JPH0297663A - Production of steel sheet plated with zn-mg by vapor deposition - Google Patents

Production of steel sheet plated with zn-mg by vapor deposition

Info

Publication number
JPH0297663A
JPH0297663A JP24925888A JP24925888A JPH0297663A JP H0297663 A JPH0297663 A JP H0297663A JP 24925888 A JP24925888 A JP 24925888A JP 24925888 A JP24925888 A JP 24925888A JP H0297663 A JPH0297663 A JP H0297663A
Authority
JP
Japan
Prior art keywords
vapor
alloy
steel sheet
composition
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24925888A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
佐藤 廣士
Masao Toyama
雅雄 外山
Hidetoshi Nishimoto
西本 英敏
Tsugumoto Ikeda
池田 貢基
Jiyunji Kawafuku
川福 純司
Shoji Miyake
昭二 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24925888A priority Critical patent/JPH0297663A/en
Priority to US07/293,419 priority patent/US5002837A/en
Publication of JPH0297663A publication Critical patent/JPH0297663A/en
Priority to US07/601,673 priority patent/US5135817A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a steel sheet plated with a Zn-Mg alloy by vapor deposition and having superior workability by heating a Zn-Mg alloy bath having a required compsn. and by depositing generated Zn-Mg mixed vapor on a travelling steel sheet in a uniformly mixed state satisfying a prescribed composition ratio. CONSTITUTION:A steel sheet 3 is plated with a Zn-Mg alloy by vapor deposition in a vapor deposition chamber 1 by exposure to Zn-Mg mixed vapor generated from an evaporation vessel 2. In this case, a Zn-Mg alloy bath whose compsn. corresponds to the desired compsn. of a formed plating layer is prepd. and heated in the vessel 2. The Zn-Mg mixed vapor is deposited on the travelling steel sheet 3 in a uniformly mixed state satisfying a prescribed composition ratio and a Zn-Mg alloy plated steel sheet having superior workability can be provided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、めっき層における合金組成比をばらつきのな
い状態で均一に形成することのできるZn−=Mg合金
蒸着めっき鋼板の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a Zn-=Mg alloy vapor-deposited steel sheet that can form a uniform alloy composition ratio in a plating layer without variation. It is.

[従来の技術] 真空蒸着法によってZn−Mg系合金めっき鋼板を連続
的に製造する方法としては、第7図に示す様に、蒸着室
1内に蒸発槽2を設け、この蒸発4I!12内にZn、
Mgを混合投入するか、或は予め合金化したZ−n、M
gを投入し、これらの金属を真空下で加熱蒸発させて走
行鋼板3上に蒸着させる方法が採用されていた。ところ
がこの方法では各金属の蒸気圧による一律的な規制を受
けるので金属蒸気組成の調整を行なうことは実際問題と
して不可能であった。
[Prior Art] As a method for continuously producing Zn-Mg alloy coated steel sheets by vacuum evaporation, as shown in FIG. Zn within 12,
Z-n, M mixed with Mg or pre-alloyed
A method was adopted in which these metals were heated and evaporated under vacuum to be deposited on the running steel plate 3. However, this method is subject to uniform regulation based on the vapor pressure of each metal, so it is practically impossible to adjust the metal vapor composition.

そこで第・8図に示す様にZnとMgを別々に投入した
蒸発槽2a、2bを蒸着室1内に設け、各蒸発槽の加熱
条件を独立して制御することによって所望組成比の混合
金属蒸気を形成し、これを鋼板3に蒸着させるという方
法を採用していた。
Therefore, as shown in Fig. 8, evaporation tanks 2a and 2b into which Zn and Mg are charged separately are provided in the evaporation chamber 1, and the heating conditions of each evaporation tank are independently controlled to produce a mixed metal with a desired composition ratio. A method of forming steam and depositing it on the steel plate 3 was adopted.

ところが本発明者等の研究したところ゛によれば後者の
方法で得られるZn−Mg系合金蒸着めっき層は層方向
に見たとき均一な成分組成を形成していないことが分か
った0例えばZn−10%(重量%の意味、以下同じ)
Mg合金蒸着めっき鋼板を製造するに当たって今仮に、
第9図(a)[または(b)]に示す様に走行鋼板3の
上流側にMg[第9図(b)ではZn]を投入した蒸発
槽2aを配置し、走行鋼板3の下流側にZn(第9図(
b)ではMglを投入した蒸発槽2bを配置して真空蒸
着めっきを行うと、第9図(C)[または(d)]に示
す様な断面状態の蒸着めっき層が形成されることが分か
った。まためっき成分組成を変えて前述の様な蒸発槽配
置でZn−35%Mg合金蒸着めっき鋼板を製造した場
合、第9図(e)。
However, according to research conducted by the present inventors, it was found that the Zn-Mg alloy vapor-deposited plating layer obtained by the latter method did not have a uniform composition when viewed in the layer direction. -10% (meaning of weight %, same below)
When manufacturing Mg alloy vapor-deposited steel sheets, temporarily,
As shown in FIG. 9(a) [or (b)], an evaporation tank 2a charged with Mg (Zn in FIG. 9(b)) is arranged upstream of the running steel plate 3, and Zn (Fig. 9 (
In b), it was found that when vacuum evaporation plating is performed with the evaporation tank 2b charged with Mgl placed, a evaporation plating layer with a cross-sectional state as shown in FIG. 9(C) [or (d)] is formed. Ta. Furthermore, when a Zn-35%Mg alloy evaporated steel sheet is manufactured by changing the plating component composition and using the evaporator arrangement as described above, FIG. 9(e) shows.

