JPH0299311A - Method and device for mold temperature adjusting - Google Patents

Method and device for mold temperature adjusting

Info

Publication number
JPH0299311A
JPH0299311A JP25279288A JP25279288A JPH0299311A JP H0299311 A JPH0299311 A JP H0299311A JP 25279288 A JP25279288 A JP 25279288A JP 25279288 A JP25279288 A JP 25279288A JP H0299311 A JPH0299311 A JP H0299311A
Authority
JP
Japan
Prior art keywords
temperature
mold
molding
refrigerant
chiller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25279288A
Other languages
Japanese (ja)
Inventor
Riichi Okamoto
岡本 利一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP25279288A priority Critical patent/JPH0299311A/en
Publication of JPH0299311A publication Critical patent/JPH0299311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To shorten time and enhance efficiency by inputting the molding condition into a control device, controlling the temperature of a refrigerant and converging the mold temperature to the desired equilibrium temperature. CONSTITUTION:For instance, the last mold temperature TM' when a chiller 3 is computed from the molding condition input in a microcomputer control device 5 which is to an injection molding machine. The anticipated temperature rise DELTATM=TM'-TM of a mold 2 is computed from the equilibrium mold temperature TM' when the computed chiller 3 is not used, and the chiller refrigerant equilibrium temperature Tc and DELTATc as the function of DELTATM, ...t1, the time delay from the temperature rise of the refrigerant returning to the chiller 3 to making the action of the refrigerant of the chiller 3 on, and ...t2, the time for lowering the temperature of refrigerant DELTATc, respectively input in the form of a table in RAM of the injection molding machine 1, are called, and the refrigerant temperature of the chiller 3 from the control device 5 of the injection molding machine 1 is controlled, and equilibrium temperature TM of the mold 2 is realized in the shortest time without any trouble such as overrun or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、射出成形などに使用する金型の温度調整に係
り、特に冷凍機付き金型温度!Pl整機を使用した場合
、最適の金型温度調整を射出成形機側から制御する方法
とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to the temperature adjustment of molds used in injection molding, etc., and particularly to the temperature control of molds equipped with refrigerators! This invention relates to a method and device for controlling optimal mold temperature adjustment from the injection molding machine side when using a Pl adjustment machine.

(従来の技術とその問題点) 射出成形時には、金型内に射出される溶融樹脂の持ち込
む熱量のために金型温度が上昇して行くので、金型に適
当な温度の冷却媒体を循環させて成形品の離型が最適に
行なわれるように、又、冷却時間が出来るだけ短くなる
ように金型を最適温度にrs整している。
(Prior art and its problems) During injection molding, the temperature of the mold rises due to the amount of heat brought in by the molten resin injected into the mold, so it is necessary to circulate a cooling medium at an appropriate temperature in the mold. The mold is adjusted to an optimum temperature so that the molded product can be released optimally and the cooling time can be as short as possible.

しかし原料樹脂の種類、形成菌の形状、サイクルタイム
のなどの要求によっては、溶融温度によって金型内に持
ち込む熱量の方が、冷却媒体が金型から取り去る熱量よ
りも過大となり、金型から戻ってくる冷却媒体の温度が
上昇する一方になってしまうので、公知の冷凍機付き金
型温度!lI整機(以下、単にチラーと称する。)を使
用する0例えば、PEやPRなど比較的比熱が大きい樹
脂で、厚肉製品をサイクルを上げて成形したい場合など
にチラーが良く使われる。
However, depending on requirements such as the type of raw material resin, the shape of forming bacteria, and cycle time, the amount of heat brought into the mold by the melting temperature may be greater than the amount of heat removed from the mold by the cooling medium, and the amount of heat returned from the mold may be greater than the amount of heat removed from the mold by the cooling medium. Since the temperature of the cooling medium that comes in will only increase, the temperature of the mold with a well-known refrigerator! Using a chiller (hereinafter simply referred to as a chiller) For example, a chiller is often used when molding thick-walled products using resins with relatively high specific heat, such as PE or PR, at a high cycle speed.

(発明が解決しようとする問題点) しかし、このチラーは適正に使用されないとサイクル短
縮のメリットを発揮しないばかりか、却って成形不良を
続出したりトラブルを引き起こす。
(Problems to be Solved by the Invention) However, if this chiller is not used properly, not only will it not exhibit the advantage of shortening the cycle, but it will also cause problems such as repeated molding defects.

よく起こる例として、成形開始時(こチラーの使用が早
すぎて金型を過度に冷却し過ぎた状態で成形を開始して
しまい、その結果金型キャビデイ内に射出される溶融樹
脂の流れが悪くなり、成形不良が多くなると言うような
トラブルが上げられる。
A common example of this is that the chiller is used too early and starts molding with too much cooling of the mold, resulting in the flow of molten resin being injected into the mold cavity. Problems such as deterioration and an increase in molding defects are raised.

特に、ホットランナやホットチップノズルを使用した場
合、ゲート部の温度管理がM密に要求されるので、チラ
ーを使用する時の成形開始時には特別g&重な温度管理
を必要としていた。
In particular, when a hot runner or hot tip nozzle is used, strict temperature control is required at the gate, so special temperature control is required at the start of molding when a chiller is used.

(問題点を解決するための手段) 本発明は、前記問題点を解決するなめに;■成形開始前
に、搭n金型(2)、使用樹脂及び成形操作に基づく成
形条件、並びに連続成形時の希望平衡金型温度を制御装
置(5)に入力し、■続いて金型(2)を循環する冷媒
の温度を制御装置(5)にて制御し、金型温度を前記希
望平衡温度に収束させる。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention aims to: ■ Before starting molding, the molding conditions based on the mounting mold (2), the resin used and the molding operation, and the continuous molding input the desired equilibrium mold temperature at the desired equilibrium temperature into the control device (5), then control the temperature of the refrigerant circulating through the mold (2) with the control device (5), and adjust the mold temperature to the desired equilibrium temperature. to converge.

