JPH0298054A - Manufacture of phosphoric acid fuel cell - Google Patents
Manufacture of phosphoric acid fuel cellInfo
- Publication number
- JPH0298054A JPH0298054A JP63250147A JP25014788A JPH0298054A JP H0298054 A JPH0298054 A JP H0298054A JP 63250147 A JP63250147 A JP 63250147A JP 25014788 A JP25014788 A JP 25014788A JP H0298054 A JPH0298054 A JP H0298054A
- Authority
- JP
- Japan
- Prior art keywords
- phosphoric acid
- catalyst layer
- particles
- weight ratio
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 title claims abstract description 96
- 229910000147 aluminium phosphate Inorganic materials 0.000 title claims abstract description 48
- 239000000446 fuel Substances 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000003054 catalyst Substances 0.000 claims abstract description 30
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 33
- 229910052697 platinum Inorganic materials 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000004809 Teflon Substances 0.000 claims description 4
- 229920006362 Teflon® Polymers 0.000 claims description 4
- 239000000243 solution Substances 0.000 abstract description 9
- 239000007864 aqueous solution Substances 0.000 abstract description 3
- 230000000149 penetrating effect Effects 0.000 abstract 2
- 239000011148 porous material Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000007800 oxidant agent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8892—Impregnation or coating of the catalyst layer, e.g. by an ionomer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/08—Fuel cells with aqueous electrolytes
- H01M8/086—Phosphoric acid fuel cells [PAFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はリン酸型燃料電池の触媒層へのリン酸含浸方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a method for impregnating a catalyst layer of a phosphoric acid fuel cell with phosphoric acid.
リン酸型燃料電池の電極部は第3図に示すように、中央
に電解液保持層であるマトリックス1とこのマトリック
スを挟持してなる燃料極触媒層2および酸化剤極触媒層
3とにより構成される。As shown in Fig. 3, the electrode section of a phosphoric acid fuel cell is composed of a matrix 1 which is an electrolyte holding layer in the center, a fuel electrode catalyst layer 2 and an oxidant electrode catalyst layer 3 sandwiching this matrix. be done.
さらに前記触媒N2.3は第4図に示すように、電池反
応を促進する機能をもつ白金粒子4と、この白金粒子を
保持する役割を有し、カーボン粒子により形成される担
体5および触媒層内のガス流路が電解液により閉塞する
のを防止する役割をもつテフロン粒子6などにより形成
される。Furthermore, as shown in FIG. 4, the catalyst N2.3 includes platinum particles 4 that have the function of promoting battery reactions, a carrier 5 that has the role of holding the platinum particles, and a catalyst layer formed of carbon particles. It is formed of Teflon particles 6, etc., which have the role of preventing the gas flow path inside from being blocked by electrolyte.
電池反応は次のように、燃料極では(1)の反応が起こ
り、酸化剤極では(2)の反応が起こる。The cell reaction is as follows: reaction (1) occurs at the fuel electrode, and reaction (2) occurs at the oxidizer electrode.
H,→2Hヤ +2 e (1)士
2H+’AO1+26 −+Hzo (2)これ
らの電池反応ではtit イオンが介在している。H,→2H +2 e (1) 2H+'AO1+26 -+Hzo (2) Tit ions are present in these battery reactions.
すなわち白金粒子で電池反応が円滑に行われるためには
白金粒子が電解液でぬれていることが必要条件である。That is, in order for the platinum particles to carry out the battery reaction smoothly, it is necessary that the platinum particles be wetted with the electrolyte.
したがって通常触媒層にもリン酸を含浸させることが行
われる。Therefore, the catalyst layer is also usually impregnated with phosphoric acid.
従来この触媒層への含浸は100重量%近くの濃リン酸
液を第5図のように触媒層に直接接触させたり、あるい
は第6図に示すように燃料極触媒層2、マトリックス1
、酸化剤極触媒層3を組み合わせた後、マトリックスを
介して外部より含浸する方法などがある。いずれの場合
もリン酸温度は約100°C〜180°Cの範囲で使用
されることが多い。Conventionally, this impregnation of the catalyst layer has been carried out by directly contacting the catalyst layer with a concentrated phosphoric acid solution of nearly 100% by weight as shown in FIG.
, a method of combining the oxidizing agent electrode catalyst layer 3 and then impregnating it from the outside through a matrix. In either case, the phosphoric acid temperature used is often in the range of about 100°C to 180°C.
