stretchability during firing i) Using an apparatus equipped with an open tube in which hot air was flowed between the row V and the roll, the oven temperature was set to 240°C, and the stretching ratio was determined from the rotation speed ratio of the rolls before and after opening. seek.

ii)  max延伸比は、毛羽の発生した時の延伸比
とする。求められたmaw延伸比は下記のように評価さ
れる。
ii) The max stretching ratio is the stretching ratio at which fuzz occurs. The obtained maw stretching ratio is evaluated as follows.

実施例1 アクリロニトリル99 wtlとメタクリル酸1vt%
を共重合させたアクリロニトリル系重合体をジメチVホ
ルムアミド(以下DMFと略)lC溶解し、固形分20
 wtlの紡糸原液とした。紡糸原液を純水5 Q v
rt96 D M P 70 wtlの組成で温度30
℃の紡浴槽内GC(1080■φのホール径を持ったノ
ズルから紡出し、95℃浴中延伸及び100℃浴中延伸
したのち、乾燥緻密化し、スチーム延伸機を用いて二次
延伸を行った。
Example 1 Acrylonitrile 99wtl and methacrylic acid 1vt%
An acrylonitrile-based polymer copolymerized with is dissolved in dimethyV formamide (hereinafter abbreviated as DMF) 1C, and the solid content is 20
It was used as a wtl spinning stock solution. Add the spinning stock solution to pure water 5 Q v
Temperature 30 with composition of rt96 D M P 70 wtl
It was spun from a nozzle with a hole diameter of 1080 mm in a spinning bath at ℃, stretched in a 95℃ bath and a 100℃ bath, dried and densified, and then subjected to secondary stretching using a steam stretching machine. Ta.

その後、湿熱型遠赤外線ヒーター緩和装置を用いて加熱
温度及び緩和収縮率を変更して加熱緩和せしめ、度素繊
維前駆体を作成した。得られた炭素繊維製造用前駆体の
特性は、第1表に示すごとくであった。またこれらの炭
素繊維製造用前駆体を常法によって225〜260℃の
範囲で温度勾配を有する熱風雰囲気の耐炎化炉に炭素繊
維製造用前駆体をローV駆動によって連続的に供給し、
34分間滞在させて、耐炎化処理を行った。耐炎化処理
での張力は約120■/dであった。耐炎化繊維の密度
は、いずれも1.57〜1.3997cm”の範囲にあ
った。耐炎化繊維を窒素ガス雰囲気にある320〜70
0℃の範囲の温度勾配を有する炭素化炉と1350℃の
熱処理炉をそれぞれ7分と45分の滞在時間で通過させ
て炭素繊維に焼成した。得られた炭素繊維の特性は第1
表に示すごとくであった。
Thereafter, the mixture was heated and relaxed by changing the heating temperature and relaxation shrinkage rate using a wet heat type far-infrared heater relaxation device to create a fiber precursor. The properties of the obtained carbon fiber manufacturing precursor were as shown in Table 1. Further, these precursors for producing carbon fibers are continuously supplied by a low V drive to a flameproofing furnace in a hot air atmosphere having a temperature gradient in the range of 225 to 260 ° C. by a conventional method,
It was left there for 34 minutes to perform flameproofing treatment. The tension in the flameproofing treatment was approximately 120 μ/d. The density of the flame-resistant fibers was in the range of 1.57 to 1.3997 cm.
The carbon fibers were fired by passing through a carbonization furnace having a temperature gradient in the range of 0°C and a heat treatment furnace at 1350°C for residence times of 7 minutes and 45 minutes, respectively. The properties of the obtained carbon fiber are
The results were as shown in the table.

各条件における比較例も第1 表に示した。Comparative examples under each condition are also the first. Shown in the table.

第1表の結果のごとく、湿熱型遠赤外線ヒーター緩和装
置を用いて、加熱温度が100℃以上250℃未満、緩
和収縮率24以下の範囲で加熱緩和することによっては
じめて焼成工程において延伸性の優れだ毛羽の発生が極
めて少ない炭素繊維製造用前駆体を製造することができ
た。得られた炭素m維のストランド彊度も430匈乙−
以上と高強度を示した。
As shown in Table 1, excellent stretchability can be achieved in the firing process by heating and relaxing using a moist heat type far infrared heater relaxation device at a heating temperature of 100°C or more and less than 250°C and a relaxation shrinkage rate of 24 or less. It was possible to produce a precursor for producing carbon fibers with extremely low occurrence of fuzz. The strand bending degree of the obtained carbon fiber was also 430 cm.
This indicates high strength.