と言う技術的手段を採用し、ており、第2項では;■成
形開始前に、搭載金型(2)や使用樹脂に基づく成形条
件と、操作のための設定条件、並びに連続成形時の希望
平衡金型温度を潜197装置り5)に入力し、 ■続いて成形機付属のチラー(3)と金型(2)との間
で冷媒を循環させつつ成形を行い、 ■冷媒の昇温を検出した後所定時間経過後に、チラー(
3)の冷凍機のオン・オフ制御を制御装置(5)で行っ
て、冷媒の熱を奪い金型温度を前記希望せる平衡温度に
収束させる。
In Section 2, we have adopted the following technical means: ■Before starting molding, we need to determine the molding conditions based on the installed mold (2) and the resin used, the setting conditions for operation, and during continuous molding. Input the desired equilibrium mold temperature into the sub-197 device 5). Next, molding is performed while circulating the refrigerant between the chiller (3) attached to the molding machine and the mold (2), and the refrigerant rises. The chiller (
The control device (5) performs on/off control of the refrigerator (3) to remove heat from the refrigerant and converge the mold temperature to the desired equilibrium temperature.

と言う技術的手段を採用しており、第3項では;■第1
項又は第2項の金型〈2)の温度調整方法において、制
御装置(5)を成形機付属の制御装置とする。
We have adopted the technical means of
In the method for adjusting the temperature of a mold (2) in Section 2 or Section 2, the control device (5) is a control device attached to a molding machine.

と言う技術的手段を採用しており、第4項では金型(2
〉の温度調節装置を; ■成形機(1)に搭載された金型(2)と、成形機(1
)に付属するチラー(3)と、。
In Section 4, we adopt the technical means of
> temperature control device; ■Mold (2) mounted on molding machine (1) and molding machine (1)
) and the chiller (3) attached to it.

■チラー(3)と金型(2)との開を循環する冷媒と、
■金型(2)からチラー(3)に戻る冷媒の温度を検出
する循環用冷媒温度センサ(25)と、■搭載金型(2
)と使用樹脂に基づく成形条件と、1サイクル時間など
の成形操作のための設定条件、並びに連続成形時の希望
平衡金型温度などのデータや、前記循環冷媒用温度セン
サ(25)からの入力データを受けて、チラー(3)の
オン・オフ制御を行い、金型温度を前記希望せる平衡温
度に収束させる制御装置(5)とで構成する。
■Refrigerant circulating between the chiller (3) and the mold (2),
■ A circulating refrigerant temperature sensor (25) that detects the temperature of the refrigerant returning from the mold (2) to the chiller (3);
) and molding conditions based on the resin used, setting conditions for molding operations such as one cycle time, data such as desired equilibrium mold temperature during continuous molding, and input from the circulating refrigerant temperature sensor (25). It consists of a control device (5) that receives the data and controls the chiller (3) on and off to converge the mold temperature to the desired equilibrium temperature.

と言う技術的手段を採用しており、第5項では;■第4
項の金型(2)の温度調節装置において、制御装W(5
)を成形機付属の制御装置として成る事を特徴とする金
型(2)の温度調節装置。
We have adopted the technical means of
In the temperature control device for the mold (2) in section 2, the control device W (5
) as a control device attached to a molding machine.

;という技術的手段を採用している。; is adopted as a technical means.

(作  川) ■成形開始前に、搭載している金7(¥(2)、使用樹
脂について、例えば射出成形機付属(勿論、外部制御装
置でも良いことは言うまでもない、)のマイコン制御装
W(5)に入力して設定された成形条件から、チラー(
3)を使用しない時の最終の金型温度(TM’ )を演
算しておく。
(Sakukawa) ■Before starting molding, check the installed gold 7 (¥ (2)), the resin used, and the microcomputer control system W that comes with the injection molding machine (of course, it goes without saying that an external control device can also be used). From the molding conditions input and set in (5), the chiller (
3) Calculate the final mold temperature (TM') when not in use.

■続いて、チラー(3)の冷凍機を起動させず、冷媒用
の送水ポンプだけを起動して常温(Tea)の冷媒を金
型(2)に循環させて成形を開始する。
(2) Next, without starting the chiller (3), only the water pump for the refrigerant is started to circulate the refrigerant at room temperature (Tea) to the mold (2) and start molding.

■循環冷媒用温度センサー(25)によって金型(2)
からチラー(3)に戻る冷媒の昇温開始を検知した後、
一定の時間(tl)が経過した後にチラー〈3)の冷凍
機を起動させる。
■Mold (2) by temperature sensor (25) for circulating refrigerant
After detecting the start of temperature rise of the refrigerant returning to the chiller (3),
After a certain period of time (tl) has elapsed, the chiller (3) is started.

■前記■ステップで演算されたチラー(3)を使用しな
い時の平衡金型温度(TM’ )から、金型(2)の予
定される温度上昇(ΔTM= TM’ −TM)を演算
し、(Δ1°H)の関数として; O必要なチラー冷媒の平衡温度 ・・・・・・(Tc)と(△Tc) ◎チラー(3)へ戻る冷媒の温度が上昇してから、チラ
ー(3)の冷凍機の作動をオンにする迄の時間遅れ、 
    ・・・・・・(tl)O冷媒の温度降下(ΔT
e)を行う時間・・・(t2);を、それぞれ例えば射
出成形機(1)のRAMに、テーブルの形で予め入力さ
せであるのを呼び出して、 ■前記射出成形機(])の制御装置(5)からチラー(
3)の冷媒温度を制御し、金型(2)の平衡温度(TN
)をイ五 オーバーランなどのトラプツト<、最短の時間で実現す
る。
■ Calculate the expected temperature rise (ΔTM = TM' - TM) of the mold (2) from the equilibrium mold temperature (TM') when the chiller (3) is not used, calculated in step (2) above, As a function of (Δ1°H); O Required equilibrium temperature of chiller refrigerant... (Tc) and (ΔTc) ) time delay before turning on the refrigerator,
......(tl) Temperature drop of O refrigerant (ΔT
The time for performing e)...(t2); is input in advance in the RAM of the injection molding machine (1) in the form of a table, and is called up. ■ Control of the injection molding machine (]) From the device (5) to the chiller (
3) by controlling the refrigerant temperature to maintain the equilibrium temperature (TN) of the mold (2).
) can be realized in the shortest time by traps such as overruns.

