JPH0298663A - Method for measuring and detecting tree and its device - Google Patents

Method for measuring and detecting tree and its device

Info

Publication number
JPH0298663A
JPH0298663A JP63251546A JP25154688A JPH0298663A JP H0298663 A JPH0298663 A JP H0298663A JP 63251546 A JP63251546 A JP 63251546A JP 25154688 A JP25154688 A JP 25154688A JP H0298663 A JPH0298663 A JP H0298663A
Authority
JP
Japan
Prior art keywords
tree
transmitting
signal
horn
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63251546A
Other languages
Japanese (ja)
Inventor
Takeshi Kato
毅 加藤
Shigeru Nagarego
流郷 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koden Electronics Co Ltd
Original Assignee
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koden Electronics Co Ltd filed Critical Koden Electronics Co Ltd
Priority to JP63251546A priority Critical patent/JPH0298663A/en
Publication of JPH0298663A publication Critical patent/JPH0298663A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To miniaturize the device and to prevent the damage of a tree by measurement by forming the front end of wave transmitting and receiving ends to a sharpened horn shape, piercing the front end of the wave transmitting and receiving ends into the woody part from the outside of the bark of the tree and transmitting and receiving waves to and from the tree. CONSTITUTION:The fine end face 12b of end part 12 of wave transmitting and receiving part 10 is sharpened to about 2 to 3mm diameter and is formed to the horn shape. The fine end face 12b is pierced from the outside of the bark 1a into the woody part and is mounted thereto. A wave transmission signal is applied to the oscillator 11a of the wave transmitting part 10a which converts this signal to an ultrasonic wave signal and transmits the signal from the end face 12b into the woody part 1b of the tree 1. The signal is received in the wave receiving part 10b which is similarly mounted by piercing this part into the woody part 1b from the outside of the tree 1. The attenuation of the ultrasonic waves by the intervention of the bark 1a is obviated in this way and the flawing of the tree by removing the bark 1a is obviated, in addition the transmission loss of the ultrasonic waves is lessened and, therefore, the transmission signal can be produced with the smaller output and the device is miniaturized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、1.11木の内部状態や太さなどを超音波
の透過または反射などの現象により計測検知する方法お
よびその方法を用いる装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides 1.11 a method for measuring and detecting the internal state and thickness of a tree using phenomena such as transmission or reflection of ultrasonic waves, and an apparatus using the method. Regarding.

〔従来の技術〕[Conventional technology]

山林中の樹木を間伐する際、なるべく成育の優れた良木
を残し、欠陥のある不良木を選んで間伐した方が良い。
When thinning trees in a mountain forest, it is better to leave as many good trees with good growth as possible, and select defective trees for thinning.

しかし、この欠陥は、外見から分かるものと、内部が朽
ち、または空洞がある場合のように外見では分からない
ものとがある。
However, this defect may be visible from the outside or may not be visible from the outside, such as when there is internal decay or a cavity.

こうした外見では分からない不良木を選別するため、超
音波の透過または反射などの現象により検知することが
提案されている。
In order to sort out defective trees that cannot be seen by their appearance, it has been proposed to detect them using phenomena such as transmission or reflection of ultrasonic waves.

また、樹木を切らずにその年輪を調べるため、同様の現
象により検知する二きが提案されている。
In addition, in order to examine the growth rings of trees without cutting them down, a method of detecting trees using a similar phenomenon has been proposed.

前者の場合における具体的な従来の方法は、第5図のよ
うに、樹木1の外側の一方の位置に送波側の超音波振動
子2を置き、また、測定すべき対応点、例えば、経路1
01 a ・I 01 b −10Inの対向点の位置
を選んで受波側の超音波振動子3を置いて測定している
In the former case, a specific conventional method is to place the ultrasonic transducer 2 on the transmitting side at one position outside the tree 1, as shown in FIG. Route 1
01 a ・I 01 b −10 In is selected at the position of the opposing point, and the ultrasonic transducer 3 on the receiving side is placed for measurement.

