JPH0297863A - Refrigerant flow divider - Google Patents

Refrigerant flow divider

Info

Publication number
JPH0297863A
JPH0297863A JP63248228A JP24822888A JPH0297863A JP H0297863 A JPH0297863 A JP H0297863A JP 63248228 A JP63248228 A JP 63248228A JP 24822888 A JP24822888 A JP 24822888A JP H0297863 A JPH0297863 A JP H0297863A
Authority
JP
Japan
Prior art keywords
flowing
flow
refrigerant
pipe
flow divider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63248228A
Other languages
Japanese (ja)
Inventor
Aritaka Yamada
有孝 山田
Shinichi Ide
井手 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP63248228A priority Critical patent/JPH0297863A/en
Publication of JPH0297863A publication Critical patent/JPH0297863A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a uniform mixed condition of gaseous and liquid phases of refrigerant and enable a uniform dividing flow to be attained by a method wherein a flowing-in pipe comprised of a bundle of small-diameter pipes collected in a helical form is applied at a flowing-in port of a flow divider. CONSTITUTION:As refrigerant B flowing under a freezing cycle is divided into a gaseous phase B1 and a liquid phase B2 and flow into a flowing-in pipe 17, section surface of a plurality of small diameter pipes 16 constituting this flowing-in pipe may act as flow-regulating grids so as to divide the liquid phase B2 having non-uniform size into small drips. The divided liquid phase and gaseous phase may get a circulating momentum through flow passages of the small diameter pipes 16 bundled in a helical form and then flows out from the flowing-out port 15 into the interior portions 18 and 19 of the flow divider. Since a flowing-out port of each of the small diameter pipes 16 is directed in a different direction with respect to an axis of a flowing-in pipe 17, the flowed-out liquid phase B2 and the gaseous phase B1 flow out in a different direction, circulated and agitated within the barrel and then the gaseous phase and liquid phase are mixed to each other and made uniform. Therefore, it is possible to make a uniform divided flow of the refrigerant B for each of the flowing-out pipe 22 and a refrigerant pipe 23.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調機器や冷凍機器等の冷凍サイクルにおいて
、冷媒を均等に分流するための冷媒分流器に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigerant flow divider for uniformly dividing refrigerant in a refrigeration cycle of an air conditioner, a refrigeration equipment, or the like.

従来の技術 近年、冷凍システムのマルチ化、及び熱交換器の伝熱管
細径化に伴う複数回路化等に対応するために冷媒分流器
が多様化されてきており、その重要度が増している。
Conventional technology In recent years, refrigerant flow dividers have been diversified to cope with the multiplication of refrigeration systems and the creation of multiple circuits as heat exchanger tubes become smaller in diameter, and their importance is increasing. .

前記冷媒分流器の中でも、コンパクトで低コストでしか
も制作・取り付けが容易であるということから銅製成形
品が多用されている。
Among the refrigerant flow dividers, copper molded products are often used because they are compact, low cost, and easy to manufacture and install.

以下、図面を参照しながら上述した従来の銅製分流、器
について説明を行う。
Hereinafter, the above-mentioned conventional copper diverter and vessel will be explained with reference to the drawings.

第4図から第5図までは従来の銅製分流器の形状を示し
、第6図は銅製分流器の熱交換器への取り付は状態を示
し、第7図は熱交換器を冷凍サイクル運転した際の銅製
の分流器内部の冷媒状態を示す。第4図から第7図にお
いて、1は銅製の分流器で、流入口2と他端に流出口3
を備えた流入管4とそれに続く円錐側5および円筒胴6
、さらに流入ロアと他端に流出口8を備えた複数の流出
管9とから構成されている。10は冷媒の分岐部である
Figures 4 to 5 show the shape of a conventional copper flow divider, Figure 6 shows how the copper flow divider is attached to a heat exchanger, and Figure 7 shows the heat exchanger being operated in a refrigeration cycle. This figure shows the state of the refrigerant inside the copper flow divider. In Figures 4 to 7, 1 is a copper flow divider, with an inlet 2 and an outlet 3 at the other end.
an inflow pipe 4 with a conical side 5 and a cylindrical body 6
, further comprising an inflow lower and a plurality of outflow pipes 9 each having an outflow port 8 at the other end. 10 is a refrigerant branch.

又、11は冷媒管12によって冷媒回路を構成している
熱交換器で、分流器1が複数の冷媒回路を形成するため
に熱交換器11のサイドに取り付けられている。
Reference numeral 11 denotes a heat exchanger that constitutes a refrigerant circuit using refrigerant pipes 12, and a flow divider 1 is attached to the side of the heat exchanger 11 to form a plurality of refrigerant circuits.

