JPH0298054A - Manufacture of phosphoric acid fuel cell - Google Patents

Manufacture of phosphoric acid fuel cell

Info

Publication number
JPH0298054A
JPH0298054A JP63250147A JP25014788A JPH0298054A JP H0298054 A JPH0298054 A JP H0298054A JP 63250147 A JP63250147 A JP 63250147A JP 25014788 A JP25014788 A JP 25014788A JP H0298054 A JPH0298054 A JP H0298054A
Authority
JP
Japan
Prior art keywords
phosphoric acid
catalyst layer
particles
weight ratio
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63250147A
Other languages
Japanese (ja)
Inventor
Koji Ito
幸二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63250147A priority Critical patent/JPH0298054A/en
Publication of JPH0298054A publication Critical patent/JPH0298054A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the performance and life of a cell by penetrating phosphoric acid in which the weight ratio of phosphorous pentoxide to water is specified into a catalyst layer, then penetrating phosphoric acid in which the weight ratio of phosphorous pentoxide to water is specified into the catalyst layer. CONSTITUTION:Phosphoric acid aqueous solution 7a in which the weight ratio of phosphorous pentoxide to water is 1 or less is dropped onto a catalyst layer 3 until the phosphoric acid solution 7a covers the whole surface of the catalyst layer 3. After completion of dropping, the catalyst layer 3 is allowed to stand for several hours to penetrate the phosphoric acid solution 7a. After that, atmosphere is kept at a specified temperature, then phosphoric acid solution 7b in which the weight ratio of phosphorous pentoxide to water is 2 or more is dropped onto the catalyst layer 3. After completion of dropping, the catalyst layer 3 is allowed to stand for several hours to repalce the phosphoric acid solution 7a with the phosphoric acid solution 7b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリン酸型燃料電池の触媒層へのリン酸含浸方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a method for impregnating a catalyst layer of a phosphoric acid fuel cell with phosphoric acid.

〔従来の技術〕[Conventional technology]

リン酸型燃料電池の電極部は第3図に示すように、中央
に電解液保持層であるマトリックス1とこのマトリック
スを挟持してなる燃料極触媒層2および酸化剤極触媒層
3とにより構成される。
As shown in Fig. 3, the electrode section of a phosphoric acid fuel cell is composed of a matrix 1 which is an electrolyte holding layer in the center, a fuel electrode catalyst layer 2 and an oxidant electrode catalyst layer 3 sandwiching this matrix. be done.

さらに前記触媒N2.3は第4図に示すように、電池反
応を促進する機能をもつ白金粒子4と、この白金粒子を
保持する役割を有し、カーボン粒子により形成される担
体5および触媒層内のガス流路が電解液により閉塞する
のを防止する役割をもつテフロン粒子6などにより形成
される。
Furthermore, as shown in FIG. 4, the catalyst N2.3 includes platinum particles 4 that have the function of promoting battery reactions, a carrier 5 that has the role of holding the platinum particles, and a catalyst layer formed of carbon particles. It is formed of Teflon particles 6, etc., which have the role of preventing the gas flow path inside from being blocked by electrolyte.

電池反応は次のように、燃料極では(1)の反応が起こ
り、酸化剤極では(2)の反応が起こる。
The cell reaction is as follows: reaction (1) occurs at the fuel electrode, and reaction (2) occurs at the oxidizer electrode.

H,→2Hヤ +2  e        (1)士 2H+’AO1+26 −+Hzo    (2)これ
らの電池反応ではtit  イオンが介在している。
H,→2H +2 e (1) 2H+'AO1+26 -+Hzo (2) Tit ions are present in these battery reactions.

すなわち白金粒子で電池反応が円滑に行われるためには
白金粒子が電解液でぬれていることが必要条件である。
That is, in order for the platinum particles to carry out the battery reaction smoothly, it is necessary that the platinum particles be wetted with the electrolyte.

したがって通常触媒層にもリン酸を含浸させることが行
われる。
Therefore, the catalyst layer is also usually impregnated with phosphoric acid.