この測定は、送波側の波振動子2から与えた信号と、受
波側の振動子3で得られた信号とを比較することによ・
り行われ、例えば、経路101. cでは、途中にある
釣部102のために超音波が減衰するため、釣部102
の無(1他の経路の場合に比べ、受渡側の超音波振動子
7により得られる信号が相当小さいか全く無くなるため
、この経路中に釣部102が存在することを検知できる
ようにしている。
This measurement is performed by comparing the signal given from the wave transducer 2 on the transmitting side and the signal obtained from the transducer 3 on the receiving side.
For example, route 101. In c, the ultrasonic wave is attenuated due to the fishing part 102 on the way, so the fishing part 102
(1) The presence of the fishing part 102 on this route can be detected because the signal obtained by the ultrasonic transducer 7 on the delivery side is considerably smaller or completely absent compared to other routes. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の方法では、樹皮1aが介在するため、こ
れに阻害され、相当大出力の超音波信号を送波側の超音
波振動子2に与えなければ測定できず、大型の装置と電
源とを要し、山林のような現場では実用できない。
However, the above method is hampered by the presence of the bark 1a, and cannot be measured unless a considerably high-output ultrasonic signal is applied to the ultrasonic transducer 2 on the transmitting side, which requires a large device and power source. It requires a lot of effort and cannot be put to practical use in areas such as mountains and forests.

このため、第4図のように、樹皮1aの一部を削除して
、木部1bの表面を露出させ、この表面に各超音波振動
子2・3の送・受波面を当て付けて測定する方法をとる
ことが常識的に考えられる。
For this reason, as shown in Fig. 4, a part of the bark 1a is removed to expose the surface of the wood 1b, and the transmitting and receiving surfaces of the ultrasonic transducers 2 and 3 are applied to this surface for measurement. It seems common sense to take this approach.

しかし、この方法では、良木・不良木の区別なく、樹皮
1aを削除してしまうため、今まで良木であったものも
、この削除による損傷が原因で不良木にしてしまうとい
う弊害が生ずる。
However, with this method, bark 1a is removed without distinguishing between good and bad trees, which has the disadvantage that even previously good trees become bad trees due to the damage caused by this removal. .

このため、こうした弊害の無い計測検知方法とそれを具
体化した装置の提供が期待されているという課題がある
Therefore, there is a problem in that it is expected to provide a measurement detection method that does not have these disadvantages and a device embodying the method.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、超音波を送・受波するため送・受波端を先
端が尖らせl;ホーン状に形成し、この先端を樹皮外か
ら木部に突き刺して送・受波を行う方法により上記の課
題を解決し得るようにしたものであり、さらには、この
方法の具体化装置として、ホーン付き振動子のホーン先
端を尖らせたものを用いて送受波を行う装置を提供する
ようにしたものである。
In order to transmit and receive ultrasonic waves, this invention uses a method in which the transmitting and receiving ends are formed into a horn shape with a pointed tip, and the tips are pierced into the wood from outside the bark to transmit and receive waves. The above-mentioned problem can be solved, and furthermore, as an embodiment of this method, a device for transmitting and receiving waves using a horn-equipped vibrator with a sharpened horn tip is provided. This is what I did.

〔実施例〕〔Example〕

以下、実施例を図面により説明する。 Examples will be described below with reference to the drawings.

第3図(A)は送受波部分IOの構成を示し、超音波を
送受波する振動子部分11と、樹木に対して送受波を行
うための送受波端部分12とを一体に組み付けた一種の
ホーン付・き振動子である。
Fig. 3 (A) shows the configuration of the wave transmitting/receiving part IO, which is a type in which a transducer part 11 for transmitting and receiving ultrasonic waves and a wave transmitting/receiving end part 12 for transmitting and receiving waves to trees are assembled into one piece. This is a vibrator with a horn.

振動子部分llは、振動子11aの送受波面lleを送
受波端部分12の太端面12aに接着などにより接合し
、圧電振動子11aの電気端子11blこ接続するケー
ブルlieを取り付けたものである。
The vibrator portion 11 is obtained by bonding the wave transmitting/receiving surface lle of the vibrator 11a to the thick end surface 12a of the wave transmitting/receiving end portion 12 by adhesive or the like, and attaching a cable lie to connect the electric terminal 11bl of the piezoelectric vibrator 11a.