(以下余白) 〈実 施 例) 以下、本発明の一実施例を図面に従って説明する。第1
図は本発明を射出成形機に応用した装置の説明図である
。(1)は射出成形機、(2)は金型、(3)はチラー
、(4)はチラーの制御装置、(5)は射出成形機の制
御装置である。射出成形機(1)は、固定プレート(1
1)、移動プレート(12)、シリンダプレート(13
)、型開閉シリンダ(14)、トグル装置(15)及び
タイバー(図示せず)からなる型開閉装置と、加熱シリ
ンダ(16)、射出シリンダ(17)、スクリュー駆動
用油圧モータ(18)からなる射出装置とで構成されて
おり、固定・移動プレート(11)(12)に搭載・取
付けられた固定金型(21)、移動金型(22)の開閉
を行う。
(The following is a blank space) <Example> An example of the present invention will be described below with reference to the drawings. 1st
The figure is an explanatory diagram of an apparatus in which the present invention is applied to an injection molding machine. (1) is an injection molding machine, (2) is a mold, (3) is a chiller, (4) is a control device for the chiller, and (5) is a control device for the injection molding machine. The injection molding machine (1) has a fixed plate (1
1), moving plate (12), cylinder plate (13)
), a mold opening/closing device consisting of a mold opening/closing cylinder (14), a toggle device (15), and a tie bar (not shown), a heating cylinder (16), an injection cylinder (17), and a screw drive hydraulic motor (18). It is composed of an injection device and opens and closes the fixed mold (21) and the movable mold (22) mounted and attached to the fixed and movable plates (11) and (12).

チラー(3)は、冷媒(通常は水に防錆剤の入ったもの
を使用する。)を貯蔵する冷却タンク〈31)、該タン
ク(31)内のコイル(32)にフレオンなどの冷媒ガ
スを送るヒートポンプ(33)、冷却タンク(31)の
冷媒用温度センサ(34)などから構成され、冷却され
た冷媒は送水ポンプ(35)で金型(2)に送水する。
The chiller (3) includes a cooling tank (31) that stores a refrigerant (usually water containing a rust preventive agent), and a coil (32) in the tank (31) that contains a refrigerant gas such as Freon. It consists of a heat pump (33) that sends water, a refrigerant temperature sensor (34) of a cooling tank (31), etc., and the cooled refrigerant is sent to the mold (2) by a water pump (35).

 (36)(37)はそれぞれチラー(3)の送水口、
返水口に設置されたストップ弁であり、(38)は送水
量を調整する手動の制御弁である。移動金型(22)の
冷却水入口(23)、冷却水出口(24)と、チラー(
3)の送水口(36)と返水口(37)との間を夫々ゴ
ムホースなど絶縁材料からなる導管で接続し、冷却水出
口(24)になるべく近い箇所に金型出口(24)から
チラー(3)に返水される冷媒の温度を測定する循環冷
媒用温度センサ(25)を設置し、その温度信号を射出
成形機(1)の制御装置(5)に入力する。制御装置(
5)はマイクロコンピュータ方式で、本来射出成形機(
1)の演算制御、工程制御を司るCPU、ROM、RA
M、入力インターフェースくいずれも図示せず)及び入
力数値を設定するテンキー装r!!、(51)、制御用
の画面を出力するC RT (52)、制御画面の切り
替えやカーソルの移動を行うキーボード(53)から構
成されており、本実施例では上述の構成品を使用するも
のとして説明するが、勿論これに限られない事は言うま
でもない、その際、作用■■に説明したチラー(3)の
温度制御を行うためにΔTN’の演算のための計算手順
やΔTM’の値からΔTc、(【、)、(t2)の選定
を行うためのテーブルを予め入力させておくため、成形
機付属制御装置(5)のROM、RAMのメモリー数を
増設しておく必要がある。 チラー(3)Ill!lの
制御袋fi! (4)は、冷媒の送水ポンプ(35)の
オン、オフや冷媒の温度制御を行うためのものであるが
、冷媒の温度制御のためには冷媒タンク(31)中の冷
媒用温度センサ(34)からの温度信号と成形機付属制
御装置(5)からの冷媒設定温度とを受けて比較し、両
者の値が一致するまで、冷媒ガス用のヒートポンプ(3
3)をオンにし、一致したらオフに戻すという作用を行
う温度調節袋W (41)がある。
(36) and (37) are the water inlet of the chiller (3), respectively;
This is a stop valve installed at the water return port, and (38) is a manual control valve that adjusts the amount of water fed. The cooling water inlet (23) and cooling water outlet (24) of the movable mold (22) and the chiller (
3), connect the water supply port (36) and water return port (37) with a conduit made of an insulating material such as a rubber hose, and connect the mold outlet (24) to the chiller ( 3) A circulating refrigerant temperature sensor (25) is installed to measure the temperature of the returned refrigerant, and the temperature signal is input to the control device (5) of the injection molding machine (1). Control device(
5) is a microcomputer system, originally an injection molding machine (
1) CPU, ROM, and RA in charge of arithmetic control and process control
M, input interface (all not shown) and numeric keypad for setting input values! ! , (51), a CRT (52) that outputs a control screen, and a keyboard (53) that switches the control screen and moves the cursor, and in this embodiment, the above-mentioned components are used. However, it goes without saying that it is not limited to this. In this case, the calculation procedure for calculating ΔTN' and the value of ΔTM' will be explained in order to control the temperature of the chiller (3) explained in section ■■. In order to input a table in advance for selecting ΔTc, ([, ), and (t2) from , it is necessary to increase the number of memories in the ROM and RAM of the control device attached to the molding machine (5). Chiller (3) Ill! l control bag fi! (4) is for turning on/off the refrigerant water pump (35) and controlling the temperature of the refrigerant, but in order to control the temperature of the refrigerant, the refrigerant temperature sensor ( The temperature signal from the refrigerant gas heat pump (34) is received and compared with the refrigerant set temperature from the molding machine attached control device (5), and the temperature signal from the refrigerant gas heat pump (34) is compared until the two values match.
There is a temperature control bag W (41) that turns on 3) and turns it off when they match.