しかしながら一般に担体であるカーボン粒子は、−成粒
子のままで存在することは少なく、通常複数偏集まって
二次粒子を形成し、固まりとして存在する。この固まり
の中の粒子間の間隔は約1μm以下の細孔しかない。し
たがってリン酸がこの細孔内を移動する抵抗は非常に高
く、十分に浸透することができない。このため第7図に
示すように、細孔内部の白金粒子はリン酸と接しないも
のが多数化ずることになる。この場合、有効に働く白金
粒子の数が減り、期待する電池特性が得られない。However, carbon particles, which are generally carriers, rarely exist in the form of unformed particles, and usually a plurality of carbon particles gather unevenly to form secondary particles and exist as agglomerates. The spacing between particles in this mass is only about 1 μm or less. Therefore, the resistance of phosphoric acid to move through these pores is very high and it cannot penetrate sufficiently. Therefore, as shown in FIG. 7, a large number of platinum particles inside the pores do not come into contact with phosphoric acid. In this case, the number of platinum particles that work effectively decreases, and the expected battery characteristics cannot be obtained.
これを防止するためリン酸の温度を200°C以上に上
げてリン酸の粘度を下げ、前記細孔内へのリンの浸透を
促進することが考えられるが、この方法では白金粒子の
凝集を促進してその比表面積を小さくするため、電池特
性の劣化を起こす可能性がきわめて大きく実用上問題が
ある。In order to prevent this, it is possible to raise the temperature of phosphoric acid to 200°C or higher to lower the viscosity of phosphoric acid and promote the penetration of phosphorus into the pores, but this method prevents the aggregation of platinum particles. Since the specific surface area of the battery is reduced, there is an extremely large possibility that the battery characteristics will deteriorate, which is a practical problem.
本発明は上記の点に鑑みてなされ、その目的は白金粒子
の凝集を起こさずに、カーボン粒子間の細孔にリン酸を
含浸し、触媒層中の有効に働く白金粒子の数を増加させ
ることにより、電池の性能と寿命を向上させる方法を提
供することにある。The present invention has been made in view of the above points, and its purpose is to impregnate pores between carbon particles with phosphoric acid without causing agglomeration of platinum particles, thereby increasing the number of platinum particles that work effectively in a catalyst layer. The purpose of the present invention is to provide a method for improving battery performance and service life.
上記の目的は、この発明によれば主として白金粒子と、
この白金粒子を担持するカーボン粒子およびテフロン粒
子とより構成される触媒層にリン酸を含浸させてなるリ
ン酸型燃料電池の製造方法において、触媒層に対して五
酸化リンの水に対する重量比が1以下のリン酸7aを浸
透させ、次いで五酸化リンの水に対する重量比が2以上
のリン酸7bを浸透させることにより達成される。According to the present invention, the above object is achieved mainly by using platinum particles,
In a method for manufacturing a phosphoric acid fuel cell in which a catalyst layer composed of carbon particles and Teflon particles supporting platinum particles is impregnated with phosphoric acid, the weight ratio of phosphorus pentoxide to water in the catalyst layer is This is achieved by impregnating phosphoric acid 7a with a weight ratio of phosphorus pentoxide to water of 1 or less, and then phosphoric acid 7b with a weight ratio of phosphorus pentoxide to water of 2 or more.
第8図はリン酸(H,PO,)濃度と粘度の関係を示し
たものである。第8図よりリン酸の濃度は、例えば14
0°Cでは100重量%の場合7.5cPであるのに対
し、50重量%では0.9cPと非常に小さいことが示
される。したがって低濃度のリン酸水溶液で含浸すると
カーボン粒子間の細孔内部へも容易に浸透する。ただし
含浸されたリン酸は、低い濃度のままでは、通常運転状
態の温度が180℃〜200’Cとなるため、水分が蒸
発し細孔内のリン酸の体積の収縮が起こる。この結果細
孔内部の白金粒子のうち、リン酸にふれているものの数
が再び減少する。これを避けるため運転開始前に100
重量%近くのリン酸により、細孔内部の希薄リン酸との
置換を行う、この場合細孔内部にすでに液体が存在する
ため、濃度が高く粘度の大きいリン酸も容易に細孔内部
へ浸透させることが可能である。FIG. 8 shows the relationship between phosphoric acid (H, PO,) concentration and viscosity. From Figure 8, the concentration of phosphoric acid is, for example, 14
At 0°C, it is 7.5 cP at 100% by weight, whereas it is very small at 0.9 cP at 50% by weight. Therefore, when impregnated with a low concentration phosphoric acid aqueous solution, it easily penetrates into the pores between carbon particles. However, if the impregnated phosphoric acid remains at a low concentration, the temperature under normal operating conditions will be 180° C. to 200° C., so water evaporates and the volume of the phosphoric acid in the pores contracts. As a result, the number of platinum particles inside the pores that are in contact with phosphoric acid decreases again. To avoid this, 100%
The dilute phosphoric acid inside the pores is replaced by nearly % by weight phosphoric acid. In this case, since liquid already exists inside the pores, the highly concentrated and highly viscous phosphoric acid easily penetrates into the pores. It is possible to do so.