以上のように構成された銅製分流器について、以下第6
図から第7図を用いてその動作を説明する。
Regarding the copper shunt configured as above, the following is the sixth section.
The operation will be explained with reference to FIGS.

冷凍サイクルの閉回路を流れる冷媒Aは熱交換器11に
流入するとき、その上流にある分流器1へ流入し分流さ
れ冷媒管12で形成される複数の冷媒回路に流される。
When the refrigerant A flowing through the closed circuit of the refrigeration cycle flows into the heat exchanger 11 , it flows into the flow divider 1 located upstream of the refrigerant A, where it is divided and sent to a plurality of refrigerant circuits formed by refrigerant pipes 12 .

分流器1において気相A1と液相A2との二相流となっ
て流入口2から流入した冷媒Aは、流入管4を経た後円
雄側5、円筒胴6を通過し分岐部10で複数の流出管9
a、9bへ分流され、それぞれ流出口8 a s 8 
bを経て冷媒管12a、12bへ流出していくこととな
る。
In the flow divider 1, the refrigerant A becomes a two-phase flow of a gas phase A1 and a liquid phase A2, and flows in from the inlet 2. After passing through the inlet pipe 4, the refrigerant A passes through the cylindrical side 5 and the cylindrical body 6, and enters the branch part 10. Multiple outflow pipes 9
The flow is divided into a and 9b, and the flow is divided into outlet ports 8a and 9b, respectively.
The refrigerant flows out to the refrigerant pipes 12a and 12b through the refrigerant pipes 12a and 12b.

発明が解決しようとする課題 しかしながら上記のような構成では、冷媒Aは分流器1
の流入管4内を流れるときにはその断面において気液割
合が不均一な状態て気液分離しており、この状態は円錐
側59円筒胴6を通過する間も続く。そのため峡部10
において流出管9a、9bさらにそれに続く冷媒管12
a、12bへの冷媒A重量の均等な分流ができないとい
う課題を有していた。
Problems to be Solved by the Invention However, in the above configuration, the refrigerant A flows through the flow divider 1.
When flowing through the inflow pipe 4, the gas-liquid ratio is non-uniform in its cross section and the gas-liquid is separated, and this state continues even while passing through the conical side 59 and the cylindrical body 6. Therefore, the isthmus 10
, the outflow pipes 9a, 9b and the refrigerant pipe 12 following them.
There was a problem in that the weight of refrigerant A could not be evenly distributed to a and 12b.

本発明は上記課題に鑑み、冷媒の均等な分流が行なえる
分流器を提供するものである。
In view of the above problems, the present invention provides a flow divider that can evenly divide the flow of refrigerant.

課題を解決するための手段 上記課題を解決するために本発明の分流器は、分流器の
流入口に螺旋状に束ねられた小径管束からなる流入管を
用いるという構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the flow divider of the present invention has a configuration in which an inflow pipe consisting of a bundle of small-diameter tubes bundled in a spiral shape is used at the inflow port of the flow divider.

作用 本発明は上記した構成によって、分流器に流入する前の
導管内を流れる不均一に気液分離した冷媒の流れを流入
管を構成する小径管束入口部での整流効果により液滴を
細分化し又、流入管流出端において螺旋状に束ねられた
小径管の胴肉への異方向吹き出しによる旋回・混合効果
によって分流器の胴肉での気液二相流の均質化を促進さ
せ、各冷媒管への均等分流を行なうものである。
According to the above-described configuration, the present invention divides the non-uniformly gas-liquid refrigerant flow in the conduit before flowing into the flow divider into small droplets by the rectification effect at the inlet of the small-diameter tube bundle constituting the inflow tube. In addition, the swirling and mixing effect caused by the blowing in different directions to the body of the small-diameter pipes bundled in a spiral at the outlet end of the inflow pipe promotes homogenization of the gas-liquid two-phase flow in the body of the flow divider, and each refrigerant is It divides the flow evenly into the pipes.

実施例 以下本発明の実施例の分流器について図面を参照しなが
ら説明する。
EMBODIMENTS Below, flow dividers according to embodiments of the present invention will be described with reference to the drawings.

第1図から第2図は本発明の実施例における分流器の形
状を示すもので、第3図は熱交換器を冷凍サイクル運転
した際の分流器内部の冷媒状態を示す。第1図から第3
図において、13は分流器で、流入口14と他端に流出
口15を備え小径管16を螺旋状に束ねた流入管17と
それに続く円錐側18および円筒胴19、さらに流入口
20と他端に流出口21を備えた複数の流出管22とか
ら構成されている。23は冷媒管で、従来例と同じもの
であり、流出口21に接続されている。
1 to 2 show the shape of a flow divider in an embodiment of the present invention, and FIG. 3 shows the state of refrigerant inside the flow divider when the heat exchanger is operated in a refrigeration cycle. Figures 1 to 3
In the figure, reference numeral 13 denotes a flow divider, which has an inlet 14 and an outlet 15 at the other end, an inlet pipe 17 which is a spiral bundle of small diameter pipes 16, a conical side 18 and a cylindrical body 19, and an inlet 20 and other parts. It is composed of a plurality of outflow pipes 22 each having an outflow port 21 at the end. Reference numeral 23 denotes a refrigerant pipe, which is the same as in the conventional example, and is connected to the outlet 21.