以上の構成による本発明の実施例の作用に付いて詳述す
る。新しく金型(2)を交換し、使用樹脂に応じた成形
条件を制御装置(5)のキーボード(53)並びにデン
キー(51)によって設定し、まず、手動で成形作業を
始める。当初は金型(2)には冷媒を循環させないまま
で良い、安定な成形品がとれるようになったら自動成形
に切り替えると同時に冷媒ガス用のヒートポンプ(33
)はオフのまま、送水ポンプ(35)をオンにして金型
冷却を始める。ストップ弁(36)(37)は全開、通
水量制御弁(38)は全閉として送水ボン7 (35)
のフル能力で常温(Tco)の冷媒を冷却タンク(31
)→チラー送水側のストップ弁(36)→金型入口(2
3)→金型的冷却水通路→金型出口(24)→チラー返
水側のストップ弁(37)→冷却タンク(31)の順番
で循環させ、金型キャビティ内に射出された樹脂の熱交
換を行いながら常温水(Tco)で金型(2)の冷却を
行う、この時、循環冷媒用温度センサ(25)と冷却タ
ンク(31)の冷媒用温度センサ(34)とはほぼ同じ
温度を示している。この時、チラー(3)の冷凍機(3
3)を使用しないままの状態で、樹脂材料、金型(2)
により設定された成形条件で連続成形する時の金型(2
)の平衡温度(ΔTM’ )は、次ぎのように演算する
事が出来る。
The operation of the embodiment of the present invention having the above configuration will be described in detail. The mold (2) is replaced with a new one, the molding conditions corresponding to the resin used are set using the keyboard (53) and digital key (51) of the control device (5), and the molding work is started manually. Initially, it would be fine to leave the refrigerant in the mold (2) without circulating it, but once a stable molded product can be obtained, switch to automatic molding and at the same time install a heat pump (33) for the refrigerant gas.
) remains off, and the water pump (35) is turned on to begin cooling the mold. Stop valves (36) and (37) are fully open, water flow control valve (38) is fully closed, and water supply bong 7 (35) is opened.
The cooling tank (31
) → Stop valve on chiller water supply side (36) → Mold inlet (2
3) The heat of the resin injected into the mold cavity is circulated in the order of → mold cooling water passage → mold outlet (24) → stop valve on the chiller return side (37) → cooling tank (31). The mold (2) is cooled with room temperature water (Tco) while being replaced. At this time, the circulating refrigerant temperature sensor (25) and the refrigerant temperature sensor (34) of the cooling tank (31) are at almost the same temperature. It shows. At this time, the refrigerator (3) of the chiller (3)
3) The resin material and mold (2) are left unused.
Mold (2) for continuous molding under the molding conditions set by
) can be calculated as follows.

単位時間に溶融樹脂から金型<2)に流入する熱量Q[
keal/h]は; ここにI:射出量      [g] t:1サイクル時間 [sec] TH:加熱シリンダノズル出口における使用樹脂の温度
 [’Cl 7M’ :チラーを使用しない時の平衡金型温度 [’
C] Cp;使用樹脂の比熱 [:keal/kg−”Cコ一
方、この熱量Qを受けて金型(2)の温度が上昇するが
、その時; Q=W  ・ (TM’−TMo)  ・ C論・・・
・・・・・・・・・・・・・・・・・・・・・(2)と
なる、ここで、 W:使用金型の重量    [kg] TMo :成形開始時の金型温度 [’C]C―:金型
材料の比熱    [keal/kg ・’CI(1)
(2)式より、 (3,6I÷t)・(TI−TM’ )・Cp=W・(
TM’ −TMo)・C@ ・・・・・・・・・・・・
(3)ここで簡潔化するために; に、=(3,61÷t)・Cp   K t = W−
C論とすると、(3)式はK + (Tll  TM’
 )= K z(TM’  TH6)となる。
The amount of heat flowing from the molten resin into the mold per unit time Q[
keal/h] is; where I: Injection amount [g] t: 1 cycle time [sec] TH: Temperature of the resin used at the exit of the heating cylinder nozzle ['Cl 7M': Equilibrium mold temperature when no chiller is used ['
C] Cp: Specific heat of the resin used [:keal/kg-''C On the other hand, the temperature of the mold (2) rises in response to this amount of heat Q, but at that time; Q=W ・ (TM'-TMo) ・Theory C...
・・・・・・・・・・・・・・・・・・・・・(2), where, W: Weight of the mold used [kg] TMo: Mold temperature at the start of molding [ 'C] C-: Specific heat of mold material [keal/kg ・'CI (1)
From formula (2), (3,6I÷t)・(TI-TM')・Cp=W・(
TM' - TMo)・C@・・・・・・・・・・・・
(3) For simplicity here; = (3,61÷t)・Cp K t = W−
According to C theory, equation (3) becomes K + (Tll TM'
)=K z (TM' TH6).

、’、 TM’ = (K 、・TllKt・TM)÷
(K + + K t)・・・・・・・・・(4) 以上のように、チラーを使用しない時の平衡金型温度(
TM’ )は成形開始前の射出成形機(1)及び金型(
2)の状態から演算する事が出来る。即ち、■射出Ma
r )は、チャージストロークの設定値から、 ■樹脂温度(Tll>は加熱シリンダ(16)及びノズ
ル部の温度設定値から、 ■金型重量(W)は、該金型(2)を搭載する時、金型
厚さを自動測定したデータから、 ■樹脂の比熱(Cp)は、使用樹脂のコード設定により
制御装置 (5)内のRAMに書き込んであるテーブル
から、 ■1サイクル時間(1)は、設定又はタイマによる実測
値から、 それぞれ適当な係数を乗じて演算して求める事が出来る
ので、(4)式により(TM’ )を成形の初期に演算
する事が出来る。
,', TM' = (K,・TllKt・TM)÷
(K + + K t)・・・・・・・・・(4) As mentioned above, the equilibrium mold temperature when no chiller is used (
TM') is the injection molding machine (1) and mold (1) before the start of molding.
Calculations can be made from the state of 2). That is, ■ injection Ma
r) from the set value of the charge stroke; ■Resin temperature (Tll> from the temperature set value of the heating cylinder (16) and nozzle part; ■Mold weight (W) when the mold (2) is mounted. ■The specific heat (Cp) of the resin is determined from the table written in the RAM in the control device (5) according to the code settings of the resin used. ■One cycle time (1) can be calculated by multiplying appropriate coefficients from the actual values set or by a timer, so (TM') can be calculated at the initial stage of molding using equation (4).

