JPH0299523A - Production of para-orientated aromatic polyamide particle - Google Patents

Production of para-orientated aromatic polyamide particle

Info

Publication number
JPH0299523A
JPH0299523A JP24994288A JP24994288A JPH0299523A JP H0299523 A JPH0299523 A JP H0299523A JP 24994288 A JP24994288 A JP 24994288A JP 24994288 A JP24994288 A JP 24994288A JP H0299523 A JPH0299523 A JP H0299523A
Authority
JP
Japan
Prior art keywords
particles
para
aromatic polyamide
solvent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24994288A
Other languages
Japanese (ja)
Inventor
Eiji Sato
栄二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24994288A priority Critical patent/JPH0299523A/en
Publication of JPH0299523A publication Critical patent/JPH0299523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

PURPOSE:To obtain the title particles useful as reinforcing filler for rubber, etc., having excellent adhesiveness by grinding a solidified substance of a solution of para-orientated aromatic polyamide in a noncoagulable atmosphere, removing a solvent by washing to give undried particles, bringing a solution of a specific copolymer into contact with the undried particles and heat treating. CONSTITUTION:In a polymerizer, lithium chloride and para-phenylenediamine are dissolved in a solvent such as N,N-dimethylacetamide, incorporated with terephthalic acid chloride and polymerization is carried out to give a solidified substance of a solution comprising a para-orientated aromatic polyamide and a solvent capable of dissolving the polyamide. Then the solidified material is ground in a noncoagulable atmosphere and the solvent is removed by washing to give undried particles, which which a solution or dispersion of a copolymer having a constituent units shown by formula I (R is H or 1-5C alkyl; m is >=1 integer) and formula II (n is >=1 integer) is brought into contact and then the particles are dried and/or heat-treated to give the aimed polymer particles.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パラ配向芳香族ポリアミド粒子の製造法に関
する。特に、プラスチック、ゴム等の補強用充填材また
は圧縮成形用原料等として用いられる接着性に優れた高
度なパラ配向芳香族ポリアミド粒子の製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing para-oriented aromatic polyamide particles. In particular, the present invention relates to a method for producing highly para-oriented aromatic polyamide particles with excellent adhesive properties, which are used as reinforcing fillers for plastics, rubber, etc., or as raw materials for compression molding.

〔従来の技術〕[Conventional technology]

一般に、ポリマー粒子は、タルク、アルミナ、ガラス粉
等の無機系粒子と同様、プラスチック、ゴム等の補強、
あるいは寸法安定性、耐熱性、電気的特性等の特性改良
を目的として使用されることは既に知られている。
In general, polymer particles are used to reinforce plastics, rubber, etc., as well as inorganic particles such as talc, alumina, and glass powder.
Alternatively, it is already known that it is used for the purpose of improving properties such as dimensional stability, heat resistance, and electrical properties.

一般に、かかる粒子は、粒子径と共にプラスチックやゴ
ム等のマトリックス樹脂との接着性が製品物性に与える
影響が大きく、高い補強効果あるいは高物性の圧縮成形
物を得る為には、微細な粒子径とすると共に接着性を高
めることが必要である。また、最近特に複合技術の高度
化に伴って、耐熱性、寸法安定性、耐薬品性等に優れた
ものであることが強く要求されている。
In general, the adhesion of such particles to matrix resins such as plastics and rubber has a large effect on the physical properties of the product, as well as the particle size. At the same time, it is necessary to improve adhesiveness. In addition, in recent years, especially with the advancement of composite technology, there has been a strong demand for materials with excellent heat resistance, dimensional stability, chemical resistance, etc.

芳香族ポリアミド、その中でもとりわけ、パラ配向芳香
族ポリアミドは、その構造からも予想される通り、剛直
であって寸法安定性、耐熱性、耐薬品性、耐衝撃性等に
優れることから、ポリマー粒子の形態で用いられる補強
用充填材、圧縮成形用原料として大いに期待される素材
である。
Aromatic polyamides, especially para-oriented aromatic polyamides, are rigid and have excellent dimensional stability, heat resistance, chemical resistance, impact resistance, etc., as expected from their structure, so they are suitable for polymer particles. It is a material that is highly anticipated as a reinforcing filler used in the form of , and as a raw material for compression molding.

芳香族ポリアミドは、相当する芳香族ジアミン及び芳香
族二塩基酸ハライドから、所謂、低温溶液重合法(例え
ば、特公昭35−14399号公報参照)によって高収
率で高重合度ポリマーとして得られる。
Aromatic polyamides are obtained in high yields as polymers with a high degree of polymerization from the corresponding aromatic diamines and aromatic dibasic acid halides by a so-called low-temperature solution polymerization method (see, for example, Japanese Patent Publication No. 14399/1983).

かかる芳香族ポリアミドから粒子が得られることは既に
知られており、例えば、上記、特公昭3514399号
公報には、低温溶液重合によって得られた重合溶液を、
水等の凝固剤中に投入撹拌することによって得られるこ
とが開示されている。
It is already known that particles can be obtained from such aromatic polyamides. For example, in the above-mentioned Japanese Patent Publication No. 3514399, a polymer solution obtained by low-temperature solution polymerization is
It is disclosed that it can be obtained by pouring into a coagulant such as water and stirring.

しかしながら、かかる方法をパラ配向芳香族ポリアミド
に適用した場合、パラ配向芳香族ポリアミドは凝固速度
が速く、かつ高結晶性で剛直であるため、粒状物として
得られるものの、前述の如き目的の微細な粒径の粒子と
しては得られない。
However, when such a method is applied to para-oriented aromatic polyamide, para-oriented aromatic polyamide has a fast solidification rate, high crystallinity, and rigidity, so although it can be obtained as granules, it can be used as a fine material for the purpose described above. It cannot be obtained as particles of particle size.

また、微細化のために溶液中のパラ配向芳香族ポリアミ
ドの濃度を小さくすることは4、微細化効果は認められ
るものの充分ではなく、新たに、多量の溶媒を使用せざ
るを得ない等の難点があるので、工業的には到底採用で
きる方法ではない。
In addition, reducing the concentration of para-oriented aromatic polyamide in the solution for the purpose of microfabrication has been shown to have a microfabrication effect, but it is not sufficient, and a large amount of solvent must be used. Due to its drawbacks, this method cannot be adopted industrially.