第1図に本発明の実施例を示す。酸化剤極触媒層3をふ
ん囲気120’Cの状態に保ち、この触媒層に50重量
%リン酸水溶液7aを滴下する0滴下は前記リン酸液7
aが前記触媒N3を全面覆うまで継続する0滴下が終了
した後はこのまま数時間保持し浸透させる。この後ふん
囲気を120℃〜150℃の状態に保ち、前記触媒層3
に100重量%リン酸液7bを滴下する0滴下が終了し
た後は、この状態のまま数時間保持し、予め浸透した濃
度の低いリン酸液との1換を行わせる。第2図は本発明
の実施例の方法による含浸を行った場合8と、従来の方
法で100重量%リン酸のみで含浸を行った場合9のそ
れぞれの酸化剤極のハーフセル特性の比較を行った例を
示す。この例では電流密度200a+^/dでは本発明
の方が約20mv(2,5%)の特性向上が見られる。FIG. 1 shows an embodiment of the present invention. The oxidizer electrode catalyst layer 3 is maintained in an ambient atmosphere of 120'C, and a 50% by weight phosphoric acid aqueous solution 7a is dropped onto this catalyst layer.
After 0 drops of a continue until the catalyst N3 is completely covered, it is kept as it is for several hours to allow it to penetrate. After that, the atmosphere was kept at 120°C to 150°C, and the catalyst layer 3
After 0 drops of 100% by weight phosphoric acid solution 7b is completed, this state is maintained for several hours to replace the phosphoric acid solution with a low concentration that has penetrated in advance. Figure 2 shows a comparison of the half-cell characteristics of the oxidizer electrode in case 8 where impregnation was carried out using the method of the embodiment of the present invention and case 9 where impregnation was carried out using only 100% phosphoric acid using the conventional method. Here is an example. In this example, at a current density of 200a+^/d, the characteristics of the present invention are improved by about 20mV (2.5%).
この場合温度190°C9酸化剤として純酸素が用いら
れた。In this case pure oxygen was used as the oxidizing agent at a temperature of 190°C.
本発明によれば、比較的容易な作業方法により、触媒層
の担体粒子の固まりの細孔内部へ充分にリン酸を含浸で
きるため担体粒子に付着している白金粒子を電池反応に
充分利用でき、電池の出力特性を向上することができる
。According to the present invention, phosphoric acid can be sufficiently impregnated into the pores of the mass of carrier particles of the catalyst layer by a relatively easy working method, so that the platinum particles attached to the carrier particles can be fully utilized for the battery reaction. , the output characteristics of the battery can be improved.
また白金粒子の凝集が避けられるため、電池特性の劣化
防止が可能である。Furthermore, since aggregation of platinum particles is avoided, deterioration of battery characteristics can be prevented.
第1図はこの発明の実施例に係る製造方法を示す工程図
、第2図は本発明に係る製造方法と従来の方法で製造し
たハーフセルの特性を示す線図、第3図は電極部の模式
概念断面図、第4図は触媒層内粒子の微視的概念図、第
5図および第6図は従来のリン酸含浸方法を示す説明図
、第7図は従来の触媒層のリン酸含浸状態を示す微視的
概念図である。第8図はリン酸濃度と粘度の関係を示す
線図である。
1:マトリックス、2:燃料極触媒層、3:酸化剤極触
媒層、4:白金粒子、5:担体、6:テフロン粒子、7
:リン酸液、7a:50重量%リン酸第3図
第4図
70 資量メリ刃酸
第1図
第2図
71ノU愛滑
第5図
第6図
第7図FIG. 1 is a process diagram showing the manufacturing method according to the embodiment of the present invention, FIG. 2 is a diagram showing the characteristics of half cells manufactured by the manufacturing method according to the invention and the conventional method, and FIG. Schematic conceptual sectional view, Figure 4 is a microscopic conceptual diagram of particles in the catalyst layer, Figures 5 and 6 are explanatory diagrams showing the conventional phosphoric acid impregnation method, Figure 7 is the conventional phosphoric acid impregnation method of the catalyst layer. FIG. 3 is a microscopic conceptual diagram showing an impregnated state. FIG. 8 is a diagram showing the relationship between phosphoric acid concentration and viscosity. 1: Matrix, 2: Fuel electrode catalyst layer, 3: Oxidizer electrode catalyst layer, 4: Platinum particles, 5: Support, 6: Teflon particles, 7
: Phosphoric acid solution, 7a: 50% by weight phosphoric acid Fig. 3 Fig. 4 Fig. 70 Amount of melichoic acid Fig. 1 Fig. 2 Fig. 71 No. 5 Fig. 6 Fig. 7
Claims (1)
粒子およびテフロン粒子とより構成される触媒層にリン
酸を含浸させてなるリン酸型燃料電池の製造方法におい
て、触媒層に対して五酸化リンの水に対する重量比が1
以下のリン酸を浸透させ、次いで五酸化リンの水に対す
る重量比が2以上のリン酸を浸透させることを特徴とす