(f)の様になることが分かった。It turns out that it looks like (f).

第9図(c) 、 (d) 、 (e)および(f)か
ら明らかな様に、めっき層における組成は層の厚さ方向
に変化したものとなっており、たとえば第9図(c)お
よび(d)においては純Zn層とZnz Mg層からな
っている[(C)と(d)では上下関係が逆転する]の
に対し、第9図(e)および(f)においては純Mg層
、ZnMg層、Zn2Mg層からなっている[(e)と
(f)では上下関係は前例と同じ様に逆転]。
As is clear from FIGS. 9(c), (d), (e), and (f), the composition in the plating layer changes in the thickness direction of the layer. For example, FIG. 9(c) 9 and (d) are composed of a pure Zn layer and a Znz Mg layer [the vertical relationship is reversed in (C) and (d)], whereas in FIGS. 9(e) and (f), a pure Mg layer layer, ZnMg layer, and Zn2Mg layer [in (e) and (f), the vertical relationship is reversed as in the previous example].

この様にめっき層における成分組成が層の厚さ方向に変
化している場合は後述する様にめっき鋼板における加工
性、耐食性あるいは溶接性に悪影響が現れる。しかも上
記の変化の関係は、各組成の厚み変化から分かる様に各
蒸発槽の配置間隔によっても変化するという不安定さを
見せているところでZn系合金めっき鋼板は自動車用外
板、内装板、あるいは家庭電気製品等に多く使用されて
おり、これらはプレス成形により色々な形状に加工され
る。したがって加工性に優れていることが要求されるが
、前述した様に厚さ方向に゛成分組成が変化する多層構
造を有するZn−Mg合金めっき鋼板では、めっき層内
における硬度が厚さ方向で異なることになるため成形加
工時にフレーキングなどの層間剥離現象を生じ加工性が
低下するという問題がある。
If the component composition in the plating layer changes in the thickness direction of the layer in this way, the workability, corrosion resistance, or weldability of the plated steel sheet will be adversely affected, as will be described later. Moreover, the relationship between the above changes is unstable as it changes depending on the spacing between the evaporators, as can be seen from the thickness changes of each composition. Zn-based alloy coated steel sheets are used for automobile exterior panels, interior panels, It is also widely used in household electrical appliances, etc., and these are processed into various shapes by press molding. Therefore, excellent workability is required, but as mentioned above, in Zn-Mg alloy coated steel sheets that have a multilayer structure in which the composition changes in the thickness direction, the hardness within the coating layer varies in the thickness direction. Because of this difference, there is a problem in that delamination phenomena such as flaking occur during molding and processability deteriorates.

さらに例えば第9図(e)の様に純Mg層が素地鋼板側
に存在する様な場合において、めっき層にピンホール等
があると塩素イオン等が存在する腐食環境下において、
最下層の純Mg層が優先的に腐食され、それに伴なうH
3発生のためにめっき層にふくれが生じ、遂にはめつき
層が素地鋼板から剥離するという極めて好ましくない現
象を誘発する。
Furthermore, in a case where a pure Mg layer exists on the base steel plate side as shown in FIG. 9(e), if there are pinholes in the plating layer, it will cause damage in a corrosive environment where chlorine ions, etc. are present.
The pure Mg layer at the bottom is preferentially corroded, and the accompanying H
3, the plating layer blisters and eventually peels off from the base steel sheet, which is an extremely undesirable phenomenon.

また第9図(f)における様に純Mg層が最表面側に存
在する場合は(通常これらのめっき鋼板は塗装して使用
されているが)、塗膜とめつき層の界面でMg層が活性
溶解(アノード反応)し、それに伴なってH2が発生、
(カソード反応)して塗膜ふくれ(アノードふくれ、カ
ソードふくれ)および塗膜剥離が生ずるため、塗装を施
こして使用する自動車用外板、家庭電気製品等への適用
は実用上不可能である。
In addition, when a pure Mg layer exists on the outermost surface side as shown in Figure 9(f) (usually these plated steel sheets are used after coating), the Mg layer is present at the interface between the coating film and the plating layer. Active dissolution (anodic reaction) occurs, and H2 is generated accordingly.
(cathode reaction), which causes paint film blistering (anode blistering, cathode blistering) and paint film peeling, so it is practically impossible to apply it to automobile exterior panels, home appliances, etc. that are painted. .