一方、単離精製されたポリマーから、汎用的に粒子を得
る方法として、ボールミル、グラインダ、ハンマーミル
等の機械的粉砕手段を適用し得ることは周知の事実であ
る。しかし、なから、かかる方法をパラ配向芳香族ポリ
アミドに適用した場合、機械的な粉砕操作の摩擦熱によ
り重合度の低下、あるいは分解による変質等が発生する
。加えて、木質的に剛直かつ耐衝撃性に優れることから
、充分に小さな粒径の粒子とするためには、多大なエネ
ルギーが必要とされ、工業的実用性の極めて乏しい方法
と言わざるを得ない。
On the other hand, it is a well-known fact that mechanical crushing means such as a ball mill, a grinder, and a hammer mill can be applied as a general method for obtaining particles from isolated and purified polymers. However, when such a method is applied to para-oriented aromatic polyamide, the degree of polymerization decreases due to the frictional heat of the mechanical crushing operation, or deterioration due to decomposition occurs. In addition, since wood is rigid and has excellent impact resistance, a large amount of energy is required to make particles of sufficiently small size, making this method extremely impractical for industrial use. do not have.

これら従来の粒子製造法に対して、パラ配向芳香族ポリ
アミドの?8液の固化物を非凝固性雰囲気下で粉砕し、
しかる後、溶剤を洗浄除去する方法が、例えば特開昭6
2−32123号公報に提案されており、充分に微細な
粒子を効率よく得られることになった。しかしながら、
かかる粒子では、マトリックス樹脂等との接着性が不充
分であることが新たに問題となることが判明した。
In contrast to these conventional particle manufacturing methods, what is the difference between para-oriented aromatic polyamide? The solidified product of 8 liquids is pulverized in a non-coagulating atmosphere,
After that, a method of washing and removing the solvent is described, for example, in JP-A No. 6.
This method was proposed in Japanese Patent No. 2-32123, and it was possible to efficiently obtain sufficiently fine particles. however,
It has been found that such particles have a new problem in that they have insufficient adhesion to matrix resins and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述の欠点、即ち、マトリックス樹脂に対す
る接着性を改良し、従来の技術においては達成が極めて
困難であった微細化された、マトリックス樹脂に対する
接着性に優れたパラ配向芳香族ポリアミド粒子を得る為
になされたものである。
The present invention solves the above-mentioned drawbacks, namely, by improving the adhesion to the matrix resin, and by making fine para-oriented aromatic polyamide particles with excellent adhesion to the matrix resin, which has been extremely difficult to achieve with conventional techniques. It was done in order to obtain.

本発明者は、接着性を改良する目的で、パラ配向芳香族
ポリアミドの溶液の固化物を粉砕して得られる粒子につ
き鋭意検討を重ねた結果、該粒子から洗浄によって溶剤
を除去した未乾燥の粒子は膨潤状態にあり、乾燥によっ
て初めて微細化するものであり、膨潤状態では種々の化
合物を溶液あるいは分散液のかたちで含浸させ得ること
を見い出し、更に検討を重ねて本発明を完成させたもの
である。
For the purpose of improving adhesion, the present inventor conducted intensive studies on particles obtained by pulverizing solidified solutions of para-oriented aromatic polyamides, and found that undried particles obtained by removing the solvent from the particles by washing Particles are in a swollen state and only become fine when dried, and it was discovered that various compounds can be impregnated in the form of solutions or dispersions in the swollen state, and after further study, the present invention was completed. It is.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明の要旨は次のとおりである。 That is, the gist of the present invention is as follows.

実質的にパラ配向芳香族ポリアミド及び該パラ配向芳香
族ポリアミドを溶解し得る溶剤とからなる溶液の固化物
を、非凝固性雰囲気下で粉砕し、ついで溶剤を洗浄除去
した未乾燥粒子に、下式(1)及び〔2]で表わされる
構成単位を有する共重合体の溶液又は分散液を接触させ
たのち乾燥及び/又は熱処理することを特徴とするパラ
配向芳香族ポリアミド粒子の製造法 −(−CH2−C−+−(2〕 C0N11□ 但し、式(13,(2)においてRは水素又は炭素数5
以下のアルキル基、m、nは1以上の整数を表わす。
A solidified solution consisting essentially of a para-oriented aromatic polyamide and a solvent capable of dissolving the para-oriented aromatic polyamide is pulverized in a non-coagulating atmosphere, and then the undried particles from which the solvent has been washed away are mixed with A method for producing para-oriented aromatic polyamide particles characterized by contacting a solution or dispersion of a copolymer having constitutional units represented by formulas (1) and [2] and then drying and/or heat-treating the particles. -CH2-C-+-(2] C0N11□ However, in formula (13, (2), R is hydrogen or has 5 carbon atoms
The following alkyl groups, m and n represent integers of 1 or more.

本発明において、「パラ配向芳香族ポリアミド」位に2
価の結合手が位置する芳香族基が連結されてなるポリア
ミドをいい、該芳香族基は具体的には、2価の結合手が
1,4−フェニレン(パラフェニレン)や4.4′−ビ
フェニレン、1,4−ナフチレンの如く、芳香族環より
同軸的に反対方向に、または1,5−ナフチレンや2.
6−ナフチレンの如く、平行軸的に反対方向に配置され
ているような芳香族基を意味する。これらの芳香族基に
は、メチル基やエチル基等の低級アルキル基やメトキシ
基、エトキシ基、クロル基等のハロゲン基等が1個また
は2個以上含まれていてもよい。
In the present invention, in the "para-oriented aromatic polyamide" position 2
It refers to a polyamide formed by linking aromatic groups in which a valent bond is located, and specifically, the aromatic group is a polyamide in which a divalent bond is located in 1,4-phenylene (paraphenylene) or 4,4'- coaxially opposite from the aromatic ring, such as biphenylene, 1,4-naphthylene, or 1,5-naphthylene, 2.
It refers to aromatic groups which are arranged in opposite directions along parallel axes, such as 6-naphthylene. These aromatic groups may contain one or more lower alkyl groups such as methyl group and ethyl group, halogen groups such as methoxy group, ethoxy group, and chloro group.

これらのパラ配向芳香族ポリアミドの典型的なものとし
ては、ポリ−パラベンズアミド、ポリパラフェニレンテ
レフタルアミド、ポリ−4,4′ジアミノベンズアニリ
ドテレフタルアミド、ポリーN、N’−p−フェニレン
ビス(p−ベンズアミド)テレフタルアミド、ポリ−パ
ラフェニレン−2,6−ナフタリンアミド、コポリ−パ
ラフェニレン/4.4’ −(3,3’−ジメチルビフ
ェニレン)−テレフタルアミド、ポリ−2−クロロ−パ
ラフェニレンテレフタルアミド等があげられる。これら
のうち、ポリ−パラフェニレンテレフタルアミド、また
はポリマーを構成する繰返し単位の90モル%以上が、
パラフェニレンテレフタルアミド単位であるコポリマー
は、寸法安定性、耐熱性、耐薬品性の点から好ましい。
Typical of these para-oriented aromatic polyamides are poly-parabenzamide, poly-paraphenylene terephthalamide, poly-4,4'diaminobenzanilide terephthalamide, poly-N,N'-p-phenylene bis(p -benzamide) terephthalamide, poly-paraphenylene-2,6-naphthalamide, copoly-paraphenylene/4.4'-(3,3'-dimethylbiphenylene)-terephthalamide, poly-2-chloro-paraphenylene terephthalamide Examples include amides. Among these, poly-paraphenylene terephthalamide or 90 mol% or more of the repeating units constituting the polymer are
A copolymer having paraphenylene terephthalamide units is preferred from the viewpoint of dimensional stability, heat resistance, and chemical resistance.