従来この触媒層への含浸は100重量%近くの濃リン酸
液を第5図のように触媒層に直接接触させたり、あるい
は第6図に示すように燃料極触媒層2、マトリックス1
、酸化剤極触媒層3を組み合わせた後、マトリックスを
介して外部より含浸する方法などがある。いずれの場合
もリン酸温度は約100°C〜180°Cの範囲で使用
されることが多い。
Conventionally, this impregnation of the catalyst layer has been carried out by directly contacting the catalyst layer with a concentrated phosphoric acid solution of nearly 100% by weight as shown in FIG.
, a method of combining the oxidizing agent electrode catalyst layer 3 and then impregnating it from the outside through a matrix. In either case, the phosphoric acid temperature used is often in the range of about 100°C to 180°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら一般に担体であるカーボン粒子は、−成粒
子のままで存在することは少なく、通常複数偏集まって
二次粒子を形成し、固まりとして存在する。この固まり
の中の粒子間の間隔は約1μm以下の細孔しかない。し
たがってリン酸がこの細孔内を移動する抵抗は非常に高
く、十分に浸透することができない。このため第7図に
示すように、細孔内部の白金粒子はリン酸と接しないも
のが多数化ずることになる。この場合、有効に働く白金
粒子の数が減り、期待する電池特性が得られない。
However, carbon particles, which are generally carriers, rarely exist in the form of unformed particles, and usually a plurality of carbon particles gather unevenly to form secondary particles and exist as agglomerates. The spacing between particles in this mass is only about 1 μm or less. Therefore, the resistance of phosphoric acid to move through these pores is very high and it cannot penetrate sufficiently. Therefore, as shown in FIG. 7, a large number of platinum particles inside the pores do not come into contact with phosphoric acid. In this case, the number of platinum particles that work effectively decreases, and the expected battery characteristics cannot be obtained.

これを防止するためリン酸の温度を200°C以上に上
げてリン酸の粘度を下げ、前記細孔内へのリンの浸透を
促進することが考えられるが、この方法では白金粒子の
凝集を促進してその比表面積を小さくするため、電池特
性の劣化を起こす可能性がきわめて大きく実用上問題が
ある。
In order to prevent this, it is possible to raise the temperature of phosphoric acid to 200°C or higher to lower the viscosity of phosphoric acid and promote the penetration of phosphorus into the pores, but this method prevents the aggregation of platinum particles. Since the specific surface area of the battery is reduced, there is an extremely large possibility that the battery characteristics will deteriorate, which is a practical problem.

本発明は上記の点に鑑みてなされ、その目的は白金粒子
の凝集を起こさずに、カーボン粒子間の細孔にリン酸を
含浸し、触媒層中の有効に働く白金粒子の数を増加させ
ることにより、電池の性能と寿命を向上させる方法を提
供することにある。
The present invention has been made in view of the above points, and its purpose is to impregnate pores between carbon particles with phosphoric acid without causing agglomeration of platinum particles, thereby increasing the number of platinum particles that work effectively in a catalyst layer. The purpose of the present invention is to provide a method for improving battery performance and service life.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、この発明によれば主として白金粒子と、
この白金粒子を担持するカーボン粒子およびテフロン粒
子とより構成される触媒層にリン酸を含浸させてなるリ
ン酸型燃料電池の製造方法において、触媒層に対して五
酸化リンの水に対する重量比が1以下のリン酸7aを浸
透させ、次いで五酸化リンの水に対する重量比が2以上
のリン酸7bを浸透させることにより達成される。
According to the present invention, the above object is achieved mainly by using platinum particles,
In a method for manufacturing a phosphoric acid fuel cell in which a catalyst layer composed of carbon particles and Teflon particles supporting platinum particles is impregnated with phosphoric acid, the weight ratio of phosphorus pentoxide to water in the catalyst layer is This is achieved by impregnating phosphoric acid 7a with a weight ratio of phosphorus pentoxide to water of 1 or less, and then phosphoric acid 7b with a weight ratio of phosphorus pentoxide to water of 2 or more.

〔作 用〕[For production]

第8図はリン酸(H,PO,)濃度と粘度の関係を示し
たものである。第8図よりリン酸の濃度は、例えば14
0°Cでは100重量%の場合7.5cPであるのに対
し、50重量%では0.9cPと非常に小さいことが示
される。したがって低濃度のリン酸水溶液で含浸すると
カーボン粒子間の細孔内部へも容易に浸透する。ただし
含浸されたリン酸は、低い濃度のままでは、通常運転状
態の温度が180℃〜200’Cとなるため、水分が蒸
発し細孔内のリン酸の体積の収縮が起こる。この結果細
孔内部の白金粒子のうち、リン酸にふれているものの数
が再び減少する。これを避けるため運転開始前に100
重量%近くのリン酸により、細孔内部の希薄リン酸との
置換を行う、この場合細孔内部にすでに液体が存在する
ため、濃度が高く粘度の大きいリン酸も容易に細孔内部
へ浸透させることが可能である。
FIG. 8 shows the relationship between phosphoric acid (H, PO,) concentration and viscosity. From Figure 8, the concentration of phosphoric acid is, for example, 14
At 0°C, it is 7.5 cP at 100% by weight, whereas it is very small at 0.9 cP at 50% by weight. Therefore, when impregnated with a low concentration phosphoric acid aqueous solution, it easily penetrates into the pores between carbon particles. However, if the impregnated phosphoric acid remains at a low concentration, the temperature under normal operating conditions will be 180° C. to 200° C., so water evaporates and the volume of the phosphoric acid in the pores contracts. As a result, the number of platinum particles inside the pores that are in contact with phosphoric acid decreases again. To avoid this, 100%
The dilute phosphoric acid inside the pores is replaced by nearly % by weight phosphoric acid. In this case, since liquid already exists inside the pores, the highly concentrated and highly viscous phosphoric acid easily penetrates into the pores. It is possible to do so.