一方、チラー(3)を使用した場合の、希望の平指金型
温度TNは、チラー(3)のオン・オフ温調機能によっ
て冷媒温度(Tc ) #金型温度(TM)となった時
の安定温度を指すが、この金型温度(TM)は、同時に
成形品の離型がスムーズに行え、且つ冷えすぎて金型キ
ャビティ表面に露滴することがない、最低の温度である
ことが望ましく、成形当初の条件設定のときに制御装置
(5)に入力しておく。
On the other hand, when using the chiller (3), the desired flat finger mold temperature TN is when the refrigerant temperature (Tc) #mold temperature (TM) is reached by the on/off temperature control function of the chiller (3). The mold temperature (TM) must be the lowest temperature at which the molded product can be released smoothly and at the same time does not become too cold and cause dew droplets to form on the surface of the mold cavity. Desirably, this information is input to the control device (5) when setting the conditions at the beginning of molding.

以上の演算プロセスをまとめたものが、第2図のフロー
チャートであって、ステップ1(Slと略称、以下同様
)から83までが上述の説明に相当する。(以上、81
〜3) ★S 4 ;S 3で演算されたチラー(3)を使用し
ない時の金型平衡温度(TM’ )と、予めキーボード
から(53)から設定したあるチラー(3)を適正に使
用した時の製品エジェクト操作などが最良に行なわれる
ような*2平平衡量温度<TM)との差ΔTM=TM″
−TI4  を演算する★S5;チラーを使用しない時
、(TM’ )迄上昇する金型温度を(TM)に押さえ
るために、本発明の目標である次の(Te)、(T2)
、(tl)を決定する。
The above calculation process is summarized in the flowchart of FIG. 2, and steps 1 (abbreviated as Sl, hereinafter the same) to 83 correspond to the above explanation. (Above, 81
~3) ★S4; The mold equilibrium temperature (TM') when the chiller (3) is not used, calculated in S3, and the proper use of a certain chiller (3), which was set in advance from the keyboard (53) ΔTM = TM″
- Calculate TI4 ★S5; In order to suppress the mold temperature which rises to (TM') to (TM) when the chiller is not used, the following (Te), (T2) which is the goal of the present invention
, (tl).

(1) Ta;チラー冷媒の最終平衡温度・・・・・・
[’C]ΔTc=Tea−Te:冷媒温度下げ量−[’
CIここにTeo :チラーのヒートポンプをオンにし
ない時にチラーの冷媒温度[’C](2)tt;チラー
(3)のヒートポンプ(33)をオンにしてから(Tc
 )に到達させるまでの時間・・・・・・[sec] (3)tl;チラー冷媒温度が(Tea)より昇温し始
めてからチラーのヒートポンプ(33)をオンにするま
での時間・・・[5ecl を予めRAMに書き込まれたテーブルから選択すれば良
い、RAMテーブルに書き込むためには、数多くのケー
スについて実験して求められた67Mに対して、まずど
の程度のΔTcにすれば良いかを決める。チラー(3)
の最終平衡温度を低くし過ぎると金型キャビティ表面が
結露し、成形不良となる。
(1) Ta: Final equilibrium temperature of chiller refrigerant...
['C]ΔTc=Tea-Te: Refrigerant temperature reduction amount - ['
CI Teo here: Chiller refrigerant temperature ['C] (2) tt when the chiller heat pump is not turned on; After turning on the chiller (3) heat pump (33) (Tc
)... [sec] (3) tl; Time from when the chiller refrigerant temperature starts to rise above (Tea) until the chiller heat pump (33) is turned on... [5ecl can be selected from the table written in the RAM in advance. In order to write it to the RAM table, first determine how much ΔTc should be set for 67M, which was found through experiments in many cases. decide. Chiller (3)
If the final equilibrium temperature is set too low, dew condensation will occur on the mold cavity surface, resulting in poor molding.

従って、そこまで低くならない温度に止めなければなら
ない。
Therefore, it is necessary to keep the temperature at a level that does not drop to that low.

このようにして選ばれた(Te)に対して(t、)を選
択する。なるべく小さな(t、)に対してチラー(3)
の送水温度を早< (Ta)まで下げたいが、余り急激
にチラー冷媒温度を下げると金型温度がなかなか(TM
)に達しない。又、(tt)が大き過ぎると反対に金型
温度が一旦上昇した後、下がり始めるので結局(TN)
に収束するのが遅れる。従って、その中間に最良点の(
tt)がある、tt麦に(tl)に付いて実験する。 
(1+)が余り小さいと(即ち、チラー(3)のヒート
ポンプ(33)の動作開始が早すぎると)、上記(tt
)が小さい場合に似た形となり、逆に(E、)が大き過
ぎると上記(tt)が大き過ぎる場合と似た形となる。
For (Te) thus selected, (t, ) is selected. Chiller (3) for as small as possible (t,)
I want to quickly lower the chiller water temperature to < (Ta), but if I lower the chiller refrigerant temperature too quickly, the mold temperature will be low (TM
) is not reached. Also, if (tt) is too large, the mold temperature will rise once and then start to fall, resulting in (TN)
convergence is delayed. Therefore, the best point (
There is tt), and we will experiment with tt wheat (tl).
If (1+) is too small (that is, if the heat pump (33) of the chiller (3) starts operating too early), the above (tt
) is small, and conversely, when (E, ) is too large, the shape is similar to that when (tt) is too large.

従ってその中間の(1+)とする。Therefore, it is set to (1+), which is in the middle.

以上の実験的に求められたΔTHに対する最良の(ΔT
c)、(Lx)、(tl)を下記のようにテーブルにし
ておいて; 67Mを入力すれば、最適の(ΔTc)、(tz)、(
tl)を読み出す事が出来る。
The best (ΔT
c), (Lx), and (tl) as shown below; if you input 67M, you can find the optimal (ΔTc), (tz), (
tl) can be read.