例えば、振動子11aには、ボルト締めランジュバン型
のセラミック電歪振動子を用い、その締めつけボルト用
のネジ穴を利用して絶縁スタットl1gを取り付け、送
受波面11eを除く他の面を覆うようにしたカバーli
dを絶縁スタット11gで保持するとともに、電気端子
11bに導くケーブルllcをカバーlidに設けたコ
ネクターIffを介して引き出したものである。
For example, a bolted Langevin type ceramic electrostrictive vibrator is used as the vibrator 11a, and an insulating stud l1g is attached using the screw hole for the tightening bolt so as to cover the other surfaces except the wave transmitting/receiving surface 11e. cover li
d is held by an insulating stud 11g, and a cable llc leading to an electric terminal 11b is pulled out via a connector Iff provided on the cover lid.

送受波端部分12は、振動子11aの送受波エネルギー
を太端面12a・細端面12b間に伝送するホーンであ
り、細端面+2b側を樹木の木部に突き刺しやすい形状
に尖らせである。
The transmitting/receiving end portion 12 is a horn that transmits the transmitting/receiving energy of the vibrator 11a between the wide end surface 12a and the narrow end surface 12b, and the narrow end surface +2b side is sharpened to a shape that makes it easy to penetrate into the wood of a tree.

ポーンは、例えば、円錐体の側面をいわゆるエクスポー
ホンシアル形に形成したエクスポーネンンアル型固体ホ
ーンで、その細端面12b[の直径を2〜3IllI1
1程度にして先端を尖った円錐形状にしたものであり、
鋼鉄材を用いて形成し、窒化処理などにより硬化処理し
たものである。
The pawn is, for example, an exponenial type solid horn in which the side surface of a cone is formed into a so-called expohonsial shape, and the diameter of the narrow end surface 12b is 2 to 3IllI1.
It has a conical shape with a pointed tip.
It is formed using a steel material and hardened by nitriding or the like.

第:3m(E>は樹木内部の状態を検知するための送受
1fIL部分10の取付状態を示し、送波部分10a・
受波部分10bともに、第3図(A)の送受波部分10
を用い、そのホーンの細端面12bmの尖った部分を樹
木(の樹皮ibの外側から木部ICに突き刺して取り付
ける。
No. 3m (E> indicates the installation state of the transmitting/receiving 1f IL part 10 for detecting the condition inside the tree, and the transmitting part 10a.
Both the wave receiving part 10b and the wave transmitting/receiving part 10 in FIG. 3(A)
Attach the horn by sticking the pointed part of the narrow end surface 12b into the tree IC from the outside of the bark ib.

第1図は樹木内部状態の計測検知作業時の構成を示し、
送波部分10a・受波部分10bは第3図(B)の状態
に取り付けられている。
Figure 1 shows the configuration for measuring and detecting the internal state of trees.
The wave transmitting part 10a and the wave receiving part 10b are attached in the state shown in FIG. 3(B).

計測部分20は送波信号発生部分20aと観測部分20
bとから構成されている。
The measurement part 20 includes a transmission signal generation part 20a and an observation part 20.
It is composed of b.

送波信号発生部分20aは、第2図(A)の送波信号S
lのように、振動子11aの振動周波数の信号fを所定
の狭いパルス幅TIにして所定の周期T2で繰り返すよ
うにしt;信号を発生するパルス送信器である。
The transmission signal generation portion 20a generates the transmission signal S in FIG. 2(A).
This is a pulse transmitter that generates a signal f of the vibration frequency of the vibrator 11a with a predetermined narrow pulse width TI and repeated at a predetermined period T2 as shown in FIG.

例えば、信号fは75 kHz、パルス幅TIは100
ps、周期T2は50m5である。
For example, the signal f is 75 kHz and the pulse width TI is 100
ps, and the period T2 is 50 m5.

そして、この部分は、周期T2のパルス信号S3を発生
するトリガーパルス発生回路201aと、このパルス信
号S3でトリガーされて、送波信号S1を発生するパル
ス波送信回路201bとで構成され、その出力信号、つ
まり、送波信号Slを送波部分10aの振動子11aに
与えて超音波信号に変換し、ホーンの細端面12bかも
樹木lの木部1b内に送波する。
This part is composed of a trigger pulse generation circuit 201a that generates a pulse signal S3 with a period T2, and a pulse wave transmission circuit 201b that is triggered by this pulse signal S3 and generates a transmission signal S1, and its output The signal, that is, the transmission signal Sl is applied to the transducer 11a of the transmission part 10a, converted into an ultrasonic signal, and the thin end surface 12b of the horn also transmits the wave into the tree part 1b of the tree l.