〔実施例〕〔Example〕

第1図に本発明の実施例を示す。酸化剤極触媒層3をふ
ん囲気120’Cの状態に保ち、この触媒層に50重量
%リン酸水溶液7aを滴下する0滴下は前記リン酸液7
aが前記触媒N3を全面覆うまで継続する0滴下が終了
した後はこのまま数時間保持し浸透させる。この後ふん
囲気を120℃〜150℃の状態に保ち、前記触媒層3
に100重量%リン酸液7bを滴下する0滴下が終了し
た後は、この状態のまま数時間保持し、予め浸透した濃
度の低いリン酸液との1換を行わせる。第2図は本発明
の実施例の方法による含浸を行った場合8と、従来の方
法で100重量%リン酸のみで含浸を行った場合9のそ
れぞれの酸化剤極のハーフセル特性の比較を行った例を
示す。この例では電流密度200a+^/dでは本発明
の方が約20mv(2,5%)の特性向上が見られる。
FIG. 1 shows an embodiment of the present invention. The oxidizer electrode catalyst layer 3 is maintained in an ambient atmosphere of 120'C, and a 50% by weight phosphoric acid aqueous solution 7a is dropped onto this catalyst layer.
After 0 drops of a continue until the catalyst N3 is completely covered, it is kept as it is for several hours to allow it to penetrate. After that, the atmosphere was kept at 120°C to 150°C, and the catalyst layer 3
After 0 drops of 100% by weight phosphoric acid solution 7b is completed, this state is maintained for several hours to replace the phosphoric acid solution with a low concentration that has penetrated in advance. Figure 2 shows a comparison of the half-cell characteristics of the oxidizer electrode in case 8 where impregnation was carried out using the method of the embodiment of the present invention and case 9 where impregnation was carried out using only 100% phosphoric acid using the conventional method. Here is an example. In this example, at a current density of 200a+^/d, the characteristics of the present invention are improved by about 20mV (2.5%).

この場合温度190°C9酸化剤として純酸素が用いら
れた。
In this case pure oxygen was used as the oxidizing agent at a temperature of 190°C.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、比較的容易な作業方法により、触媒層
の担体粒子の固まりの細孔内部へ充分にリン酸を含浸で
きるため担体粒子に付着している白金粒子を電池反応に
充分利用でき、電池の出力特性を向上することができる
According to the present invention, phosphoric acid can be sufficiently impregnated into the pores of the mass of carrier particles of the catalyst layer by a relatively easy working method, so that the platinum particles attached to the carrier particles can be fully utilized for the battery reaction. , the output characteristics of the battery can be improved.