★S6;成形が進んで、材料樹脂が加熱シリンダ(16
)から金型(2)に持ち込む熱量Qにより金型(2)の
温度が上昇しはじめ、金型出口部(24)の循環冷媒用
温度センサ(25)が昇温を始めたことを成形機(1)
の制御装W(5)で検知すると本発明の制御機能が作用
しはじめる。
★S6; Molding progresses and the material resin is heated to the heating cylinder (16
) The temperature of the mold (2) begins to rise due to the amount of heat Q brought into the mold (2) from (1)
When detected by the control device W (5), the control function of the present invention begins to operate.

* S 7 :M初〈tl)時rm let、まだチラ
ー (3)ノ冷jX温度を降下させるための指令を出さ
ずに待つ、第3図の温度線図に示したように、冷媒の降
温作動が早すぎると、B破線のようになり、金型(2)
の所要平衡温度(TM)に達する時間が長くなる。一方
、冷媒の降温作動が遅すぎると、C破線のように平衡温
度(TM)をオーバーランして上がりすぎた後かなりの
時間を経過した後、希望変更温度(TM)に落ち着くこ
とになる。従って、前記テーブルで選出された(t、)
の待ち時間の後、S7に移るのが最も^い活量し−)、
xl−(慎へ口ゐ尖吏値人5゜★S8二ナラー冷媒の設
定温度を現在の常温の循型温度より1℃だけ降下させる
。この作用は成形機(1)の制御装置(5)で行って、
チラー(3)の温度調節装ff <41)に伝送する。
*S7: At the beginning of M <tl), rm let, still chiller (3) Wait without issuing a command to lower the refrigerant temperature, as shown in the temperature diagram in Figure 3 If the operation is too fast, it will look like the broken line B, and the mold (2)
The time to reach the required equilibrium temperature (TM) of is increased. On the other hand, if the temperature reduction operation of the refrigerant is too slow, the equilibrium temperature (TM) will overrun and rise too much as shown by the broken line C, and then settle to the desired change temperature (TM) after a considerable period of time has passed. Therefore, (t,) selected in said table
After the waiting time, moving to S7 has the highest activity.
xl-(Shinhe mouth 5゜゜★The set temperature of the S8 binary refrigerant is lowered by 1℃ from the current circulating temperature at room temperature. This action is performed by the control device (5) of the molding machine (1). So I went and
It is transmitted to the temperature control device ff <41) of the chiller (3).

チラー冷奴温度は第3図下のようにΔTe[”C]をt
2[5eelかけて下げればよいことがテーブルから選
出されている。
The chiller cold tofu temperature is determined by ΔTe[”C] as shown in the bottom of Figure 3.
2[It is selected from the table that it should be lowered by multiplying by 5eel.

数値例として へ丁c=10[’c] t 2 = 300[qec]と選出された場合は、1
0r’C]÷300[sec]= 1/30[”C#+
ec]となるので、実際は1℃設定を降下させたf&3
0秒待つようにすればよい。
As a numerical example, if c = 10 ['c] t 2 = 300 [qec], then 1
0r'C]÷300[sec]=1/30["C#+
ec], so it is actually f&3 that lowers the setting by 1℃.
All you have to do is wait 0 seconds.

★S97以上の操作をチラー冷媒温度がTc[”C]ま
で降下する所まで繰り返す。
★Repeat the operations from S97 until the chiller refrigerant temperature drops to Tc ["C].

★S10;その後はチラー(3)の通常の温調機能でT
c[’C]を維持する0以上、金型(2)は移動金型(
22)だけをチラー(3)を使用して冷却ずろものとし
て説明したが、固定・移動両金型(21)(22)を異
なる平衡温度(Tc 、)、(Tex)で制御したい場
合は2槽弐チラーなどを使用して上述の装置を二重に設
置し、別々の系統として制御する。
★S10; After that, use the normal temperature control function of the chiller (3).
0 or more to maintain c['C], the mold (2) is a moving mold (
22) was explained as a cooling unit using the chiller (3), but if you want to control both fixed and moving molds (21) and (22) at different equilibrium temperatures (Tc, ), (Tex), The above-mentioned equipment is installed in duplicate using a tank two chiller, etc., and controlled as separate systems.

また、本発明は射出成形の場合を実施例として説明した
が、中空成形、押出成形など広くプラスチック成形でチ
ラーによる冷却を行う金型を用いる場合は同じようにし
て適用出来ることは勿論である。
Further, although the present invention has been described as an example of injection molding, it goes without saying that it can be similarly applied to a wide range of plastic moldings such as blow molding and extrusion molding, where a mold that performs cooling with a chiller is used.