[発明が解決しようとする課題] 以上述べた様に、従来の真空蒸着法によってZn−Mg
系合金蒸着めりき鋼板を製造したときは、めっき層にお
ける成分組成が厚さ方向に変化し、加工時あるいは製品
化後において耐食性等の問題が生ずる。
[Problem to be solved by the invention] As stated above, Zn-Mg
When a steel plate coated with a vapor-deposited alloy is manufactured, the composition of the plating layer changes in the thickness direction, causing problems such as corrosion resistance during processing or after commercialization.

そこで本発明においては、めっき層厚さ方向にも成分組
成が均一とすることができる様なZn−Mg系合金蒸着
めっき鋼板の製造方法について検討した。
Therefore, in the present invention, a method for producing a Zn-Mg alloy vapor-deposited steel sheet was studied, which allows the composition to be uniform in the direction of the thickness of the plating layer.

[課題を解決するための手段] 上記課題を解決することのできた本発明とはZn−Mg
系合金蒸着めっき鋼板を製造するに当たり、希望する蒸
着めっき層組成に応じた浴組成からなるZn−Mg合金
浴を調製して、該混合浴を加熱し、ZnとMgの混合蒸
気を、その組成比が所定割合を満足し且つ均一に混合さ
れた状態で走行鋼板上に蒸着させること、あるいはZn
およびMgを別々の容器から所定割合で蒸発させ上昇し
てきたこれらの蒸気を走行鋼板の下面に至る迄に均一に
混合して鋼板上に蒸着させることを要旨とするものであ
る。
[Means for solving the problems] The present invention that can solve the above problems is Zn-Mg
In manufacturing a Zn-Mg alloy coated steel sheet, a Zn-Mg alloy bath having a bath composition corresponding to the desired composition of the vapor-deposited plating layer is prepared, the mixed bath is heated, and a mixed vapor of Zn and Mg is mixed with the composition according to the composition. Zn is deposited on a running steel plate in a state where the ratio satisfies a predetermined ratio and is uniformly mixed;
The gist of this method is to evaporate Mg and Mg at a predetermined ratio from separate containers, and to uniformly mix these rising vapors up to the lower surface of the running steel plate and deposit them on the steel plate.

[作用および実施例] 成分組成比がめつき層厚さ方向に均一となる様なZn−
Mg系合金蒸着めっき鋼板を得る手段について、本発明
者等は種々の検討を行なった。その結果Zn蒸気とMg
蒸気が所定割合で十分に混合された状態を安定して形成
すれば、これらが鋼板の表面に蒸着されて安定した組成
比の合金蒸着めっき層が形成されるという知見を得た。
[Operations and Examples] Zn- such that the component composition ratio is uniform in the thickness direction of the plating layer.
The present inventors conducted various studies regarding means for obtaining a Mg-based alloy vapor-deposited steel sheet. As a result, Zn vapor and Mg
It has been found that if a state in which the steam is sufficiently mixed at a predetermined ratio is stably formed, the steam is deposited on the surface of the steel plate, and an alloy vapor-deposited plating layer with a stable composition ratio is formed.

具体的には′s1図に示す様に、蒸着室1内に蒸発槽2
を設け、該蒸発[2の低面には後述する理由により原料
供給管7が連結される。そして蒸発槽2内には所定組成
比のZn−Mg合金が収納されており、均一組成の蒸気
が蒸発形成され、蒸発室1内を満たしている。この状態
で鋼板3を矢印方向に走行させれば鋼板3上には所定の
組成比でしかも厚さ方向にも一定組成のZn−Mg合金
が蒸着する。尚第1図において8は排気管である。
Specifically, as shown in Figure 's1, an evaporation tank 2 is installed in the evaporation chamber 1.
is provided, and a raw material supply pipe 7 is connected to the lower side of the evaporator 2 for reasons described later. A Zn--Mg alloy having a predetermined composition ratio is stored in the evaporation tank 2, and vapor having a uniform composition is evaporated to fill the evaporation chamber 1. If the steel plate 3 is run in the direction of the arrow in this state, a Zn-Mg alloy having a predetermined composition ratio and a constant composition in the thickness direction is deposited on the steel plate 3. In FIG. 1, 8 is an exhaust pipe.