また白金粒子の凝集が避けられるため、電池特性の劣化
防止が可能である。
Furthermore, since aggregation of platinum particles is avoided, deterioration of battery characteristics can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る製造方法を示す工程図
、第2図は本発明に係る製造方法と従来の方法で製造し
たハーフセルの特性を示す線図、第3図は電極部の模式
概念断面図、第4図は触媒層内粒子の微視的概念図、第
5図および第6図は従来のリン酸含浸方法を示す説明図
、第7図は従来の触媒層のリン酸含浸状態を示す微視的
概念図である。第8図はリン酸濃度と粘度の関係を示す
線図である。 1:マトリックス、2:燃料極触媒層、3:酸化剤極触
媒層、4:白金粒子、5:担体、6:テフロン粒子、7
:リン酸液、7a:50重量%リン酸第3図 第4図 70  資量メリ刃酸 第1図 第2図 71ノU愛滑 第5図 第6図 第7図
FIG. 1 is a process diagram showing the manufacturing method according to the embodiment of the present invention, FIG. 2 is a diagram showing the characteristics of half cells manufactured by the manufacturing method according to the invention and the conventional method, and FIG. Schematic conceptual sectional view, Figure 4 is a microscopic conceptual diagram of particles in the catalyst layer, Figures 5 and 6 are explanatory diagrams showing the conventional phosphoric acid impregnation method, Figure 7 is the conventional phosphoric acid impregnation method of the catalyst layer. FIG. 3 is a microscopic conceptual diagram showing an impregnated state. FIG. 8 is a diagram showing the relationship between phosphoric acid concentration and viscosity. 1: Matrix, 2: Fuel electrode catalyst layer, 3: Oxidizer electrode catalyst layer, 4: Platinum particles, 5: Support, 6: Teflon particles, 7
: Phosphoric acid solution, 7a: 50% by weight phosphoric acid Fig. 3 Fig. 4 Fig. 70 Amount of melichoic acid Fig. 1 Fig. 2 Fig. 71 No. 5 Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims]  主として白金粒子とこの白金粒子を担持するカーボン
粒子およびテフロン粒子とより構成される触媒層にリン
酸を含浸させてなるリン酸型燃料電池の製造方法におい
て、触媒層に対して五酸化リンの水に対する重量比が1
以下のリン酸を浸透させ、次いで五酸化リンの水に対す
る重量比が2以上のリン酸を浸透させることを特徴とす
るリン酸型燃料電池の製造方法。
In a method for manufacturing a phosphoric acid fuel cell in which a catalyst layer mainly composed of platinum particles, carbon particles supporting the platinum particles, and Teflon particles is impregnated with phosphoric acid, water of phosphorus pentoxide is added to the catalyst layer. The weight ratio to
A method for manufacturing a phosphoric acid fuel cell, which comprises permeating the following phosphoric acid, and then permeating phosphoric acid having a weight ratio of phosphorus pentoxide to water of 2 or more.
JP63250147A 1988-10-04 1988-10-04 Manufacture of phosphoric acid fuel cell Pending JPH0298054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250147A JPH0298054A (en) 1988-10-04 1988-10-04 Manufacture of phosphoric acid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250147A JPH0298054A (en) 1988-10-04 1988-10-04 Manufacture of phosphoric acid fuel cell

Publications (1)

Publication Number Publication Date
JPH0298054A true JPH0298054A (en) 1990-04-10

Family

ID=17203516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250147A Pending JPH0298054A (en) 1988-10-04 1988-10-04 Manufacture of phosphoric acid fuel cell

Country Status (1)

Country Link
JP (1) JPH0298054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112149A1 (en) * 2012-01-26 2013-08-01 Utc Power Corporation Electrolyte generation within a fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112149A1 (en) * 2012-01-26 2013-08-01 Utc Power Corporation Electrolyte generation within a fuel cell
US9748592B2 (en) 2012-01-26 2017-08-29 Doosan Fuel Cell America, Inc. Electrolyte generation within a fuel cell

Similar Documents

Publication Publication Date Title
JP5680770B2 (en) Unitized electrode assembly with high equivalent ionomer
CA2241813A1 (en) Co tolerant fuel cell electrode
WO2009139747A1 (en) A stabilized platinum catalyst
JPWO2009091047A1 (en) Catalyst, method for producing the same, and use thereof
CA1197555A (en) Electrochemical power generator
US3979227A (en) Method for catalyzing a fuel cell electrode and an electrode so produced
CN101124688A (en) Electrode catalyst for fuel cell and fuel cell
JPH10334922A (en) Solid high polymer fuel cell and its manufacture
JPH0298054A (en) Manufacture of phosphoric acid fuel cell
EP2287956A1 (en) Fuel cell, method for production of fuel cell, electronic device, enzyme-immobilized electrode, biosensor, bioreactor, energy conversion element, and enzymatic reaction-utilizing apparatus
CN210516886U (en) Low Pt loading membrane electrode
KR20210002017A (en) Catalyst for Fuel Cell, Method for Manufacturing The Same, and Membrane Electrode Assembly Comprising The Same
JPS60133662A (en) Method for manufacturing gas diffusion electrode of fuel cell
JPS63299057A (en) Manufacture of fuel cell electrode
JP3199182B2 (en) Polymer solid oxide fuel cell
CA1045677A (en) Method for catalyzing a fuel cell electrode and an electrode so produced
JPH09259893A (en) Electrode for high polymer electrolyte fuel cell, manufacture thereof, and operation method for fuel cell having same electrode
KR20220132348A (en) Fluoride modified carbon nitride foam cathode materials and preparation method therefor, and electrochemical cell including same
JPS60133660A (en) Manufacture of electrode substrate of fuel cell
JPH0766810B2 (en) Fuel cell
JPH02129859A (en) Phosphoric acid impregnation method of phosphoric acid fuel cell
JPS59117075A (en) Manufacture of phosphoric-acid holding matrix
JPH03297060A (en) Electrode catalyst layer for fuel cell
JPH01315954A (en) Fuel cell
JPH04363868A (en) Fuel cell