〔発明の効果〕〔Effect of the invention〕

本発明によって得られた炭素繊維製造用前駆体は焼成工
程において延伸性が優れ、毛羽の発生が極めて少く、加
えてストランド強度の高す炭素繊維を得ることができる
The precursor for producing carbon fibers obtained according to the present invention has excellent drawability in the firing process, generates extremely little fluff, and in addition, carbon fibers with high strand strength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用する湿熱型遠赤外線ヒーター緩和
装置の概略図を示す。
FIG. 1 shows a schematic diagram of a wet heat type far-infrared heater relaxation device used in the present invention.

Claims (1)

【特許請求の範囲】 1、少なくとも90wt%のアクリロニトリルを含有す
るアクリロニトリル系重合体を溶剤に溶解した紡糸原液
を、紡糸、浴中延伸、乾燥緻密化したのち、二次延伸し
て全延伸倍率が10倍以上となるように延伸後、湿熱型
遠赤外線ヒーター緩和装置を用いて、加熱緩和すること
を特徴とする炭素繊維製造用前駆体の製造法。 2、加熱緩和の加熱温度が100℃以上250℃未満で
ある請求項1記載の製造法。 3、加熱緩和の緩和収縮率が2%以下である請求項1又
は2記載の製造法。
[Scope of Claims] 1. A spinning dope in which an acrylonitrile polymer containing at least 90 wt% of acrylonitrile is dissolved in a solvent is subjected to spinning, bath stretching, drying and densification, and then secondary stretching to obtain a total stretching ratio. 1. A method for producing a precursor for carbon fiber production, which comprises stretching the precursor by 10 times or more and then heating and relaxing it using a moist heat type far-infrared heater relaxation device. 2. The manufacturing method according to claim 1, wherein the heating temperature for heating relaxation is 100°C or more and less than 250°C. 3. The manufacturing method according to claim 1 or 2, wherein the relaxation shrinkage rate upon heating relaxation is 2% or less.
JP24968588A 1988-10-03 1988-10-03 Production of precursor for producing carbon fiber Pending JPH0299608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24968588A JPH0299608A (en) 1988-10-03 1988-10-03 Production of precursor for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24968588A JPH0299608A (en) 1988-10-03 1988-10-03 Production of precursor for producing carbon fiber

Publications (1)

Publication Number Publication Date
JPH0299608A true JPH0299608A (en) 1990-04-11

Family

ID=17196680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24968588A Pending JPH0299608A (en) 1988-10-03 1988-10-03 Production of precursor for producing carbon fiber

Country Status (1)

Country Link
JP (1) JPH0299608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100240414B1 (en) * 1994-06-24 2000-01-15 구광시 Method for producing polyester drawyarn
CN102965741A (en) * 2012-12-13 2013-03-13 吴江朗科化纤有限公司 Far infrared spinning component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100240414B1 (en) * 1994-06-24 2000-01-15 구광시 Method for producing polyester drawyarn
CN102965741A (en) * 2012-12-13 2013-03-13 吴江朗科化纤有限公司 Far infrared spinning component

Similar Documents

Publication Publication Date Title
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JPH10110329A (en) Polybenzazole fiber and production thereof
JP2006348462A (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2008163537A (en) Method for producing carbon fiber
JPS6114248B2 (en)
JPH0299608A (en) Production of precursor for producing carbon fiber
JPH04257313A (en) Production of precursor fiber for carbon fiber
KR102178877B1 (en) Method for preparing polyacrylonitrile based fiber
JPS5920004B2 (en) Carbon fiber manufacturing method
JPS6399317A (en) Production of precursor yarn for carbon fiber
JPS6399316A (en) Production of precursor yarn for carbon fiber
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP2004060126A (en) Carbon fiber and method for producing the same
JP3044896B2 (en) Pressurized steam drawing method of thick acrylic filament yarn
JP3033960B2 (en) Novel carbon fiber production method using pre-drawing
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPH04119114A (en) Quickly skrinkable acrylic synthetic fiber and its production
JP2010024581A (en) Flameproof fiber and method for producing the same
JPH04281008A (en) Acrylonitrile-based precursor fiber bundle
JPH026847B2 (en)
JPS5837411B2 (en) Carbon fiber manufacturing method
JP2000345429A (en) Production of acrylic fiber
JPS6050883B2 (en) Novel acrylonitrile synthetic fiber and its manufacturing method
JPH03199410A (en) Method for wet-spinning and storing acrylic fiber
JPH0533212A (en) Production of acrylic precursor yarn for carbon fiber