以上のように構成された分流器について、以下第3図を
用いてその動作について説明する。
The operation of the flow divider configured as described above will be explained below using FIG. 3.

冷凍サイクルの閉回路を流れる冷媒Bが気相B1と液相
B2との二相流となって流入口14から流入管17に流
入する。このとき流入口14の断面において、流入管1
7を構成する複数の小径管16の断面が整流格子の役割
を果たし、不均一な大きさの液相B2を小滴に分解する
。この小滴に分解された液相および気相は、流入管17
を通過する間、螺旋状に束ねられた小径管16の流路に
より旋回運動量を得て、流出口15から分流器胴内部1
8.19に流出される。小径管16は螺旋状に束ねられ
ているため、流入管流出口15においてそれぞれの小径
管流出口は流入管17の中心軸に対し異方向を向いて形
成されている。流出された小滴の液相B2と気相B1は
、流入管内で得た運動量と中心軸に対し異方向に流出さ
せられることにより、胴肉で旋回・攪拌・混合され、冷
媒Bの気液二相流の混合状態は均一化される。このとき
冷媒Bの気液混合状態は均一化されているため均等に分
流されることとなる。均等に分流された冷媒Bはそれぞ
れの流出管22の流出口21から冷媒管23へ流出して
いくこととなる。
Refrigerant B flowing through the closed circuit of the refrigeration cycle becomes a two-phase flow of gas phase B1 and liquid phase B2, and flows into the inflow pipe 17 from the inlet port 14. At this time, in the cross section of the inlet 14, the inlet pipe 1
The cross-sections of the plurality of small diameter tubes 16 constituting the tube 7 serve as a rectifying grid and break up the non-uniformly sized liquid phase B2 into droplets. The liquid phase and gas phase decomposed into droplets are transferred to the inlet pipe 17
While passing through the flow path of the small diameter pipes 16 bundled in a spiral shape, swirling momentum is obtained from the flow outlet 15 to the interior 1 of the flow divider body.
It will be leaked on 8.19. Since the small-diameter pipes 16 are bundled in a spiral, the respective small-diameter pipe outlets in the inflow pipe outlet 15 are formed facing in different directions with respect to the central axis of the inflow pipe 17. The liquid phase B2 and the gas phase B1 of the outflowing droplets are swirled, stirred, and mixed by the body meat due to the momentum obtained in the inflow pipe and flowing out in different directions with respect to the central axis, and the gas and liquid phases of the refrigerant B are The mixing state of the two-phase flow is homogenized. At this time, since the gas-liquid mixture state of the refrigerant B is uniform, the refrigerant B is evenly divided. The evenly divided refrigerant B flows out from the outlet 21 of each outflow pipe 22 to the refrigerant pipe 23.

以上のように本実施例によれば、螺旋状に束ねられた多
数の小径管16からなる流入管17を用いることにより
分流器13に流入した冷媒Bの気液二相流の混合状態を
均一にすることが出来、各流出管21およびそれの続く
冷媒管23への冷媒の分流を均等に近づけることができ
る。
As described above, according to this embodiment, by using the inflow pipe 17 consisting of a large number of small-diameter pipes 16 that are spirally bundled, the mixed state of the gas-liquid two-phase flow of the refrigerant B that has flowed into the flow divider 13 is made uniform. This allows the refrigerant to be equally divided into each outflow pipe 21 and the refrigerant pipe 23 that follows it.

発明の効果 以上のように本発明は、多数の小径管を螺旋状に束ねた
流入管を備えることにより、冷媒の気液二相流の混合状
態を均一にし、冷媒の均等分流を行なうことができる。
Effects of the Invention As described above, the present invention makes it possible to uniformly mix the gas-liquid two-phase flow of refrigerant and to equally divide the refrigerant by providing an inflow pipe in which a large number of small-diameter pipes are bundled in a spiral shape. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における分流器の概略形
状を示す斜視図、第2図は第1図の断面図、第3図は第
1図の分流器の使用状態における冷媒の流れを示す断面
図、第4図は従来の分流器の概略形状を示す斜視図、第
5図は第4図の断面図、第6図は第4図の分流器の熱交
換器への取り付は状態を示す斜視図、第7図は第4図の
分流器の使用状態における冷媒の流れを示す断面図であ
る。 13・・・分流器、16・・・小径管、17・・・流入
管、22・・・流出管。 代理人の氏名 弁理士 粟野重孝 はか1名13−分弓
瓦器 第 図 第 図 第 図 第 図 第 図 A ◇  ◇ く)
FIG. 1 is a perspective view showing the general shape of a flow divider in the first embodiment of the present invention, FIG. 2 is a cross-sectional view of FIG. 1, and FIG. 4 is a perspective view showing the general shape of a conventional flow divider, Figure 5 is a sectional view of Figure 4, and Figure 6 shows how the flow divider shown in Figure 4 is installed in a heat exchanger. The attached figure is a perspective view showing the state, and FIG. 7 is a sectional view showing the flow of refrigerant when the flow divider of FIG. 4 is in use. 13... Flow divider, 16... Small diameter pipe, 17... Inflow pipe, 22... Outflow pipe. Name of agent: Patent attorney Shigetaka Awano (1 person)