上記のようなパラ配向芳香族ポリアミドを溶解し得る溶
剤は、該ポリマーを実質的に溶解するものであればいず
れでもよく、具体的には、N、 Nジメチルアセl−ア
ミド、N−メチル−2−ピロリドン、N−アセチルピロ
リジン、ヘキサメチルホスホルアミド等の所謂、アミド
型溶媒の1種または2種以上、及びこれらに塩化リチウ
ム、塩化カルシウム等を添加した溶剤、または濃度95
重量%以上の濃硫酸、フッ化水素酸、メタンスルホン酸
等があげられる。
The solvent capable of dissolving the para-oriented aromatic polyamide as described above may be any solvent as long as it substantially dissolves the polymer, and specifically, N, N-dimethylacel-amide, N-methyl-2 - One or more so-called amide type solvents such as pyrrolidone, N-acetylpyrrolidine, hexamethylphosphoramide, etc., and a solvent with lithium chloride, calcium chloride, etc. added thereto, or a concentration of 95%
Concentrated sulfuric acid, hydrofluoric acid, methanesulfonic acid, etc. in a concentration of % by weight or more can be mentioned.

本発明においては、上述のパラ配向芳香族ポリアミド及
び溶剤から調製された溶液の固化物、即ち固化ドープが
用いられる。
In the present invention, a solidified product of a solution prepared from the above para-oriented aromatic polyamide and a solvent, that is, a solidified dope is used.

溶液を固化ドープとするには、−旦溶解して得られた溶
液を、通常は冷却することによって容易に達成すること
ができる。その際の温度は、使用される溶剤の種類、ド
ープ濃度即ち溶液中のパラ配向芳香族ポリアミドの濃度
等により異なり、概に規定することはできない。本発明
においては温度の高低は特に問題ではなく、要は固化物
であればよい。
A solidified dope solution can be easily achieved by first dissolving the resulting solution, usually by cooling it. The temperature at that time varies depending on the type of solvent used, the dope concentration, that is, the concentration of the para-oriented aromatic polyamide in the solution, etc., and cannot be generally specified. In the present invention, the temperature does not particularly matter, as long as it is a solidified product.

ドープ濃度は本発明法において特に制限を受けるもので
はないが、−Cに、高い濃度の方が高い温度でも固化物
を与えること、粒子を製造する場合の溶剤の使用量が少
ない等の利点があるので好ましい。通常は、5〜40重
世%の範囲で行われるが、これに限定されるものではな
い。
The dope concentration is not particularly limited in the method of the present invention, but a higher concentration of -C has the advantage that a solidified product can be obtained even at a higher temperature, and that less solvent is used when producing particles. It is preferable because there is. Usually, it is carried out in the range of 5 to 40%, but it is not limited to this.

一般に、前記、特公昭35−14399号公報に開示さ
れている低温溶液重合法をパラ配向芳香族ポリアミド、
待にポリマー鎖を構成する二価の芳香族基のすべてか、
またはその95モル%以上がパラフェニレン基であるよ
うなパラ配向芳香族ポリアミドに適用し、工業的に重要
な高濃度で重合を行う場合、その重合反応物は殆んどの
場合ゲル状またはチーズ状の固化物として得られる(以
下この様なゲル状またはチーズ状の重合反応固化物を、
単に「重合固化ドープ」と略称する)。
Generally, the low-temperature solution polymerization method disclosed in Japanese Patent Publication No. 35-14399 is used to prepare para-oriented aromatic polyamides.
All of the divalent aromatic groups that make up the polymer chain,
When applied to para-oriented aromatic polyamides in which 95 mol% or more of para-phenylene groups are polymerized at industrially important high concentrations, the polymerization reaction product is in the form of a gel or cheese in most cases. obtained as a solidified product (hereinafter, such a gel-like or cheese-like polymerization reaction solidified product will be referred to as
(simply referred to as "polymerized solidified dope").

重合固化ドープは、本発明において適用されうる固化ド
ープであり、重合操作と同時に得られることから、特に
有用な固化ドープである。
The polymerized solidified dope is a solidified dope that can be applied in the present invention, and is a particularly useful solidified dope because it can be obtained simultaneously with the polymerization operation.

本発明法によりパラ配向芳香族ポリアミドの粒子を得る
には固化ドープを、非凝固性雰囲気下で粉砕することが
肝要である。
In order to obtain particles of para-oriented aromatic polyamide by the method of the present invention, it is essential to grind the solidified dope in a non-coagulating atmosphere.

粉砕に先立って、該固化ドープを凝固性雰囲気下、特に
水等の水性媒体等にさらすと、固化ドープ中から溶媒の
脱離、ポリマーの凝集沈澱が起こり、強固な粗大粒子あ
るいは塊状物を形成してしまう結果、従来法と同様充分
に微細な粒子を得ることは不可能となる。
If the solidified dope is exposed to a coagulating atmosphere, especially an aqueous medium such as water, before pulverization, the solvent will be desorbed from the solidified dope and the polymer will coagulate and precipitate, forming strong coarse particles or lumps. As a result, it becomes impossible to obtain sufficiently fine particles as in the conventional method.

非凝固性雰囲気下では、固化ドープはそれ自体極めて安
定であって、溶媒を分離し、凝集沈澱することはない。
Under a non-coagulating atmosphere, the solidified dope itself is very stable and does not separate the solvent and coagulate.

このように溶剤によって溶媒和されたザ態を保ったまま
粉砕することによって、固化ドープは容易に微細化され
る。
By pulverizing the dope while maintaining its solvated state, the solidified dope can be easily made into fine particles.

更に、本発明においては、固化ドープから得られた粉砕
粒子は、溶媒和された溶剤を含んだままの粒子であって
、該粒子は後述される溶剤の洗浄除去によって、初めて
粒子内のポリマーの凝集沈澱が起こる結果、更に微細な
パラ配向芳香族ポリアミド粒子が得られることになる。
Furthermore, in the present invention, the crushed particles obtained from the solidified dope are particles that still contain the solvated solvent, and the polymer in the particles is only removed by washing and removing the solvent as described below. As a result of coagulation and precipitation, finer para-oriented aromatic polyamide particles are obtained.