この際蒸発槽2内のZn−Mg合金浴の組成が、そのま
ま鋼板上めっき層組成と一致するわけではなく、本発明
者等が検討した結果によれば、Zn−Mg合金浴組成と
蒸着め)き層組成の間には第2図No、1.2.3に例
示する様な関係が得られた。即ち、Zn−Mg合金浴組
成と得られるめっき層構造との関係が、動、1では浴組
成がZn−71%Mgであるのに対し、めっき層組成は
Zn−64%Mgとなっており、めっき層の構成はZn
Mg相とMg相との共晶状態となフており、−層構造と
なっている。また歯、2では浴組成がZn−49%Mg
であるのに対し、めっき層組成はZn−33%Mgであ
り、めっき層の構成はZnMg相よりなる一層構造とな
っている。更に陽、3では浴組成がZn−34%Mgで
あるのに対し、めっき層組成はZn−21%Mgであり
、めっき層の構成はZnz Mg相よりなる一層構造と
なっている。
At this time, the composition of the Zn-Mg alloy bath in the evaporation tank 2 does not directly match the composition of the plating layer on the steel sheet, and according to the results of the studies conducted by the present inventors, the composition of the Zn-Mg alloy bath and the evaporation layer composition are different. ) A relationship as illustrated in Figure 2, No. 1.2.3 was obtained between the layer compositions. That is, the relationship between the Zn-Mg alloy bath composition and the resulting plating layer structure is dynamic. In No. 1, the bath composition is Zn-71%Mg, whereas the plating layer composition is Zn-64%Mg. , the composition of the plating layer is Zn
It is in a eutectic state of Mg phase and Mg phase, and has a -layer structure. In addition, in tooth 2, the bath composition was Zn-49%Mg.
On the other hand, the plating layer composition is Zn-33%Mg, and the plating layer has a single layer structure consisting of a ZnMg phase. Further, in positive case No. 3, the bath composition is Zn-34%Mg, whereas the plating layer composition is Zn-21%Mg, and the plating layer has a single layer structure consisting of a ZnzMg phase.

したがって目的とする組成比のめっき層を得るためには
、Zn−Mg浴の合金組成を、目的とするめっき層組成
が得られる様な組成比に調整しておき(学習による)均
一組成の蒸気を得、鋼板上に、目的とする合金組成のめ
っき層を得る。この際Zn−Mg合金浴においてZnと
MgではZnの方が蒸気圧が高く、従ってZnの方が蒸
発しやすいので時間の経過に伴なって蒸発槽2内ではM
g濃度が高まっていき前記した様な浴組成を保つことが
できなくなる。そこで蒸着室1外で各金属(特にZn)
あるいはZn−Mg合金を溶融し送給管7により溶融原
料金属を希望する浴組成となる様に送給する 各蒸発槽への原料の供給方法は固体供給方法と溶融状態
での供給方法があるが、工業製造プロセスにおいては原
料が連続的に供給されることが好ましく、固体状態の原
料を連続的に供給するよりも溶融状態の原料を供給する
方が容易である。なぜならば、固体形状の原料(粒体、
ブロック状。
Therefore, in order to obtain a plating layer with the desired composition ratio, it is necessary to adjust the alloy composition of the Zn-Mg bath to a composition ratio that will yield the desired plating layer composition (by learning), and then use steam with a uniform composition (by learning). and obtain a plating layer with the desired alloy composition on the steel plate. At this time, in the Zn-Mg alloy bath, Zn has a higher vapor pressure than Mg, and therefore Zn evaporates more easily.
As the g concentration increases, it becomes impossible to maintain the bath composition as described above. Therefore, each metal (especially Zn) is
Alternatively, the Zn-Mg alloy is melted and the molten raw metal is fed through the feed pipe 7 so as to have the desired bath composition.There are two methods of feeding the raw material to each evaporation tank: a solid feeding method and a feeding method in a molten state. However, in industrial manufacturing processes, it is preferable that raw materials are supplied continuously, and it is easier to supply raw materials in a molten state than to continuously supply raw materials in a solid state. This is because raw materials in solid form (granules,
Block-shaped.

シート状、ワイヤ状等)を大気中から真空状態の蒸発槽
に連続的に供給しようとすれば差圧室を介して供給しな
くてはならず、蒸着装置が複雑な構造となるばかりか設
備コストも高くなる。その点溶融状態の原料を蒸発槽へ
連続的に供給する方法は前記固体状態での供給方法に比
べて容易であり、既に種々の方法が実用化されているの
で本発明方法においても溶融状態の原料を常法に従って
蒸発槽へ供給する。
In order to continuously supply materials (sheets, wires, etc.) from the atmosphere to a vacuum evaporation tank, it must be supplied through a differential pressure chamber, which not only complicates the structure of the evaporation equipment but also requires equipment. The cost will also be higher. The method of continuously supplying the raw material in the molten state to the evaporation tank is easier than the above-mentioned method of supplying the raw material in the solid state, and since various methods have already been put into practical use, the method of the present invention also has the method of continuously supplying the raw material in the molten state to the evaporation tank. The raw material is fed to the evaporation tank according to a conventional method.