超音波信号は木部内を伝搬して受波部分子obに受波さ
れ、振動子113で電気信号にへんかんされて受渡信号
S2が得られる。
The ultrasonic signal propagates within the xylem, is received by the receiving part molecule ob, and is converted into an electrical signal by the vibrator 113 to obtain the delivery signal S2.

観測部分20bは、この受波信号S2の大きさと遅れ時
間とをliぷりするブラウン管i測器である。
The observation section 20b is a cathode ray tube measuring instrument that measures the magnitude and delay time of the received signal S2.

そして、この部分は、送波信号発生部分20aからトリ
ガーパルス発生回路201aのパルス信号S3の一部を
受けて、第2図(B)のように、ブラウン1r203の
表示画面における掃引時間軸201c・201dを作る
掃引信号を同期するためノドリガー信号にするとともに
、パルス信号S3を掃引時間軸201d上に振幅映像2
01eにして表示する。また、受波信号S2を増幅回路
202aで所定の信号強度に増幅し、この信号を掃引時
間軸201c上に振幅映像201fにして表示する。
Then, this part receives a part of the pulse signal S3 of the trigger pulse generation circuit 201a from the transmission signal generation part 20a, and as shown in FIG. In order to synchronize the sweep signal 201d, the pulse signal S3 is converted into a no-driger signal to synchronize it, and the pulse signal S3 is added to the amplitude image 2 on the sweep time axis 201d.
01e and display. Further, the received signal S2 is amplified to a predetermined signal strength by the amplifier circuit 202a, and this signal is displayed as an amplitude image 201f on the sweep time axis 201c.

振幅映像201eから振幅映像201fの始点までの掃
引線上の遅れ時間(、つまり、距離は樹木1の差し渡し
に比例するので、太さを測定することができ、また、振
幅映像201fの振幅は、樹木の内部状態に損傷が無い
ときは大きい振幅で表れ、樹木の内部に鍔部または空洞
などの欠陥があるときはこの欠陥によって超音波が減衰
されるので、振幅が小さいか、または全く映像が表れな
いため、これにより樹木の内部状態を検知することがで
きる。
The delay time on the sweep line from the amplitude image 201e to the starting point of the amplitude image 201f (that is, the distance is proportional to the width of the tree 1, so the thickness can be measured, and the amplitude of the amplitude image 201f is When there is no damage to the internal state of the tree, the ultrasound appears with a large amplitude, but when there is a defect inside the tree, such as a brim or cavity, the ultrasound is attenuated by the defect, so the amplitude is small or no image appears. This makes it possible to detect the internal state of the tree.

送波信号発生部分20aは、例えば、周知の魚群探知機
などに用いられているパルス送信回路におけるパルス幅
と繰返周期とを短くしたもので構成でき、また、I!測
部分20bは、例えば、周期の携帯用シンクロ・オッシ
ロスコープを用いて構成できる。
The transmission signal generating portion 20a can be configured by, for example, a pulse transmission circuit used in a well-known fish finder, etc., with a shortened pulse width and repetition period. The measuring section 20b can be configured using, for example, a portable synchronized oscilloscope.

〔変形実施〕[Transformation implemented]

この発明は次のような変形実施が可能である。 This invention can be implemented in the following modified manner.

(1)送受波端部分I2のホーン部分を、円錐形ホーン
、段付きホーンなどの他のホーン形状にする。
(1) The horn portion of the wave transmitting/receiving end portion I2 is made into another horn shape such as a conical horn or a stepped horn.

(2)送波信号31を、高圧放電パルスにし、振動子1
1aを強制振動させて、送波する超音波バルス信号を自
然減衰型のパルスにして、構成をより簡単で電源消費の
少ないものにする。
(2) The transmission signal 31 is made into a high-pressure discharge pulse, and the vibrator 1
1a is forcibly vibrated and the ultrasonic pulse signal to be transmitted is made into a naturally attenuated pulse, thereby making the configuration simpler and consuming less power.

(3)受渡信号S2を検波整流した信号をA/D変換し
てディジタル値にし%樹木1の樹木番号を入力するキー
ボードを設けて、このディジタル値を樹木番号とともに
プリンターに印字記録し、間伐調査資料を自動的に作れ
るようにする。
(3) A/D convert the signal obtained by detecting and rectifying the delivery signal S2, converting it into a digital value, and providing a keyboard for inputting the tree number of tree 1. This digital value is printed and recorded on the printer along with the tree number, and the thinning survey is carried out. Enable document creation automatically.