本発明にいう「非凝固性雰囲気」とは、実質的に固化ド
ープからの溶剤の脱離、希釈等の起こらない雰囲気をい
う。具体的には、窒素、酸素、ヘリウム、あるいは少な
(とも相対湿度60%以下の空気等の気体中、あるいは
、固化ドープを形成する溶剤に不溶性で、かつ脱水され
た液状媒体中をいう。液状媒体の具体的な例としてはヘ
キサン、ヘプタン等の炭化水素、脂肪族カルボン酸のア
ルキルエステル類等があげられる。
The term "non-coagulant atmosphere" as used in the present invention refers to an atmosphere in which desorption, dilution, etc. of the solvent from the solidified dope does not substantially occur. Specifically, it refers to gases such as nitrogen, oxygen, helium, or air with a relative humidity of 60% or less, or in a dehydrated liquid medium that is insoluble in the solvent that forms the solidified dope.Liquid Specific examples of the medium include hydrocarbons such as hexane and heptane, alkyl esters of aliphatic carboxylic acids, and the like.

粉砕の方法は本発明において特に限定されるものではな
く、前述の非凝固性雰囲気下で、得ようとする粒子径ま
で粉砕することのできる汎用的な手段であればよい。
The method of pulverization is not particularly limited in the present invention, and any general-purpose means may be used as long as it can pulverize the particles to the desired particle size in the above-mentioned non-coagulating atmosphere.

具体的に固化ドープ又は重合固化ドープを粉砕する手段
としては、例えばハンマーミル、ボールミル、ショーク
ラッシャー、ヘンシェルミキサー等の通常汎用的に使用
される粉砕装置、機械等による方法、あるいは、2軸の
混練ニーグー等を用いて規定の篩状格子から押し出す方
法等も有用である。
Specifically, methods for crushing the solidified dope or polymerized solidified dope include methods using commonly used crushing equipment or machines such as a hammer mill, ball mill, Shaw crusher, Henschel mixer, etc., or twin-screw kneading. A method of extruding through a specified sieve-like lattice using a niegoo or the like is also useful.

粉砕の程度は、得られるパラ配向芳香族ポリアミド微細
粒子の使用目的によって多少異なるが、最近の高度化し
た複合材料技術への適用を満足するためには、最終粒子
の大きさを500μm以下、好ましくは250μm以下
にした方がよい。
The degree of pulverization varies somewhat depending on the purpose of use of the obtained para-oriented aromatic polyamide fine particles, but in order to satisfy the application to recent advanced composite material technology, the final particle size should preferably be 500 μm or less. is preferably 250 μm or less.

粉砕時の温度は、Ig!擦熱等により固化ドープが、溶
液状とならないように保持さえすればよく、特に本発明
では制限されない。必要に応じて加熱することも可能で
あるし、また、冷却することも当然許される。通常は、
高い温度によっては、溶剤の分解変性、あるいはポリマ
ーの着色等の可能性があるため、100°C以下の温度
であることが好ましい。
The temperature during grinding is Ig! The present invention is not particularly limited as long as the solidified dope is maintained so as not to become a solution by heat rubbing or the like. It is also possible to heat as necessary, and cooling is also of course allowed. Normally,
Depending on the high temperature, there is a possibility of decomposition and modification of the solvent or coloring of the polymer, so the temperature is preferably 100°C or less.

このようにして粉砕された固化ドープからの粒子は、未
だ溶剤を含んでいるため、圧搾等によって粒子同志が圧
着あるいは密着することはあるが、次いで実施される溶
剤の除去、あるいは水洗操作での撹拌等によって容易に
分散されるため、本発明法において特に問題となること
はない。
The particles from the solidified dope crushed in this way still contain the solvent, so the particles may be compressed or stuck together by squeezing, etc., but the subsequent removal of the solvent or washing with water may cause the particles to stick together. Since it is easily dispersed by stirring or the like, there is no particular problem in the method of the present invention.

粉砕された固化ドープからの粒子は、ついで洗浄によっ
て溶剤が除去される。
The particles from the ground solidified dope are then washed free of solvent.

本発明において洗浄の手段は特に制限を受けるものでは
なく、通常汎用的に用いられる手段で実施されてよい。
In the present invention, the cleaning means is not particularly limited, and may be carried out by any commonly used means.

具体的には例えば、該粒子に洗浄剤を加えて撹拌後ポリ
マー粒子を回分式に濾過する方法、洗浄剤を連続的に供
給しつつ洗浄する向流または並流多段洗浄法等があげら
れる。かかる洗浄の程度は、必要とするポリマーの精製
の程度に応じて適宜決定されればよい。
Specifically, examples thereof include a method in which a detergent is added to the particles, stirred, and then the polymer particles are filtered in a batch manner, and a countercurrent or cocurrent multistage washing method in which washing is performed while continuously supplying a detergent. The degree of such washing may be appropriately determined depending on the required degree of purification of the polymer.

本発明において用いられる洗浄剤は特に限定されるもの
ではなく、例えばメチルアルコール、エチルアルコール
等のアルコール類、ハロゲン化炭化水素、エーテル類、
水等々、いずれでも良いが通常の場合は経済的理由から
水が用いられるのが普通である。
The cleaning agent used in the present invention is not particularly limited, and includes, for example, alcohols such as methyl alcohol and ethyl alcohol, halogenated hydrocarbons, ethers,
Water or any other material may be used, but water is usually used for economical reasons.

本発明法において、このようにして洗浄された粒子は、
必要に応じて脱液されたのち、式〔1〕及び〔2〕で表
わされる構成単位を有する共重合体の溶液又は分散液に
接触させることが必要である。本発明に用いられる式〔
1〕及び〔2〕の構単位を有する共重合体は、モノマー
としてCH,=C−CONH2で表わされるアクリルア
ミド誘導体を、所謂水素移動重合のおこる条件下にアニ
オン重合することによって容易に得ることができる。
In the method of the present invention, the particles thus washed are
After the liquid is removed as necessary, it is necessary to contact the solution or dispersion of the copolymer having the structural units represented by formulas [1] and [2]. Formula used in the present invention [
Copolymers having structural units 1] and [2] can be easily obtained by anionically polymerizing an acrylamide derivative represented by CH,=C-CONH2 as a monomer under conditions where so-called hydrogen transfer polymerization occurs. can.

かかる共重合体の分子1 (MW)は、本発明において
特に制限を受けるものではないが、通常1000〜5o
ooooのものが用いられる。又、式〔1〕で表わされ
るβ−アラニン単位と、式〔2〕で表わされるアクリル
アミド単位の割合は、一方が10〜90重量%であれば
よく、通常は式〔2〕で表わされるアクリルアミド単位
が40〜60重量%である共重合体が用いられる。かか
る共重合体は通常水溶性であり、弐〔1〕で表わされる
β−アラニン単位の比率が増大するに従って水に対する
溶解性は低下してくる。
The molecule 1 (MW) of such a copolymer is not particularly limited in the present invention, but is usually 1000 to 50
oooo is used. Further, the ratio of the β-alanine unit represented by formula [1] and the acrylamide unit represented by formula [2] may be 10 to 90% by weight, and usually the acrylamide unit represented by formula [2] is 10 to 90% by weight. A copolymer containing 40 to 60% by weight of units is used. Such copolymers are usually water-soluble, and as the proportion of β-alanine units represented by 2[1] increases, the solubility in water decreases.