純Zn、純Mgおよび各種組成のZn−Mg合金の状態
図は第6図に示す通りである。これによれば純Znの融
点は419℃、純Mgの融点は650℃、各種Zn−M
g合金の融点は340〜600℃と比較的低温であるの
でそれぞれの金属を別途設けた溶融l1l(図示せず)
で溶解し、案内管7を通じて連続的に蒸発槽へ供給する
のが作業上好ましい。ただし、Zn、Mg、Zn−Mg
合金を、大気中で加熱溶解させた場合は、酸化されやす
く、ドロスとなり、歩留まり低下の原因となるばかりで
なく、特にMgやMg含有量の多いZn−Mg合金は酸
化が激しいため、場合によっては発火し操業上安全性に
問題がある。それ故これのら原料を蒸着室外で加熱溶融
させる際は、溶融浴をN2ガス等の不活性ガスでシール
して、酸化を防止するとか、溶融浴表面を、硫黄系のフ
ラックス等で覆い浴表面を大気から遮断するといった手
段が必要である。
Phase diagrams of pure Zn, pure Mg, and Zn-Mg alloys of various compositions are shown in FIG. According to this, the melting point of pure Zn is 419°C, the melting point of pure Mg is 650°C, and various Zn-M
Since the melting point of g-alloy is relatively low at 340 to 600°C, each metal was separately prepared in a melting chamber (not shown).
It is preferable in terms of operation to melt the liquid and continuously supply it to the evaporation tank through the guide pipe 7. However, Zn, Mg, Zn-Mg
When an alloy is heated and melted in the atmosphere, it is easily oxidized and becomes dross, which not only causes a decrease in yield, but also Mg and Zn-Mg alloys with a high Mg content are oxidized violently, so in some cases can catch fire, creating operational safety problems. Therefore, when heating and melting these raw materials outside the deposition chamber, the molten bath should be sealed with an inert gas such as N2 gas to prevent oxidation, or the surface of the molten bath should be covered with sulfur-based flux, etc. Measures such as shielding the surface from the atmosphere are necessary.

又次の様にしても蒸発室内蒸気組成を所定の比率に形成
することができる。即ち第3図または第4図に示す様Z
nとMgを別々の蒸発槽2a。
Also, the vapor composition in the evaporation chamber can be adjusted to a predetermined ratio by the following method. That is, as shown in FIG. 3 or 4 Z
Separate evaporation tanks 2a for n and Mg.

2bから蒸発させ、蒸発したZnJisよびMg蒸気を
それぞれの蒸発槽に設けたダクト4a、4bを通して混
合ダクト5に導き該混合ダクト5を通過中に均一に混合
して鋼板上に蒸着する。尚第3図は蒸発槽2a、2bを
蒸着室1内に設けた場合、第4図は蒸発槽2a、2bを
蒸着室1の外に設けた場合における概略説明図である。
The evaporated ZnJis and Mg vapors are introduced into a mixing duct 5 through ducts 4a and 4b provided in each evaporation tank, and uniformly mixed while passing through the mixing duct 5, and deposited on the steel plate. 3 is a schematic diagram showing a case where the evaporation tanks 2a and 2b are provided inside the vapor deposition chamber 1, and FIG. 4 is a schematic diagram showing a case where the evaporation tanks 2a and 2b are provided outside the vapor deposition chamber 1.

前記各蒸着方法においてZnおよび/またはMg蒸気を
得るための蒸発槽の加熱に際しては、第5図に示す様に
蒸発槽2(あるいは2a。
When heating the evaporation tank to obtain Zn and/or Mg vapor in each of the above vapor deposition methods, the evaporation tank 2 (or 2a) is heated as shown in FIG.

2b)の周囲はもちろん原料浴の湯面上方にもヒーター
6を設けて加熱することが好ましい、なぜならばZnま
たはMgの蒸気は浴表面から発生するのが好ましく、そ
のためには浴の最表面が最も高温に保たれることが好ま
しいからである。もし浴底部の温度が浴表面部より高温
で局部加熱される様な場合はスプラッシュ現象が生ずる
ことがあり、蒸発量を安定に保つことが困難であると共
に、特に第1図の如<ZnおよびMgが一つの蒸発槽2
から蒸発する場合には、スプラッシュによって生じたZ
nまたはMg蒸気がそのまま鋼板上に蒸着してめっき面
の外観不良の原因となり、製品上問題となる。尚ダクト
4a、4bの加熱については後述する。
It is preferable to provide a heater 6 not only around 2b) but also above the surface of the raw material bath for heating, because it is preferable that the Zn or Mg vapor be generated from the bath surface, and for this purpose the outermost surface of the bath should be This is because it is preferable to keep it at the highest temperature. If the temperature at the bottom of the bath is higher than that at the bath surface and locally heated, a splash phenomenon may occur, making it difficult to keep the amount of evaporation stable. Evaporation tank 2 with one Mg
When evaporating from
The n or Mg vapor is directly deposited on the steel plate, causing poor appearance of the plated surface and causing problems in terms of products. The heating of the ducts 4a and 4b will be described later.