(4)パルス信号S3に対する受渡信号S2の遅れ時間
tを計時用クロックパルスで計数してディジタル値にし
、このディジタル値を上記(3)のプリンターに樹木番
号とともに印字する。
(4) The delay time t of the delivery signal S2 with respect to the pulse signal S3 is counted using a clock pulse for time measurement, converted into a digital value, and this digital value is printed together with the tree number on the printer described in (3) above.

(5)振動子11aを、7エライト磁歪振動子、または
単体型のセラミック電歪振動子にして構成する。また、
カバーlidの部分をウレタンゴムなとでモールドした
ものにする。さらに、ケーブルllcを側面に出して、
送受波部分の後方をゴムハンマーなどでたたけるように
し、樹皮1aが厚く堅い場合でも、ホーンの先端が木部
1bに届きやすくする。
(5) The vibrator 11a is configured as a 7-elite magnetostrictive vibrator or a single ceramic electrostrictive vibrator. Also,
The cover lid part is molded with urethane rubber. Furthermore, put the cable llc out to the side,
The back of the wave transmitting/receiving part is struck with a rubber hammer or the like to make it easier for the tip of the horn to reach the wood part 1b even if the bark 1a is thick and hard.

(6)送波信号発生部分20aを送波部分1iraと一
体にして構成し、構成要素数を少なくする。
(6) The transmitting signal generating section 20a is configured integrally with the transmitting section 1ira to reduce the number of constituent elements.

(7)ブラウン管表示器に与えるパルス信号S3の代わ
りに、送波信号S1を与えて、同様に表示し、送波信号
Slの正常さを同時に監視できるようにする。
(7) Instead of the pulse signal S3 given to the cathode ray tube display, the transmitted wave signal S1 is given and displayed in the same way, so that the normality of the transmitted wave signal Sl can be monitored at the same time.

(8)送受波端部分12を他の金属する。例えば、ステ
ンレス鋼にし、ホーンの尖らせた先端部分にブルーイン
グ処理を施して硬化したものなどにし、露滴や樹液によ
る錆や腐食が無いようにする。
(8) The transmitting/receiving end portion 12 is made of another metal. For example, the horn should be made of stainless steel, and the sharpened tip of the horn should be hardened by bluing to prevent rust or corrosion caused by dew drops or tree sap.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、上記のように、送受波端部分12を
ホーンにし、その先端部分を尖らせたものを樹皮の外側
から木部に突き刺して、超音波の送受波をおこなうため
、樹皮の介在による超音波の減衰が無いうえに良木まで
樹木を削除して傷付けてしまうようなことが無く、また
、ホーンによって超音波が収束されるうえに先端が木部
に食い込んでいるため超音波の送波損失が少ないため、
送波信号を小出力にでき、例えば、パルス自体を5〜I
QW程度の出力にしたもので十分に計測検知が行えるの
で、装置を小型で軽便なものにして安価に提供できるな
どの特長がある。
According to the present invention, as described above, the wave transmitting/receiving end portion 12 is made into a horn, and the tip thereof is pierced into the wood from the outside of the bark to transmit and receive ultrasonic waves. There is no attenuation of ultrasonic waves due to interference, there is no need to remove or damage even good trees, and the ultrasonic waves are focused by the horn, and the tip of the horn bites into the xylem, so the ultrasonic waves are not attenuated. Because of the low transmission loss,
The transmitting signal can be made small in output, for example, the pulse itself can be
Since measurement and detection can be performed sufficiently with an output of about QW, the device has the advantage of being small and convenient and can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例を示し、第1図は計測検知作業時の構成図
、第2図(A)は信号波形図、第2図(B)は表示映像
図、第3図(A)は送受波部分の部分断面側面図、第3
図(B)は送受波部分取付状態の断面平面図、第4図・
第5図は従来の送受波部分取付状態の断面平面図である
。 1・・・樹木 2・・・送波側の超音波振動子 3・・・受波側の超音波振動子 IO・・・送受波部分 20・・・測定部分 特 許 出 願人  株式会社光電製作所送波信号発生 計測 第1図 第2図(A) 第4図 //e 第38!!1(A) 手季売字[11正書(旗)
The drawings show an example. Fig. 1 is a configuration diagram during measurement detection work, Fig. 2 (A) is a signal waveform diagram, Fig. 2 (B) is a display image diagram, and Fig. 3 (A) is a wave transmission/reception diagram. Partial cross-sectional side view of part, 3rd
Figure (B) is a cross-sectional plan view of the installed state of the transmitting and receiving parts, and Figure 4.
FIG. 5 is a cross-sectional plan view of a conventional wave transmitting and receiving portion attached. 1...Trees 2...Ultrasonic transducer on the transmitting side 3...Ultrasonic transducer IO on the receiving side...Transmitting/receiving part 20...Measuring part Patent Applicant: Kohden Co., Ltd. Manufacturing site transmission signal generation measurement Fig. 1 Fig. 2 (A) Fig. 4//e Fig. 38! ! 1(A) Tekiuriji [11 shosho (flag)