(効 果) 第1項の本発明方法は叙上のように、成形開始前に、搭
載金型、使用樹脂及び成形条件に基づく成形条件、並び
に連続成形時の希望平衡金型温度を制御装置に入力し、
続いて金型を循環する冷媒の温度を制御装置にて制御し
、金型温度を前記希望平衡温度に収束させると言うもの
であり、1g2項の本発明方法は成形開始前に、搭載金
型や使用樹脂に基づく成形条件と、成形操作を決定する
ための設定条件、並びに連続成形時の希望平衡金を温度
を制御装置に入力し、続いて成形機と別置されたチラー
と金型との間にて冷媒を循環させつつ成形を行い、冷媒
の昇温を検出した後所定時間経過後にチラーの冷凍機の
オン・オフ制御を制御装置で行って冷媒の熱を奪い、金
型温度を前記希望せる平衡温度に収束させると言うもの
であり、第4項の本発明装置はこの方法を実現するため
に成形機に搭載された金型と、成形機と別置されたチラ
ーと、チラーと金型との間を循環する冷媒と、金型から
チラーに戻る冷媒の温度を検出する温度センサと、搭載
金型と使用樹脂に基づく成形条件と1サイクル時間など
の成形操作のための設定条件、並びに連続成形時の希望
平衡金型温度などの入力データや、前記温度センサから
のデータを受けてチラーのオン・オフ制御を行い、金型
温度を前記希望せる平衡温度に収束させる制御装置とで
構成されているので、成形機付属の制御装置のコンピュ
ータによって金型が適正な昇温状態で最適平衡温度に達
するように冷媒温度を正確に管理する事が出来るもので
ある。即ち、 ■チラーを使用する成形において、成形開始時の金型の
温度制御をスムーズに行い、立ち上がり時の不良を少な
くし、最短の時間で最も能率が上がる平衡金型に、自動
的に持ってゆく。
(Effects) As mentioned above, the method of the present invention described in item 1 uses a control device to control the molding conditions based on the mounted mold, the resin used, and the molding conditions, as well as the desired equilibrium mold temperature during continuous molding, before starting molding. and enter
Subsequently, the temperature of the refrigerant circulating through the mold is controlled by a control device, and the mold temperature is converged to the desired equilibrium temperature. The molding conditions based on the molding machine and the resin used, the setting conditions for determining the molding operation, and the desired equilibrium temperature during continuous molding are input into the control device, and then the chiller and mold installed separately from the molding machine are input. Molding is performed while circulating a refrigerant between the molds, and after a predetermined period of time has elapsed after detecting a rise in the temperature of the refrigerant, the control device controls the chiller's refrigerator on and off to remove heat from the refrigerant and reduce the mold temperature. The method is to converge to the desired equilibrium temperature, and in order to realize this method, the apparatus of the present invention described in item 4 includes a mold mounted on a molding machine, a chiller installed separately from the molding machine, and a chiller. A temperature sensor that detects the temperature of the refrigerant circulating between the mold and the mold and the refrigerant returning from the mold to the chiller, and settings for molding operations such as molding conditions and 1 cycle time based on the installed mold and resin used. A control device that receives input data such as conditions, desired equilibrium mold temperature during continuous molding, and data from the temperature sensor, controls the chiller on and off, and converges the mold temperature to the desired equilibrium temperature. As a result, the refrigerant temperature can be accurately managed by the computer of the control device attached to the molding machine so that the mold reaches the optimum equilibrium temperature in an appropriate temperature rising state. In other words, ■In molding using a chiller, the temperature of the mold at the start of molding is smoothly controlled, defects at startup are reduced, and the mold is automatically brought to an equilibrium mold that increases efficiency in the shortest amount of time. go.

■素人でもミスなくチラーを使用して能率良く良品を成
形出来るようになる。
■Even amateurs will be able to efficiently mold good products using a chiller without making mistakes.

■マイコン制御方式の成形機であれば、簡単にチラーの
制御装置と連結配線して実行出来る。
■If it is a microcomputer-controlled molding machine, it can be easily connected and wired to the chiller control device.

、と言うような利点がある。There are advantages such as.

加えて、第3項又は第5項のように制御装置を成形機付
属の制御装置とする事により、1度冷媒管理用のテーブ
ルを入力しておけば、他の成形条件と合わせて統一的に
成形機側から冷媒温度を制御する事が出来、その結果、
前記素人工口による高度な金型温度管理を非常に簡便且
つ正確に行う事が出来ると言う極めて実用的な利点を産
む。
In addition, by using the control device attached to the molding machine as described in item 3 or 5, once the table for refrigerant management is entered, it can be unified with other molding conditions. The refrigerant temperature can be controlled from the molding machine side, and as a result,
This has an extremely practical advantage in that advanced mold temperature control can be performed very simply and accurately using the bare artificial port.

【図面の簡単な説明】[Brief explanation of drawings]

第1図・・・本発明の1実施例の概略平面図第2図・・
・本発明のフローチャート 第3図・・・本発明における時間−金型温度曲線図第4
図・・・本発明における時間−チラー冷媒温度曲線図 (1)・・・射出成形機  (2)・・・金型(3)・
・・チラー    (4)・・・チラーの制御装置く5
)・・・射出成形機の制御装置 (11)・・・固定プレート (12)・・・移動プレ
ート(13)・・・シリンダプレート (14)・・・
型rM閏シリンダ(15)・・・トグル装置  (16
)・・・加熱シリンダ(17)・・・射出シリンダ (18)・・・スクリュー駆動用油圧モータ(21)・
・・固定金型   (22)・・・移動金型(23)・
・・冷却用入口  (24)・・・金型出口(25)・
・・循環冷媒用温度センサ (31)・・・冷却タンク  (32)・・・コイル(
33)・・・ヒートポンプ (34)・・・冷媒用温度
センサ(35)・・・送水ポンプ  (36) (3)
)・・・ストップ弁(38)・・・通水量制御弁 (4
1)・・・温度調節装置(51)・・・−r ’/キー
装置 (52) 、、、 CR’r’(53)・・・キ
ーボード
Fig. 1...Schematic plan view of one embodiment of the present invention Fig. 2...
・Flowchart of the present invention Figure 3...Time-mold temperature curve diagram of the present invention Figure 4
Figure... Time-chiller refrigerant temperature curve diagram in the present invention (1)... Injection molding machine (2)... Mold (3)
... Chiller (4) ... Chiller control device 5
)...Injection molding machine control device (11)...Fixed plate (12)...Moving plate (13)...Cylinder plate (14)...
Type rM leap cylinder (15)...Toggle device (16
)...Heating cylinder (17)...Injection cylinder (18)...Hydraulic motor for screw drive (21)
・・Fixed mold (22)・・Movable mold (23)・
...Cooling inlet (24)...Mold outlet (25)...
... Temperature sensor for circulating refrigerant (31) ... Cooling tank (32) ... Coil (
33) Heat pump (34) Refrigerant temperature sensor (35) Water pump (36) (3)
)...Stop valve (38)...Water flow control valve (4
1)...Temperature adjustment device (51)...-r'/key device (52), CR'r' (53)...Keyboard

Claims (5)