蒸発槽の加熱手段は、ニクロム線ヒーター、カンタルヒ
ーター、モリブデンヒーター、セラミックヒータ−等に
よる各種電気抵抗加熱方式や電子j!(EB)加熱方式
あるいは高周波加熱方式を用いることができるが、Zn
およびMgは真空下での平衡蒸気圧が高いので、電子線
加熱方式や高周波加熱方式を用いなくても電気抵抗加熱
方式で十分な蒸発量を得ることができ、この程度の加熱
方式でも工業的に満足できるめっき速度でZn−Mg系
合金蒸着めっき鋼板を得ることができる。
Heating means for the evaporation tank include various electrical resistance heating methods such as nichrome wire heaters, Kanthal heaters, molybdenum heaters, and ceramic heaters, as well as electronic j! (EB) Heating method or high frequency heating method can be used, but Zn
Since Mg and Mg have a high equilibrium vapor pressure under vacuum, a sufficient amount of evaporation can be obtained by electric resistance heating without using electron beam heating or high-frequency heating. A Zn-Mg alloy vapor-deposited steel sheet can be obtained at a plating rate that is satisfactory.

また加熱源のイニシャルコスト、ランニングコスト、耐
久寿命、メンテナンス、蒸着室の構造上の問題等の点か
らも電気抵抗加熱方式が好ましい。
Further, the electric resistance heating method is preferable from the viewpoint of the initial cost of the heating source, running cost, durable life, maintenance, and structural problems of the vapor deposition chamber.

また以上述べた様な真空蒸着法によって蒸着Zn−Mg
合金めっき蒸着鋼板を製造するに際しては、蒸発したZ
n及びMgの蒸気が蒸着室内壁面及び蒸気混合ダクト内
壁面等に付着し、蒸着室内を初めとする装置のメンテナ
ンスを頻繁に行なう必要が生じ、その度ごとに真空状態
を破壊し操業を停止して清掃せねばならず、問題となる
ことがあった。
In addition, Zn-Mg is deposited by the vacuum evaporation method as described above.
When manufacturing alloy plated steel sheets, evaporated Z
n and Mg vapors adhere to the walls of the deposition chamber and the inner wall of the vapor mixing duct, making it necessary to frequently perform maintenance on the equipment, including the interior of the deposition chamber, and each time the vacuum state is broken and the operation is stopped. This sometimes caused problems.

そこで本発明者らはこの問題を解決するために、ヒータ
ー6を蒸着室の周囲(図示せず)あるいはダクトの周囲
に設は蒸着室内壁面あるいはダクト壁面を加熱し、加熱
温度を変化させて上記蒸気の付着の有無を調べた。その
結果を′s1表に示す、第1表から明らかな様に、蒸発
したZnとMgの蒸気を付着させないためには、蒸着室
内壁面あるいはダクト内壁面を650を以上、好ましく
は700℃以上に加熱保持することが必要であることが
わかった。
Therefore, in order to solve this problem, the present inventors installed a heater 6 around the vapor deposition chamber (not shown) or around the duct to heat the wall surface of the vapor deposition chamber or the wall surface of the duct, and by changing the heating temperature, The presence or absence of vapor adhesion was investigated. The results are shown in Table 's1. As is clear from Table 1, in order to prevent the vapors of evaporated Zn and Mg from adhering, the temperature of the wall surface of the deposition chamber or the inner wall surface of the duct must be kept at a temperature of 650°C or higher, preferably 700°C or higher. It was found that it was necessary to maintain the temperature.

この際鋼板は、予め200〜250tに予熱された状態
で蒸着室に入り、この鋼板の板温を上昇させる最大の因
子はZn、Mgの蒸気の付着による顕然、潜熱によるも
のであり、高温保持された蒸着室からの輻射熱による板
温アップは上記因子に比べると大変小さい(このことは
計算上、経験上明らかである)。故に、蒸着室内が65
0〜700℃であフても、そこを通過する鋼板にはZn
−Mg合金が蒸着めっきされる。
At this time, the steel plate enters the vapor deposition chamber in a state that has been preheated to 200 to 250 tons. The increase in plate temperature due to radiant heat from the vapor deposition chamber is very small compared to the above factors (this is clear from calculations and experience). Therefore, the deposition chamber is 65
Even if the temperature is 0 to 700℃, the steel plate passing through it will contain Zn.
- Mg alloy is deposited and plated.

また真空蒸着における様に真空度が十分高い場合には、
ZnとMgの蒸気温度より少しでも壁面が高温ならば、
蒸気は壁に付着しない。ZnとMgの混合蒸気の温度は
約650を程度と考えられ(実際経験上600を程度)
、それ以上の温度に壁面を加熱してやればZnもMgも
付着しない、すなわち蒸着室内壁面およびダクト内壁面
を上記温度に加熱してやれば蒸着室を初めとする装置の
メンテナンスを頻繁にする必要がなくなる。
In addition, when the degree of vacuum is sufficiently high as in vacuum evaporation,
If the wall surface is even slightly hotter than the vapor temperature of Zn and Mg,
Steam does not stick to the walls. The temperature of the mixed vapor of Zn and Mg is thought to be around 650 (actually around 600 from experience).
If the wall surface is heated to a temperature higher than that, neither Zn nor Mg will adhere. In other words, if the wall surface of the vapor deposition chamber and the inner wall surface of the duct are heated to the above temperature, there will be no need for frequent maintenance of the apparatus including the vapor deposition chamber.