Claims (1)

【特許請求の範囲】 1 樹木の内部状態や太さなどをを超音波の透過または
反射などの現象により計測検知するための方法であって
、 a、前記超音波を前記樹木中に送波し、または樹木中の
超音波を受波するため送・受波端を先端が尖らせたホー
ン状に形成し、 b、前記先端を、前記樹木の樹皮外から木部に突き刺し
て、前記送波または受波を行う ことを特徴とする樹木計測検知方法。 2 前記請求項第1項記載の方法を用いて朽木・空洞木
などの不良樹木を検知する装置であって、 a、前記送・受波端をホーン付き振動子のホーン先端を
尖らせて形成する振動子先端形成手段と、 b、2つの前記ホーン付き振動子の各送・受端を、その
一方を前記樹木に突き刺した位置に対して、これと異な
る位置に他方を突き刺すことにより、それぞれの前記送
・受端を対設する送・受端対設手段と、 c、前記2つのホーン付き振動子のうちの一方に超音波
信号出力を与えて前記送波を行い、他方によって得られ
る受波信号の大きさの違いを測定することにより、前記
不良木を検知する検知手段と を具備することを特徴とする樹木内部状態検知装置。 3 前記請求項第1項記載の方法を用いて樹木の内部状
態と太さとを検知する装置であって、a、前記送・受波
端をホーン付き振動子のホーン先端を尖らせて形成する
振動子先端形成手段と、b、2つの前記ホーン付き振動
子の各送・受端を、その一方を前記樹木に突き刺した位
置に対して、これと異なる位置に他方を突き刺すことに
より、それぞれの前記送・受端を対設する送・受端対設
手段と、 c、前記2つのホーン付き振動子のうちの一方に超音波
パルス信号出力を与えて送波を行い、他方によって受波
信号を得る送受波手段と、 d、所定の周期をもつパルス信号をトリガー信号として
前記超音波パルス信号を発生し、前記トリガー信号中の
パルスとこれに対応する前記受波信号中のパルスとの時
間間隔を測定することにより前記太さを計測するととも
に、前記受波信号中のパルスの振幅を測定することによ
り前記内部状態を検知する計測・検知手段と を具備することを特徴とする樹木計測検知装置。
[Scope of Claims] 1. A method for measuring and detecting the internal condition and thickness of a tree using phenomena such as transmission or reflection of ultrasonic waves, comprising: a. transmitting the ultrasonic waves into the tree; or, in order to receive the ultrasonic waves in the tree, the transmitting/receiving end is formed into a horn shape with a sharp tip; b. the tip is pierced into the xylem from outside the bark of the tree, and Or a tree measurement detection method characterized by receiving waves. 2. An apparatus for detecting defective trees such as rotten trees and hollow trees using the method according to claim 1, wherein: a. The transmitting and receiving ends are formed by sharpening the tip of the horn of a vibrator with a horn. (a) a vibrator tip forming means for forming a transducer; b. one of the transmitting and receiving ends of the two horn-equipped vibrators is pierced into the tree at a different position from the other; c. transmitting/receiving end opposing means for arranging the transmitting/receiving ends of the transmitting/receiving ends; A tree internal condition detection device comprising: a detection means for detecting the defective tree by measuring a difference in magnitude of received signals. 3. An apparatus for detecting the internal state and thickness of a tree using the method according to claim 1, wherein: a) the transmitting and receiving ends are formed by sharpening the tip of the horn of a vibrator with a horn; vibrator tip forming means; b. one of the transmitting and receiving ends of the two horned vibrators is inserted into the tree at a different position from the other; sending/receiving end facing means for arranging the sending/receiving ends; c. transmitting an ultrasonic pulse signal by giving an ultrasonic pulse signal output to one of the two horn-equipped vibrators; d. generating the ultrasonic pulse signal using a pulse signal having a predetermined period as a trigger signal, and determining the time between the pulse in the trigger signal and the corresponding pulse in the received signal; Tree measurement/detection characterized by comprising a measurement/detection means that measures the thickness by measuring the interval and detects the internal state by measuring the amplitude of the pulse in the received signal. Device.
JP63251546A 1988-10-05 1988-10-05 Method for measuring and detecting tree and its device Pending JPH0298663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63251546A JPH0298663A (en) 1988-10-05 1988-10-05 Method for measuring and detecting tree and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63251546A JPH0298663A (en) 1988-10-05 1988-10-05 Method for measuring and detecting tree and its device