Claims (1)

【特許請求の範囲】[Claims]  螺旋状に編成された小径管束からなる流入管を備えた
ことを特徴とする冷媒分流器。
A refrigerant flow divider characterized by comprising an inflow pipe made of a small diameter pipe bundle arranged in a spiral shape.
JP63248228A 1988-09-30 1988-09-30 Refrigerant flow divider Pending JPH0297863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248228A JPH0297863A (en) 1988-09-30 1988-09-30 Refrigerant flow divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248228A JPH0297863A (en) 1988-09-30 1988-09-30 Refrigerant flow divider

Publications (1)

Publication Number Publication Date
JPH0297863A true JPH0297863A (en) 1990-04-10

Family

ID=17175076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248228A Pending JPH0297863A (en) 1988-09-30 1988-09-30 Refrigerant flow divider

Country Status (1)

Country Link
JP (1) JPH0297863A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628525U (en) * 1992-09-02 1994-04-15 三井造船株式会社 Slurry piping structure in ice slurry storage device
JP2007300759A (en) * 2006-05-02 2007-11-15 Nippon Thompson Co Ltd Sliding device with built-in movable-magnet linear motor
CN102084136A (en) * 2008-05-06 2011-06-01 氟石科技公司 Methods and apparatus for splitting multi-phase flow
CN112984876A (en) * 2021-02-08 2021-06-18 青岛海尔空调器有限总公司 Internal size determination method of air conditioner liquid separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628525U (en) * 1992-09-02 1994-04-15 三井造船株式会社 Slurry piping structure in ice slurry storage device
JP2007300759A (en) * 2006-05-02 2007-11-15 Nippon Thompson Co Ltd Sliding device with built-in movable-magnet linear motor
CN102084136A (en) * 2008-05-06 2011-06-01 氟石科技公司 Methods and apparatus for splitting multi-phase flow
JP2011522173A (en) * 2008-05-06 2011-07-28 フルオー・テクノロジーズ・コーポレイシヨン Method and apparatus for splitting a multiphase flow
EP2300720A4 (en) * 2008-05-06 2015-07-15 Fluor Tech Corp Methods and apparatus for splitting multi-phase flow
CN112984876A (en) * 2021-02-08 2021-06-18 青岛海尔空调器有限总公司 Internal size determination method of air conditioner liquid separator

Similar Documents

Publication Publication Date Title
US4643584A (en) Motionless mixer
EP0132620B1 (en) Evaporator
EP0192212B1 (en) Spiral heat exchanger
US4050676A (en) Mixing device and element therefor
AU2016102137B4 (en) System, device and method for filling at least one container
WO2015171997A1 (en) Static mixer
MXPA01006231A (en) Mixer for mixing at least two flows of gas or other newtonian liquids.
US3207484A (en) Fluid mixing device
US8251571B2 (en) Inline mixer structure
JPH0297863A (en) Refrigerant flow divider
US4909635A (en) Static device for homogenizing a flowing fluid
CN205784061U (en) A kind of gas-liquid two-phase allotter, parallel-flow heat exchanger and air-conditioner
JP2000081256A (en) Distributor and heat-exchanger provided with the distributor
CN106322849B (en) Heat exchanger structure
JPH11325656A (en) Header flow divider
CN210399595U (en) Air conditioner of shunt and applied this shunt
EP0269923A2 (en) Air outlet
CN209877422U (en) Liquid separator of air conditioner
CN208887182U (en) Equal liquid device and current divider
JPH0297860A (en) Refrigerant flow divider
JPH01123963A (en) Refrigerant diverter
DE3226420A1 (en) Device for homogeneously mixing gases, liquids and solids in single-phase or multi-phase systems
JPH04148167A (en) Refrigerant flow divider and refrigerant flow dividing device
JPH02166366A (en) Refrigerant flow diverter
JPH0379974A (en) Refrigerant distributor