[発明の効果] 本発明は以上の様に構成されているので、本発明方法に
よって得られるZn−Mg系合金蒸着めっき鋼板におけ
るめっき層は厚さ方向に一定の成分組成を形成している
。したがって本発明方法によれば加工性や耐食性に優れ
たZn−Mg系合金蒸着めっき鋼板を提供することがで
きる。
[Effects of the Invention] Since the present invention is configured as described above, the plating layer in the Zn-Mg alloy vapor-deposited steel sheet obtained by the method of the present invention has a constant composition in the thickness direction. Therefore, according to the method of the present invention, it is possible to provide a Zn-Mg alloy vapor-deposited steel sheet with excellent workability and corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図および4図は本発明方法に係るZn−M
g系合金蒸着めっき鋼板を製造する方法を示す概略図、
第2図は合金浴組成と蒸着めっき層構造との関係を示す
図、第5図は浴表面加熱方法を示す図、第6図はZn−
Mg合金(Zns+O%、Mg−0%を含む)組成と融
点の関係を示す図、第7図および第8図は従来のZn−
Mg系合金蒸着めっき鋼板の製造方法を示す図、第9図
は従来法によるめっき方法と得られるめっき層の構造を
示す図である。 1・・・蒸着室     2.2a、2b・・・蒸発槽
3・・・鋼板      4a、4b−ダクト5・・・
混合ダクト 7・・・原料供給管
Figures 1, 3 and 4 show Zn-M according to the method of the present invention.
A schematic diagram showing a method for manufacturing a g-based alloy vapor-deposited steel sheet,
Figure 2 is a diagram showing the relationship between alloy bath composition and vapor deposited plating layer structure, Figure 5 is a diagram showing the bath surface heating method, and Figure 6 is a diagram showing the relationship between alloy bath composition and vapor deposited plating layer structure.
Figures 7 and 8 show the relationship between Mg alloy (containing Zns+O%, Mg-0%) composition and melting point.
FIG. 9 is a diagram showing a method for producing a Mg-based alloy vapor-deposited steel sheet, and FIG. 9 is a diagram showing a conventional plating method and the structure of the resulting plating layer. 1... Evaporation chamber 2.2a, 2b... Evaporation tank 3... Steel plate 4a, 4b-Duct 5...
Mixing duct 7...raw material supply pipe

Claims (2)

【特許請求の範囲】[Claims] (1)Zn−Mg系合金蒸着めっき鋼板を製造するに当
たり、希望する蒸着めっき層組成に応じた浴組成からな
るZn−Mg合金浴を調製して該混合浴を加熱し、Zn
とMgの混合蒸気を、その組成比が所定割合を満足し且
つ均一に混合された状態で走行鋼板上に蒸着させること
を特徴とするZn−Mg系合金蒸着めっき鋼板の製造方
法。
(1) When manufacturing a Zn-Mg alloy vapor-deposited steel sheet, a Zn-Mg alloy bath having a bath composition corresponding to the desired vapor-deposited plating layer composition is prepared, the mixed bath is heated, and the Zn-Mg alloy bath is heated.
A method for producing a Zn--Mg alloy vapor-deposited steel sheet, which comprises depositing a mixed vapor of Mg and Mg on a running steel sheet in a state where the composition ratio thereof satisfies a predetermined ratio and is uniformly mixed.
(2)Zn−Mg系合金蒸着めっき鋼板を製造するに当
たり、ZnおよびMgを別々の容器から所定割合で蒸発
させ走行鋼板の下面に至る迄にZn蒸気とMg蒸気を均
一に混合させて鋼板上に蒸着させることを特徴とするZ
n−Mg系合金蒸着めっき鋼板の製造方法。
(2) In manufacturing Zn-Mg alloy vapor-deposited steel sheets, Zn and Mg are evaporated from separate containers at a predetermined ratio, and the Zn vapor and Mg vapor are uniformly mixed until they reach the bottom surface of the running steel sheet, and then the Zn and Mg vapors are mixed onto the steel sheet. Z characterized by being vapor-deposited on
A method for producing an n-Mg alloy vapor-deposited steel sheet.
JP24925888A 1988-07-06 1988-10-03 Production of steel sheet plated with zn-mg by vapor deposition Pending JPH0297663A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24925888A JPH0297663A (en) 1988-10-03 1988-10-03 Production of steel sheet plated with zn-mg by vapor deposition
US07/293,419 US5002837A (en) 1988-07-06 1989-01-04 Zn-Mg alloy vapor deposition plated metals of high corrosion resistance, as well as method of producing them
US07/601,673 US5135817A (en) 1988-07-06 1990-10-23 Zn-Mg alloy vapor deposition plated metals of high corrosion resistance, as well as method of producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24925888A JPH0297663A (en) 1988-10-03 1988-10-03 Production of steel sheet plated with zn-mg by vapor deposition