本発明においては上述の共重合体の水溶液又は分散液が
用いられる。かかる水溶液又は分散液を得るには、通常
の方法によればよく、共重合体を水中に撹拌しながら投
入すればよい。又場合によっては、−旦水溶液としたも
のを、アセトン、アルコール、エーテル等の汎用の溶媒
中に加えて撹拌し、必要に応じて界面活性剤等を加えて
分散させた分散液を用いることもできる。
In the present invention, an aqueous solution or dispersion of the above-mentioned copolymer is used. Such an aqueous solution or dispersion can be obtained by a conventional method, and the copolymer may be poured into water while stirring. In some cases, an aqueous solution may be added to a general-purpose solvent such as acetone, alcohol, or ether, stirred, and a dispersion obtained by adding a surfactant or the like as necessary. can.

かかる水溶液又は分散液の濃度は、処理方法、処理速度
、未乾燥粒子の保液(水)率、目的とする付着量等々に
よって適宜選ばれればよいが、般には0.1〜20重量
%又はそれ以上である。
The concentration of such an aqueous solution or dispersion may be appropriately selected depending on the processing method, processing speed, liquid (water) retention rate of undried particles, desired adhesion amount, etc., but is generally 0.1 to 20% by weight. or more.

未乾燥粒子とエポキシ化合物の溶液又は分散液を接触さ
せる方法については特に本発明において特定されるもの
ではないが、一般には、未乾燥粒子を上述の共重合体の
水溶液又は分散液に投入してスラリー状としたのち濾別
する方法、未乾燥粒子に該水溶液又は分散液をシャワリ
ング又は散布する方法、あるいは、洗浄された粒子のス
ラリー液の中に直接上述の共重合体を投入撹拌する方法
も採用されてよい。
The method of bringing the undried particles into contact with the solution or dispersion of the epoxy compound is not particularly specified in the present invention, but generally, the undried particles are brought into contact with the aqueous solution or dispersion of the above-mentioned copolymer. A method in which the slurry is made into a slurry and then separated by filtration, a method in which the aqueous solution or dispersion is showered or sprinkled on the undried particles, or a method in which the above-mentioned copolymer is directly poured into the slurry of the washed particles and stirred. may also be adopted.

上述の共重合体の水溶液又は分散液には、それが上述の
共重合体と敏感に反応するなど本発明の効果を損なう不
都合を生じない限り、例えば分散剤、帯電防止剤、ゴム
ラテックス、増粘剤、光安定剤、酸化防止剤等の諸処理
剤を含有することもできる。
The aqueous solution or dispersion of the above-mentioned copolymer may contain, for example, a dispersant, an antistatic agent, a rubber latex, an additive, etc., as long as the solution or dispersion does not adversely affect the effects of the present invention, such as reacting sensitively with the above-mentioned copolymer. It may also contain various processing agents such as sticky agents, light stabilizers, and antioxidants.

本発明において、上述の共重合体の粒子に対する付着量
は特に限定されるものではないが、通常0.05〜10
重量%の範囲で行われるのがよい。即ち、接着性を高め
る為には粒子の表面層に上述の共重合体が存在すること
が不可欠であるが、その量は乾燥粒子に対して極めて微
量であっても有効に作用するからであり、又これ以上の
付着率であっても特に本発明の効果を損ねるものではな
い。付着量の調整は、接触させる水溶液又は分散液の濃
度及び保液量によって容易に行うことができる。
In the present invention, the amount of the above-mentioned copolymer attached to the particles is not particularly limited, but is usually 0.05 to 10
It is preferable to do this within a range of % by weight. In other words, it is essential that the above-mentioned copolymer exists in the surface layer of the particles in order to improve adhesion, but even if the amount is extremely small on the dry particles, it will have an effective effect. , even if the adhesion rate is higher than this, the effects of the present invention will not be particularly impaired. The amount of adhesion can be easily adjusted by adjusting the concentration of the aqueous solution or dispersion to be brought into contact and the amount of retained liquid.

本発明法においては、上述のようにして水溶液又は分散
液と接触させられた未乾燥粒子は、ついで乾燥される。
In the method of the invention, the undried particles brought into contact with the aqueous solution or dispersion as described above are then dried.

乾燥についても本発明法においては特別な制限はなく慣
用の手段が用いられる。例えば、回分式に、あるいは連
続的に未乾燥粒子に熱風をあてて乾燥する箱型乾燥機あ
るいは流動乾燥機、赤外線ランプ、遠赤外線ヒーター、
高周波誘電加熱装置等により乾燥する方法、等々いずれ
の方法であってもよい。
Regarding drying, there are no special restrictions in the method of the present invention, and conventional means can be used. For example, box-type dryers or fluidized dryers that dry undried particles by blowing hot air batchwise or continuously, infrared lamps, far-infrared heaters,
Any method such as drying using a high frequency dielectric heating device or the like may be used.

乾燥温度に関しても、通常採用される範囲であればよい
。なお、本発明に用いられる上述の共重合体は、170
°C以上の温度で分子間架橋を起こすことが知られてお
り、必要に応じて、分子間架橋を起こさせない場合には
170°C以下の温度で乾燥されればよく通常は80〜
160°Cの範囲で行われる。
The drying temperature may also be within a normally employed range. In addition, the above-mentioned copolymer used in the present invention has 170
It is known that intermolecular crosslinking occurs at a temperature of 170°C or higher, and if necessary, if intermolecular crosslinking is not allowed to occur, drying can be carried out at a temperature of 170°C or lower.
The temperature range is 160°C.

一方、付着した上述の共重合体を分子間架橋させること
も本発明において回答制限を受けるものではなく、この
場合には170 ’C以上の温度で乾燥することによっ
て容易にその目的を達成し得る。
On the other hand, the present invention is not limited to intermolecular crosslinking of the above-mentioned adhered copolymer, and in this case, the purpose can be easily achieved by drying at a temperature of 170'C or higher. .

なお、乾燥において、高すぎる温度は、粒子を構成する
パラ配向芳香族ポリアミドや上述の共重合体の劣化や激
しい着色等を招くので好ましくなく、通常は約300°
C以下に選ばれることが多い。
In addition, in drying, excessively high temperature is undesirable because it causes deterioration and severe coloring of the para-oriented aromatic polyamide and the above-mentioned copolymer that constitute the particles, and the drying temperature is usually about 300°.
Often selected as C or below.