るリン酸型燃料電池の製造方法。In a method for manufacturing a phosphoric acid fuel cell in which a catalyst layer mainly composed of platinum particles, carbon particles supporting the platinum particles, and Teflon particles is impregnated with phosphoric acid, water of phosphorus pentoxide is added to the catalyst layer. The weight ratio to
A method for manufacturing a phosphoric acid fuel cell, which comprises permeating the following phosphoric acid, and then permeating phosphoric acid having a weight ratio of phosphorus pentoxide to water of 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63250147A JPH0298054A (en) | 1988-10-04 | 1988-10-04 | Manufacture of phosphoric acid fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63250147A JPH0298054A (en) | 1988-10-04 | 1988-10-04 | Manufacture of phosphoric acid fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0298054A true JPH0298054A (en) | 1990-04-10 |
Family
ID=17203516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63250147A Pending JPH0298054A (en) | 1988-10-04 | 1988-10-04 | Manufacture of phosphoric acid fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0298054A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013112149A1 (en) * | 2012-01-26 | 2013-08-01 | Utc Power Corporation | Electrolyte generation within a fuel cell |
-
1988
- 1988-10-04 JP JP63250147A patent/JPH0298054A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013112149A1 (en) * | 2012-01-26 | 2013-08-01 | Utc Power Corporation | Electrolyte generation within a fuel cell |
US9748592B2 (en) | 2012-01-26 | 2017-08-29 | Doosan Fuel Cell America, Inc. | Electrolyte generation within a fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5680770B2 (en) | Unitized electrode assembly with high equivalent ionomer | |
CA2241813A1 (en) | Co tolerant fuel cell electrode | |
WO2009139747A1 (en) | A stabilized platinum catalyst | |
JPWO2009091047A1 (en) | Catalyst, method for producing the same, and use thereof | |
CA1197555A (en) | Electrochemical power generator | |
US3979227A (en) | Method for catalyzing a fuel cell electrode and an electrode so produced | |
CN101124688A (en) | Electrode catalyst for fuel cell and fuel cell | |
JP4992185B2 (en) | Catalyst for fuel cell, membrane electrode composite, and solid polymer electrolyte fuel cell | |
JPH10334922A (en) | Solid high polymer fuel cell and its manufacture | |
JPH0298054A (en) | Manufacture of phosphoric acid fuel cell | |
EP2287956A1 (en) | Fuel cell, method for production of fuel cell, electronic device, enzyme-immobilized electrode, biosensor, bioreactor, energy conversion element, and enzymatic reaction-utilizing apparatus | |
CN210516886U (en) | Low Pt loading membrane electrode | |
EP0557259B1 (en) | Gas diffusion electrode for electrochemical cell and process of preparing same | |
JPS60133662A (en) | Method for manufacturing gas diffusion electrode of fuel cell | |
CA1045677A (en) | Method for catalyzing a fuel cell electrode and an electrode so produced | |
JPH09259893A (en) | Electrode for high polymer electrolyte fuel cell, manufacture thereof, and operation method for fuel cell having same electrode | |
KR20220132348A (en) | Fluoride modified carbon nitride foam cathode materials and preparation method therefor, and electrochemical cell including same | |
JPH0766810B2 (en) | Fuel cell | |
JPH02129859A (en) | Phosphoric acid impregnation method of phosphoric acid fuel cell | |
JPS59117075A (en) | Manufacture of phosphoric-acid holding matrix | |
JPH03297060A (en) | Electrode catalyst layer for fuel cell | |
JPH01315954A (en) | Fuel cell | |
JPH04363868A (en) | Fuel cell | |
JPH0624130B2 (en) | Method of starting molten carbonate fuel cell | |
Watanabe | IMPROVEMENT OF THE PERFORMANCE AND DURABILITY OF ANODE FOR DIRECT METHANOL FUEL CELLS |