Publications (1)

Publication Number Publication Date
JPH0297663A true JPH0297663A (en) 1990-04-10

Family

ID=17190285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24925888A Pending JPH0297663A (en) 1988-07-06 1988-10-03 Production of steel sheet plated with zn-mg by vapor deposition

Country Status (1)

Country Link
JP (1) JPH0297663A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121215A (en) * 2010-01-14 2010-06-03 Semiconductor Energy Lab Co Ltd Deposition apparatus and deposition method
JP2010522272A (en) * 2007-03-20 2010-07-01 アルセロールミタル・フランス Process for coating substrate and metal alloy vacuum deposition apparatus
CN106282929A (en) * 2015-05-26 2017-01-04 上海和辉光电有限公司 A kind of oled substrate evaporation coating method and evaporation coating device
US9744743B2 (en) 2012-12-26 2017-08-29 Posco Zn—Mg alloy plated steel sheet, and method for manufacturing same
JP2017524804A (en) * 2014-05-12 2017-08-31 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method for manufacturing a steel member provided with a corrosion-resistant metal coating and a steel member
JP2020504239A (en) * 2016-12-26 2020-02-06 ポスコPosco Single-layer zinc alloy-plated steel excellent in spot weldability and corrosion resistance and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522272A (en) * 2007-03-20 2010-07-01 アルセロールミタル・フランス Process for coating substrate and metal alloy vacuum deposition apparatus
JP2010121215A (en) * 2010-01-14 2010-06-03 Semiconductor Energy Lab Co Ltd Deposition apparatus and deposition method
US9744743B2 (en) 2012-12-26 2017-08-29 Posco Zn—Mg alloy plated steel sheet, and method for manufacturing same
JP2017524804A (en) * 2014-05-12 2017-08-31 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method for manufacturing a steel member provided with a corrosion-resistant metal coating and a steel member
US10704112B2 (en) 2014-05-12 2020-07-07 Thyssenkrupp Steel Europe Ag Method for producing a steel component which is provided with a corrosion-resistant metal coating, and steel component
CN106282929A (en) * 2015-05-26 2017-01-04 上海和辉光电有限公司 A kind of oled substrate evaporation coating method and evaporation coating device
JP2020504239A (en) * 2016-12-26 2020-02-06 ポスコPosco Single-layer zinc alloy-plated steel excellent in spot weldability and corrosion resistance and method for producing the same
US11203802B2 (en) 2016-12-26 2021-12-21 Posco Single layer zinc alloy plated steel material exhibiting excellent spot weldability and corrosion resistance, and fabrication method therefor

Similar Documents

Publication Publication Date Title
US20180112305A1 (en) Method for Coating a Substrate and Metal Alloy Vacuum Deposition Facility
US11781213B2 (en) Apparatus and method for vacuum deposition
JPH0297663A (en) Production of steel sheet plated with zn-mg by vapor deposition
JPH02125866A (en) Device for applying alloy plating by vapor deposition
JPH02194162A (en) Production of zn-mg alloy plated metallic material
JP5688292B2 (en) Metal coating method and coating produced thereby
JPS634057A (en) Production of alloyed galvanized steel strip by vapor deposition
KR100198049B1 (en) Double layer coating sheet with al-zn/zn-al
JPH07145473A (en) Method for plating of vapor deposited alloy
KR0138040B1 (en) Method for arrangement of double vapor source
US3281262A (en) Art of bonding of vacuum metallized coatings to metal substrates
JPH0313562A (en) Production of vapor deposition al-cr alloy plated steel material
JPH03170661A (en) Method for evaporating sublimable metal
JPH06101022A (en) Vapor-deposition plating method
JPH07166330A (en) Cr stock for plating by vacuum deposition and plating method with al-cr alloy by vacuum deposition
JPH06108231A (en) Evaporating raw material for vapor deposition al-cr alloy plating and its production
KR0146987B1 (en) Zn-mn-sn alloy coated steel sheet and manufacturing method thereof
JPH0369990B2 (en)
CN116024529A (en) Galvanized sheet production method and production line
KR0140835B1 (en) Manufacturing method of al-cr alloy deposited steel sheet by single source
JPH06122964A (en) Production of vapor deposited al-cr-ti plating material
KR0138042B1 (en) Method for manufacturing al-mn alloy coated steel sheet with single vapor source
JPH0681130A (en) Production of al-ti alloy vapor deposition plated metallic material
JPH02138481A (en) Production of alloyed hot dip galvanizing steel sheet having excellent workability and paintability
JPS63274750A (en) Method for regulating galvanizing bath