乾燥に続いて、追加的に熱処理を行うことも有用であり
行なわれてよい。この場合の温度は、上述の理由から、
約140〜300°Cの範囲であり、処理時間としては
通常10秒から60分の範囲で好ましく行われるが、特
にこれに制限されるものではない。
Following drying, additional heat treatments may also be useful and may be performed. For the reasons mentioned above, the temperature in this case is
The temperature is in the range of about 140 to 300°C, and the treatment time is usually preferably carried out in the range of 10 seconds to 60 minutes, but is not particularly limited thereto.

このようにして本発明の方法によって得られたパラ配向
芳香族ポリアミド粒子は、微細な粒子径を有すると共に
上述の共重合体を表面層及び内部に保有する結果、種々
のプラスチックあるいはゴム等のマトリックス樹脂との
接着力が高く極めて高い補強効果を示すものであり、こ
の効果は単に乾燥したパラ配向芳香族ポリアミド粒子に
上述の共重合体を作用させた粒子では得られず、本発明
法による粒子とは区別されるものである。尚この効果の
相違の明確な理由は不明であるが、本発明法においては
、未乾燥の膨潤状態で上述の共重合体を接触させたのち
緻密化される為、共重合体が粒子内部に捕捉されたアン
カー効果によるものと推定される。
The para-oriented aromatic polyamide particles thus obtained by the method of the present invention have a fine particle size and contain the above-mentioned copolymer in the surface layer and inside. It has a high adhesive strength with the resin and exhibits an extremely high reinforcing effect, and this effect cannot be obtained by simply applying the above-mentioned copolymer to dry para-oriented aromatic polyamide particles, but the particles produced by the method of the present invention It is distinguished from Although the exact reason for this difference in effect is unknown, in the method of the present invention, the above-mentioned copolymer is contacted in an undried swollen state and then densified, so the copolymer is inside the particles. This is presumed to be due to the captured anchor effect.

〔実施例〕〔Example〕

以下実施例によって、本発明法を更に詳細に説明する。 The method of the present invention will be explained in more detail with reference to Examples below.

実施例中、特にことわりのない限り%は重量%を表わす
In the examples, % represents weight % unless otherwise specified.

なお、粉砕後の固化ドープの粒子径及び最終的に得られ
たパラ配向芳香族ポリアミド粒子の粒子径はタイラー(
Tyler)標準篩によって測定された値を表わす。
The particle size of the solidified dope after pulverization and the particle size of the finally obtained para-oriented aromatic polyamide particles are determined by Tyler (
(Tyler) represents the value measured with a standard sieve.

く固有粘度の測定法〉 固有粘度(ηtnh)は、パラ配向芳香族ポリアミドは
98.5重量%の濃硫酸に濃度(C)=0.2g/aで
ポリマーを溶かした溶液を、共重合体は蟻酸に10g/
aで溶解した溶液を30°Cにて常法により測定する。
Measuring method of intrinsic viscosity〉 Intrinsic viscosity (ηtnh) of para-oriented aromatic polyamide is determined by dissolving a solution of the polymer in 98.5% by weight concentrated sulfuric acid at a concentration (C) = 0.2 g/a. is 10g/for formic acid
Measure the solution dissolved in step a at 30°C using a conventional method.

2n ・ ηreal ηinh  = く複合材料の特性〉 本発明法によって得られたパラ配向芳香族ポリアミド粒
子を用いた複合材料の特性は次の測定法による。
2n·ηreal ηinh=Characteristics of Composite Material> The properties of a composite material using para-oriented aromatic polyamide particles obtained by the method of the present invention are determined by the following measurement method.

ナイロン66樹脂(旭化成工業■製、レオナ(300s
)に粒子が30重量%となる様にコンパウンドし、射出
成形によって試験片を作成し以下の物性を測定した。
Nylon 66 resin (manufactured by Asahi Kasei Corporation, Leona (300s)
) was compounded so that the particle content was 30% by weight, a test piece was prepared by injection molding, and the following physical properties were measured.

曲げ強度及び曲げ弾性率: ASTMD790に従って
試験片を作成し、測定条件も同規格に沿って試験した。
Bending strength and flexural modulus: A test piece was prepared according to ASTM D790, and the measurement conditions were also tested according to the same standard.

アイゾツト衝撃: ASTMD256に従ってノツチ付
試験片にて測定を行なった。
Izot impact: Measurement was performed using a notched test piece according to ASTM D256.

実施例1 撹拌機を備えた重合器中のN、N−ジメチルアセトアミ
ド250kgに塩化リチウム8.5 kg及びパラ−フ
ェニレンジアミン10.8 kgを加えて溶解し、つい
で粉末状のテレフタル酸クロライド20.3 kgを一
度に投入して重合を行なった。投入後約3分で撹拌が困
難となったので撹拌を停止し、そのまま30分間放置し
たのち、チーズ状に固化した重合固化ドープを得た。
Example 1 8.5 kg of lithium chloride and 10.8 kg of para-phenylenediamine were added and dissolved in 250 kg of N,N-dimethylacetamide in a polymerization vessel equipped with a stirrer, and then 20.5 kg of powdered terephthalic acid chloride was added. Polymerization was carried out by adding 3 kg at once. About 3 minutes after the addition, stirring became difficult, so stirring was stopped and the mixture was allowed to stand for 30 minutes, to obtain a polymerized and solidified dope that solidified into a cheese shape.

この固化ドープを一部5 kgを、100メツシユ(目
開き147μm)の金網スクリーンを付し窒素シールさ
れたハンマーミルの中に投入して30分間撹拌粉砕し、
スクリーンを通して固化ドープの粉砕物3.2 kgを
得た。
A portion of 5 kg of this solidified dope was placed in a hammer mill fitted with a wire mesh screen of 100 meshes (openings of 147 μm) and sealed with nitrogen, and pulverized with stirring for 30 minutes.
3.2 kg of crushed solidified dope was obtained through a screen.

次いで、得られた粉砕物を、水と共に家庭用のミキサー
中に投入して撹拌した。得られたスラリーを、400メ
ツシユ(目開き38μm)の金網スクリーンが底部に張
っである円筒型の濾過機に入れて濾別後、スクリーン上
の粒子を集めて水中に投入し洗浄する操作を7回繰り返
して洗浄した。
Next, the obtained pulverized product was put into a household mixer together with water and stirred. The obtained slurry was put into a cylindrical filter with a 400-mesh (opening 38 μm) wire mesh screen attached to the bottom, and after filtering, the particles on the screen were collected and poured into water for washing. Washed repeatedly.