【特許請求の範囲】[Claims] (1)成形開始前に、搭載金型、使用樹脂及び成形操作
に基づく成形条件、並びに連続成形時の希望平衡金型温
度を制御装置に入力し、続いて金型を循環する冷媒の温
度を制御装置にて制御し、金型温度を前記希望平衡温度
に収束させる事を特徴とする金型の温度調整方法。
(1) Before starting molding, input the installed mold, the molding conditions based on the resin used, the molding operation, and the desired equilibrium mold temperature during continuous molding into the control device, and then input the temperature of the refrigerant circulating through the mold. A method for adjusting the temperature of a mold, characterized in that the temperature of the mold is controlled by a control device to converge the temperature of the mold to the desired equilibrium temperature.
(2)成形開始前に、搭載金型や使用樹脂に基づく成形
条件途、成形操作を決定するための設定条件、並びに連
続成形時の希望平衡金型温度を制御装置に入力し、続い
て成形機と別置された冷凍機付き金型温度調節機と金型
との間にて冷媒を循環させつつ成形を行い、冷媒の昇温
を検出した後所定時間経過後にチラーの冷凍機のオン・
オフ制御を制御装置で行って冷媒の熱を奪い、金型温度
を前記希望せる平衡温度に収束させる事を特徴とする金
型の温度調整方法。
(2) Before starting molding, enter the molding conditions based on the installed mold and the resin used, the setting conditions for determining the molding operation, and the desired equilibrium mold temperature during continuous molding into the control device, and then proceed with the molding. Molding is performed while circulating a refrigerant between the mold and a mold temperature controller with a refrigerator installed separately from the machine, and after a predetermined period of time has passed after detecting a rise in the temperature of the refrigerant, the chiller's refrigerator is turned on and off.
A method for adjusting the temperature of a mold, characterized in that off control is performed by a control device to remove heat from the refrigerant and converge the mold temperature to the desired equilibrium temperature.
(3)第1項又は第2項の金型の温度調整方法において
、制御装置を成形機付属の制御装置として成る事を特徴
とする金型の温度調節方法。
(3) The method for adjusting the temperature of a mold according to item 1 or 2, characterized in that the control device is a control device attached to a molding machine.
(4)成形機に搭載された金型と、成形機と別置された
冷凍機付き金型温度調節機と、冷凍機付き金型温度調節
機と金型との間を循環する冷媒と、金型から冷凍機付き
金型温度調節機に戻る冷媒の温度を検出する温度センサ
と、搭載金型と使用樹脂に基づく成形条件と、1サイク
ル時間などの成形操作のための設定条件、並びに連続成
形時の希望平衡金型温度などの入力データや、前記温度
センサからのデータを受けて、金型から冷凍機付き金型
温度調節機のオン・オフ制御を行い、金型温度を前記希
望せる平衡温度に収束させる制御装置とで構成された事
を特徴とする金型の温度調節装置。
(4) a mold mounted on a molding machine, a mold temperature controller with a refrigerator installed separately from the molding machine, and a refrigerant circulating between the mold temperature controller with a refrigerator and the mold; A temperature sensor that detects the temperature of the refrigerant that returns from the mold to the mold temperature controller with refrigerator, molding conditions based on the installed mold and resin used, setting conditions for molding operations such as 1 cycle time, and continuous In response to input data such as the desired equilibrium mold temperature during molding and data from the temperature sensor, on/off control of the mold temperature controller with refrigerator is performed from the mold to adjust the mold temperature to the desired temperature. A temperature control device for a mold, comprising a control device for converging to an equilibrium temperature.
(5)第4項の金型の温度調節装置において、制御装置
を成形機付属の制御装置として成る事を特徴とする金型
の温度調節装置。
(5) The mold temperature regulating device according to item 4, characterized in that the control device is a control device attached to a molding machine.
JP25279288A 1988-10-06 1988-10-06 Method and device for mold temperature adjusting Pending JPH0299311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25279288A JPH0299311A (en) 1988-10-06 1988-10-06 Method and device for mold temperature adjusting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25279288A JPH0299311A (en) 1988-10-06 1988-10-06 Method and device for mold temperature adjusting

Publications (1)

Publication Number Publication Date
JPH0299311A true JPH0299311A (en) 1990-04-11

Family

ID=17242316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25279288A Pending JPH0299311A (en) 1988-10-06 1988-10-06 Method and device for mold temperature adjusting

Country Status (1)

Country Link
JP (1) JPH0299311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528621U (en) * 1991-09-26 1993-04-16 浅賀 朗夫 Mold temperature controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528621U (en) * 1991-09-26 1993-04-16 浅賀 朗夫 Mold temperature controller

Similar Documents

Publication Publication Date Title
US7527756B2 (en) Mold temperature adjusting apparatus/method and mold temperature control unit
CN110997274B (en) Method and device for variable mold temperature tempering of injection molding molds
JP2005329577A (en) Method and apparatus for adjusting temperature of mold
CZ222695A3 (en) Process of malleableizing forming tools for working plastics, particularly injection moulding tools, and apparatus for making the same
KR101330525B1 (en) Temperature adjusting apparatus for mold and the method thereof
JP6058180B1 (en) Temperature control device for manufacturing equipment
JPH0299311A (en) Method and device for mold temperature adjusting
JP4999905B2 (en) Mold temperature adjusting device
JPS6365001B2 (en)
JPH0584747A (en) Device for adjusting temperature of mold of plastic molding machine
US4812156A (en) Process for manufacturing glass objects
JP2001150506A (en) Method for obtaining injection-molded article of thermoplastic resin having high quality appearance
KR20160039421A (en) Module and method for adjusting temperature of injection mold
JPH03187721A (en) Control of mold temperature
CN113771318A (en) Rapid cooling and constant temperature intelligent control equipment for injection mold and working method thereof
JP2001009839A (en) Plastic molding die temperature control device and molding die temperature control method
JPH01176538A (en) Method and apparatus for controlling temperature of mold in plastic injection molding machine
Pramujati et al. A novel tuning method for predictive control of melt temperature and plastication screw speed in injection molding
JP2583395Y2 (en) Temperature control device for plastic molds
Ambady et al. Model predictive control of injection molding.
JPH078525B2 (en) Temperature controller for injection heating cylinder
JPH0557770A (en) Mold temperature-controlling device for injection molding machine
CN110884097B (en) Plastic package anti-warping device and method
JP6955375B2 (en) Injection molding machine
JPH04301425A (en) Mold temperature regulator