Publications (1)

Publication Number Publication Date
JPH0298663A true JPH0298663A (en) 1990-04-11

Family

ID=17224438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63251546A Pending JPH0298663A (en) 1988-10-05 1988-10-05 Method for measuring and detecting tree and its device

Country Status (1)

Country Link
JP (1) JPH0298663A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016520A1 (en) * 2004-08-11 2006-02-16 Jfe Civil Engineering & Construction Corporation Nondestructive method and system of inspecting inside of tree by employing acoustic tomography
JP2007064672A (en) * 2005-08-29 2007-03-15 Kozo Yoshizawa Method of estimating hollow state of tree trunk, its device and program
CN105486254A (en) * 2014-09-16 2016-04-13 哈尔滨恒誉名翔科技有限公司 Tree measurement instrument system based on ultrasonic sensor and MEMS triaxial accelerometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016520A1 (en) * 2004-08-11 2006-02-16 Jfe Civil Engineering & Construction Corporation Nondestructive method and system of inspecting inside of tree by employing acoustic tomography
JP2007064672A (en) * 2005-08-29 2007-03-15 Kozo Yoshizawa Method of estimating hollow state of tree trunk, its device and program
CN105486254A (en) * 2014-09-16 2016-04-13 哈尔滨恒誉名翔科技有限公司 Tree measurement instrument system based on ultrasonic sensor and MEMS triaxial accelerometer

Similar Documents

Publication Publication Date Title
JPH0130104B2 (en)
CA1087725A (en) Piezoelectric acoustic emission instrumentation
JPH0525045B2 (en)
JP3261077B2 (en) Method and acoustic waveguide for generating an earth echo locating beam for locating underground structures
EP1677106A3 (en) Ultrasonic probe and inspection method and system
JPH0298663A (en) Method for measuring and detecting tree and its device
US6536062B2 (en) Prodder with force feedback
DE59406684D1 (en) METHOD AND DEVICE FOR NON-DESTRUCTIVE TESTING OF OBJECTS WITH ULTRASOUND
JP2003329656A (en) Degree of adhesion diagnosis method and device for concrete-sprayed slope
JPS5821558A (en) Supersonic wave flaw detector for nonmetal
JPS6128301B2 (en)
KR100573967B1 (en) Nondestructive inspection type supersound sensing system
GB2173593A (en) Ultrasonic location of needles or catheters
KR101558922B1 (en) Dual type ultrasonic sensor for adjusting beam width
JP2002004274A (en) Stress diagnosis method of ground anchor and stress diagnosis device
US7069786B2 (en) Ultrasonic transducer structures
US3596505A (en) Ultrasonic search unit with radial mode motion transducer
JPS60174949A (en) Method and apparatus for detecting gap of resonance wave
JPH10128238A (en) Ultrasonic angle beam probe and its use method
JP2619053B2 (en) Ultrasonic transducer
SU1619163A1 (en) Method of ultrasonic inspection of articles
JPH05332758A (en) Method for measuring thickness of concrete structure
SU1631400A1 (en) Method for cheking material quality by ultrasonics
SU1677585A1 (en) Apparatus for determining abrasive tool hardness
SU590659A1 (en) Ultrasonic method for quality control of butt welds