次いで、洗浄粒子の濃度が10%となる様に水スラリー
液とし、このスラリー液に、式〔1〕で表わされるβ−
アラニン単位が40重量%、式〔2〕で表わされるアク
リルアミド単位が60重量%のランダム共重合体(固有
粘度=0.59)を加え、ランダム共重合体の濃度(重
量%)が、それぞれ0.1%、0.2%、0.5%、1
.0%となるように各スラリー液を得た。次いでそれぞ
れのスラリー液を室温で30分間撹拌後、セントル型脱
水機で水分率が350%となるように脱水したのち18
0°Cの熱風乾燥機中で165時間乾燥した。
Next, a water slurry is prepared so that the concentration of cleaning particles is 10%, and β- expressed by the formula [1] is added to this slurry.
A random copolymer (intrinsic viscosity = 0.59) containing 40% by weight of alanine units and 60% by weight of acrylamide units represented by formula [2] was added, and the concentration (weight%) of the random copolymer was 0. .1%, 0.2%, 0.5%, 1
.. Each slurry liquid was obtained so that the concentration was 0%. Next, each slurry liquid was stirred at room temperature for 30 minutes, and then dehydrated using a center type dehydrator to a moisture content of 350%.
It was dried for 165 hours in a hot air dryer at 0°C.

得られた乾燥粒子のライター標準篩による篩分は平均粒
子径は43μmの微細粒子であった。この粒子を用いて
前記複合材の特性評価を行った結果を第1表に示す。本
発明の粒子を用いた複合材は、粒子の接着性が高められ
た結果、曲げ特性、耐衝撃特性に優れたものであること
が証明された。
When the obtained dry particles were sieved using a lighter standard sieve, they were found to be fine particles with an average particle size of 43 μm. Table 1 shows the results of characterizing the composite material using these particles. It was proved that the composite material using the particles of the present invention has excellent bending properties and impact resistance properties as a result of the improved adhesion of the particles.

比較例1 実施例1におけるランダム共重合体を付与しなかった以
外は全〈実施例1と同じ操作で得た粒子(平均粒子径4
2μm)を用いて複合材の特性評価を実施した。得られ
た複合材の物性は第1表に並記された通りであり、本発
明法の粒子を用いた複合材に対していずれも劣った物性
値であった。
Comparative Example 1 Particles obtained in the same manner as in Example 1 except that the random copolymer in Example 1 was not added (average particle size 4)
Characteristics of the composite material were evaluated using 2μm). The physical properties of the obtained composite material are as listed in Table 1, and all physical property values were inferior to the composite material using the particles of the present invention.

実施例2〜4 実施例1で用いた重合機を用いて、200kgのN−メ
チル−2−ピロリドンに塩化カルシウム15.5kg、
パラ−フェニレンジアミン8.64kgを撹拌溶解し、
次いで16.24kgの粉末状テレフタル酸クロライド
を一気に投入して重合を行った。
Examples 2 to 4 Using the polymerization machine used in Example 1, 15.5 kg of calcium chloride was added to 200 kg of N-methyl-2-pyrrolidone.
Stir and dissolve 8.64 kg of para-phenylenediamine,
Next, 16.24 kg of powdered terephthalic acid chloride was added all at once to carry out polymerization.

実施例1と同様撹拌は投入後約3分で困難となり、撹拌
停止後約1時間後チーズ状の固化ドープを得た。この固
化ドープを粗砕しつつ払い出し、次いで、この粗砕物を
、窒素流で満たされた板壁とパドルとのクリアランス0
.5 mmの2軸の連続式ニーグー(栗本鉄工所製2イ
ンチKRCニーグー)に連続して投入し、0.15an
φの孔が多数設けられた多孔板を付した排出部から、滞
留時間が10分となる様に排出した。その際、排出物は
0.15anφの孔から一見連続したヒモ状物として得
られたが、これを水中に投入し、次いで一般的に使用さ
れる家庭用ミキサーで撹拌することによって容易に粒子
化した。
As in Example 1, stirring became difficult approximately 3 minutes after addition, and a cheese-like solidified dope was obtained approximately 1 hour after stirring was stopped. This solidified dope is roughly crushed and discharged, and the crushed material is then disposed of with a clearance of 0 between the plate wall filled with nitrogen flow and the paddle.
.. Continuously put it into a 5 mm two-axis continuous type knee goo (2 inch KRC knee goo manufactured by Kurimoto Iron Works), and 0.15 an
The solution was discharged from a discharge section equipped with a perforated plate having a large number of holes of φ so that the residence time was 10 minutes. At that time, the discharged material was obtained as a seemingly continuous string-like material from the 0.15anφ hole, but it was easily turned into particles by putting it into water and stirring it with a commonly used household mixer. did.

このようにして得られたスラリーを実施例1と同様にし
て洗浄後、セントル脱水機で脱水し、水分率320%の
未乾燥粒子を得た。
The thus obtained slurry was washed in the same manner as in Example 1, and then dehydrated using a Centor dehydrator to obtain undried particles with a moisture content of 320%.

一方、第2表に示すランダム共重合体の1重量%水溶液
を調整し、この水溶液中に先の未乾燥粒子を投入して3
0分間撹拌後、セントル脱水機で脱液しく水分率350
%)、ついで実施例1と同様に180”Cの温度で乾燥
した。
On the other hand, a 1% by weight aqueous solution of the random copolymer shown in Table 2 was prepared, and the undried particles were added to this aqueous solution.
After stirring for 0 minutes, remove the liquid using a centor dehydrator and reduce the moisture content to 350.
%) and then dried at a temperature of 180"C as in Example 1.

得られた乾燥粒子の平均粒子径はいずれも78μmであ
り、ランダム共重合体の付着量は約3.5重量%であっ
た。
The average particle diameter of the obtained dry particles was 78 μm, and the amount of random copolymer attached was about 3.5% by weight.

これらの粒子を用いた複合材の物性は第2表に示す通り
であり、いずれも優れた特性を示すものであった。
The physical properties of the composite materials using these particles are shown in Table 2, and all exhibited excellent properties.

比較例2 ランダム共重合体を付与しない以外は実施例2と同じ処
理により乾燥粒子を得た。この粒子を用いた複合材の物
性を第2表に並記した。
Comparative Example 2 Dry particles were obtained by the same treatment as in Example 2 except that no random copolymer was added. The physical properties of the composite material using these particles are listed in Table 2.

以下余白 実施例5 固有粘度(η1nh)が7.05のポリ−パラフェニレ
ンテレフタルアミドを、ポリマー濃度が18. ’7重
量%となるように、ジャケット温度を80°Cに保ちな
がら99.7重量%の濃硫酸に加えて撹拌溶解し、ドー
プを調製した。このドープは光学的異方性を示すことが
、直交ニコル下の偏光顕微鏡観察で確認された。また8
0°Cにおけるドープの粘度は5750ポイズであった
Below is a blank space Example 5 Poly-paraphenylene terephthalamide having an intrinsic viscosity (η1nh) of 7.05 was used at a polymer concentration of 18. A dope was prepared by adding to 99.7% by weight concentrated sulfuric acid and dissolving with stirring so that the concentration was 7% by weight while maintaining the jacket temperature at 80°C. It was confirmed by polarizing microscopy observation under crossed Nicols that this dope exhibits optical anisotropy. 8 again
The viscosity of the dope at 0°C was 5750 poise.

次いで、撹拌を続けながらジャケット内に一15°Cの
エチレングリコール水溶液を送液して冷却固化させ、粗
砕された固化ドープを得た。
Next, an aqueous ethylene glycol solution at -15° C. was fed into the jacket while stirring, and the mixture was cooled and solidified to obtain a coarsely crushed solidified dope.

この固化ドープを、ジャケットに一15°Cのエチレン
グリコール水溶液を送液して冷却したことを除いては、
全〈実施例2で用いた装置及び条件で排出し、水中に投
入後家庭用ミキサーで撹拌したのち、全〈実施例1と同
様の水洗、及びランダム共重合体水溶液による処理を行
って、付着量1.8重量%、平均粒子径92μmの乾燥
粒子を得た。
Except that this solidified dope was cooled by feeding an ethylene glycol aqueous solution at -15°C into the jacket.
The entire material was discharged using the equipment and conditions used in Example 2, poured into water, and stirred with a household mixer. Dry particles having an amount of 1.8% by weight and an average particle size of 92 μm were obtained.

この粒子を用いた複合材の曲げ強度はx670kg/c
i、曲げ弾性率は3580 kg / crA 、アイ
ゾツト衝撃は4、4 kg−cm / cmであった。
The bending strength of the composite material using these particles is x670kg/c
i, the flexural modulus was 3580 kg/crA, and the Izod impact was 4.4 kg-cm/cm.

〔発明の効果〕〔Effect of the invention〕

本発明の製造法において得られるパラ配向芳香族ポリア
ミド粒子は、微細な粒子であって、接着性に極めて優れ
る結果、複合材料用の補強材料として該材料の力学的性
質、特に衝撃特性及び曲げ特性を飛躍的に高めることが
可能である。また、粒子自体の耐熱性、耐薬品性、難燃
性を利用した改質も可能であるばかりではなく、圧縮成
形材料としても極めて有効に用いられるものである。
The para-oriented aromatic polyamide particles obtained by the production method of the present invention are fine particles and have extremely excellent adhesive properties.As a result, they can be used as reinforcing materials for composite materials to improve the mechanical properties of the materials, especially their impact properties and bending properties. It is possible to dramatically increase the Furthermore, it is not only possible to modify the particles themselves by taking advantage of their heat resistance, chemical resistance, and flame retardancy, but also to use them extremely effectively as compression molding materials.

特許出願人  旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)実質的にパラ配向芳香族ポリアミド及び該パラ配
向芳香族ポリアミドを溶解し得る溶剤とからなる溶液の
固化物を、非凝固性雰囲気下で粉砕し、ついで溶剤を洗
浄除去した未乾燥粒子に、下式〔1〕及び〔2〕で表わ
される構成単位を有する共重合体の溶液又は分散液を接
触させたのち乾燥及び/又は熱処理することを特徴とす
るパラ配向芳香族ポリアミド粒子の製造法 ▲数式、化学式、表等があります▼〔1〕 ▲数式、化学式、表等があります▼〔2〕 但し、式〔1〕、〔2〕において、Rは水素又は炭素数
5以下のアルキル基、m、nは1以上の整数を表わす。
(1) Undried particles obtained by pulverizing a solidified solution consisting essentially of a para-oriented aromatic polyamide and a solvent capable of dissolving the para-oriented aromatic polyamide in a non-coagulating atmosphere, and then washing and removing the solvent. The production of para-oriented aromatic polyamide particles, which comprises contacting with a solution or dispersion of a copolymer having structural units represented by the following formulas [1] and [2], followed by drying and/or heat treatment. Method ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [1] ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [2] However, in formulas [1] and [2], R is hydrogen or an alkyl group with 5 or less carbon atoms. , m, and n represent integers of 1 or more.
JP24994288A 1988-10-05 1988-10-05 Production of para-orientated aromatic polyamide particle Pending JPH0299523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24994288A JPH0299523A (en) 1988-10-05 1988-10-05 Production of para-orientated aromatic polyamide particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24994288A JPH0299523A (en) 1988-10-05 1988-10-05 Production of para-orientated aromatic polyamide particle

Publications (1)

Publication Number Publication Date
JPH0299523A true JPH0299523A (en) 1990-04-11

Family

ID=17200468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24994288A Pending JPH0299523A (en) 1988-10-05 1988-10-05 Production of para-orientated aromatic polyamide particle

Country Status (1)

Country Link
JP (1) JPH0299523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254525A (en) * 2006-03-22 2007-10-04 Teijin Techno Products Ltd Method for producing meta type wholly aromatic polyamide solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254525A (en) * 2006-03-22 2007-10-04 Teijin Techno Products Ltd Method for producing meta type wholly aromatic polyamide solution

Similar Documents

Publication Publication Date Title
JP4786546B2 (en) Method for producing DAPBI-containing aramid crumb
CN104725635B (en) Polyimide powder with high thermo oxidative stability
RU2488604C2 (en) LARGE-TONNAGE PROCESS FOR POLYMERISING POLYARAMIDE CONTAINING 5(6)-AMINO-2-(p-AMINOPHENYL)BENZIMIDAZOLE (DAPBI)
JPS6048537B2 (en) Method for producing poly-P-phenylene terephthalamide
JPH0299523A (en) Production of para-orientated aromatic polyamide particle
JPH01113435A (en) Preparation of para-oriented aromatic polyamide particle
JPH0347287B2 (en)
JP4092594B2 (en) Finely divided aromatic dicarboxylic acid
US5637653A (en) Polymer blend materials composed of an aromatic polyamide and a soluble polyamide
JP5372503B2 (en) Two-stage melt polymerization process for the production of polybenzimidazole
JPH02185529A (en) Preparation of fine particle of aromatic polyether ketone polymer
JPH01110534A (en) Production of para-oriented aromatic polyamide particle
US5273823A (en) Shaped articles containing copolymers of polybenzazoles
JPS59603B2 (en) Method for producing short fibers and/or pulp particles
JPH037730A (en) Polyamide polymer having bonding group containing 12-f fluorine
JPS6034572B2 (en) Method for producing polyparaphenylene terephthalamide
JP2000239379A (en) Production of polysuccinimide
JPH09511796A (en) Aromatic polyamide pulp and method for producing the same
JP2007100022A (en) Method for tailoring polymer dope
KR940000284B1 (en) Method of preparation for aromatic polyamide pulp
JP4677126B2 (en) Method for producing polysuccinimide
KR900003329B1 (en) Aromatic polymide pulp and that's process of manufacture
JPS60126314A (en) Production of pulp particle
JPS5950169B2 (en) Polymerization method of polyparaphenylene terephthalamide
JPS6057446B2 (en) Method for producing aromatic polyamide solution