JPH0297525A - Production of polyalkylene carbonate - Google Patents

Production of polyalkylene carbonate

Info

Publication number
JPH0297525A
JPH0297525A JP63199283A JP19928388A JPH0297525A JP H0297525 A JPH0297525 A JP H0297525A JP 63199283 A JP63199283 A JP 63199283A JP 19928388 A JP19928388 A JP 19928388A JP H0297525 A JPH0297525 A JP H0297525A
Authority
JP
Japan
Prior art keywords
catalyst
dicarboxylic acid
oxide
polymerization
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63199283A
Other languages
Japanese (ja)
Other versions
JP2571269B2 (en
Inventor
Hideshi Kawachi
秀史 河内
Shuji Minami
南 修治
Enu Arumoa Jiyon
ジョン・エヌ・アルモア
Rotsukiki Andorei
アンドレイ・ロッキキ
Kei Shiyutain Beatorisu
ベアトリス・ケイ・シュタイン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP63199283A priority Critical patent/JP2571269B2/en
Priority to EP89307863A priority patent/EP0358326B1/en
Priority to DE68927577T priority patent/DE68927577T2/en
Priority to US07/389,300 priority patent/US4981948A/en
Priority to CA000607739A priority patent/CA1335499C/en
Priority to CN89107585A priority patent/CN1023809C/en
Priority to KR1019890011351A priority patent/KR930003163B1/en
Publication of JPH0297525A publication Critical patent/JPH0297525A/en
Priority to CN93106147A priority patent/CN1035556C/en
Application granted granted Critical
Publication of JP2571269B2 publication Critical patent/JP2571269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To make it possible to use CO2 as industrial resource by producing a polycarbonate resin by copolymerizing CO2 with an epoxy compound in the presence of a solid catalyst obtained by mechanically grinding ZnO and an organic dicarboxylic acid. CONSTITUTION:A solid catalyst is prepared by grinding and mixing ZnO and an organic dicarboxylic acid such as glutaric acid with, e.g., a ball mill. A polyalkylene carbonate is obtained by copolymerizing CO2 with an epoxide (e.g., propylene oxide) in the presence of the above catalyst (desirably, under conditions including a CO2 pressure of 5-50kg/cm<2>, a polymerization temperature of 50-150 deg.C and a polymerization time of 1-10hr). This polymer has transparency, a feature of being completely decomposed by heating, and biodegradability, is applicable to general moldings, films, binders, medical materials, etc., and can exhibit excellent performances when used as a vibration-damping material.

Description

【発明の詳細な説明】 ル匪血狡■豆1 本発明は、これまで産業上未利用資源であった炭酸ガス
を利用した合成樹脂の重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for polymerizing synthetic resins using carbon dioxide gas, which has hitherto been an unused resource in industry.

良1立弦韮 炭酸ガスは工業的生産活動あるいは生物の呼吸によって
地球上に大量に放出されているが、その反応性が低いた
め、現在までこれを資源として工業的には有効に利用さ
れていない、この炭酸ガスを工業的資源として利用する
ことは、限られた地球上の資源を有効に利用する面から
も意義深いことである。
Large amounts of carbon dioxide are released onto the earth through industrial production activities or the respiration of living organisms, but due to its low reactivity, it has not been effectively used industrially as a resource until now. Utilizing this carbon dioxide gas as an industrial resource is also significant from the perspective of effectively utilizing the earth's limited resources.

この炭酸ガスを原料とする合成樹脂の合成方法に関して
、いくつかの提案がなされている。たとえば日本化学会
誌1982年第2号295ベージに例示されるごとく、
亜鉛の酢酸塩と脂肪族ジカルボン酸との反応生成物や、
アルキル亜鉛と水との反応生成物を触媒として用いてお
り、また、Polymer Journal 1981
年13巻407ページに例示されているように、水酸化
亜鉛と種々の有我カルボン酸との反応生成物を触媒とし
て用いている。
Several proposals have been made regarding methods for synthesizing synthetic resins using carbon dioxide gas as a raw material. For example, as illustrated in the Journal of the Chemical Society of Japan, No. 2, 1982, 295 pages,
Reaction products of zinc acetate and aliphatic dicarboxylic acids,
A reaction product of alkylzinc and water is used as a catalyst, and Polymer Journal 1981
As illustrated in Vol. 13, p. 407, reaction products of zinc hydroxide and various carboxylic acids are used as catalysts.

しかしながら、これら触媒はその合成の際になんらかの
溶媒を用いる必要があり、かつその重合活性は充分高い
とはいえなかった。
However, these catalysts require the use of some kind of solvent during their synthesis, and their polymerization activity cannot be said to be sufficiently high.

本発明者らは、炭酸ガスを資源とするポリマーの合成に
関して鋭意検討を進めた結果、酸化亜鉛および有機ジカ
ルボン酸を機械的粉砕処理手段によって接触せしめるこ
とにより合成される亜鈴含有固体触媒成分は、その合成
の際、特殊な溶奴を必要とせず、しかも重合に際し高い
活性を示すことを見いだし、本発明を完成するに至った
As a result of intensive studies on the synthesis of polymers using carbon dioxide gas as a resource, the present inventors found that a dumbbell-containing solid catalyst component synthesized by bringing zinc oxide and an organic dicarboxylic acid into contact with each other using mechanical pulverization treatment means: The present inventors have discovered that a special melt is not required for its synthesis and that it exhibits high activity during polymerization, leading to the completion of the present invention.

九匪五旦勲 本発明は、上記のような点に鑑みてなされたものであっ
て、特定の触媒を用いて炭酸ガスとエポキシドとの共重
合を行なうことによってポリアルキレンカーボネートを
収率よく得ることができるようなポリアルキレンカーボ
ネートの製造方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned points, and is a method of obtaining polyalkylene carbonate in high yield by copolymerizing carbon dioxide and epoxide using a specific catalyst. The purpose of the present invention is to provide a method for producing polyalkylene carbonate that can be used.

九訓左且ス 本発明に係るポリアルキレンカーボネートの製造方法は
、酸化亜鉛と有機ジカルボン酸を機械的粉砕処理手段に
より接触せしめることによって得られる亜鉛含有固体触
媒成分の存在下に、炭酸ガスとエポキシドの共重合を行
なうことを特徴としている。
Nine lessons learned: The method for producing polyalkylene carbonate according to the present invention involves the production of carbon dioxide and epoxide in the presence of a zinc-containing solid catalyst component obtained by bringing zinc oxide and organic dicarboxylic acid into contact with each other using mechanical pulverization treatment means. It is characterized by copolymerizing.

口の旦−〇<−日 以下、本発明に係るポリアルキレンカーボネートの製造
方法について具体的に説明する。
DETAILED DESCRIPTION The method for producing polyalkylene carbonate according to the present invention will be specifically explained below.

玉渉2L江上 本発明に用いることのできるエポキシドは、モノエポキ
シドが好ましく、たとえば、エチレンオキシド、プロピ
レンオキシド、1−ブテンオキシド、2−ブテンオキシ
ド、インブチレンオキシド、1−ペンテンオキシド、2
−ペンテンオキシド、1−ヘキセンオキシド、1−オク
テンオキシド、■−デセンオキシド、シクロペンテンオ
キシド、シクロヘキセンオキシド、スチレンオキシド、
ビニルシクロヘキサンオキシド、3−フェニルプロピレ
ンオキシド、3,3.3−4リフルオロプロピレンオキ
シド、3−ナフチルプロピレンオキシド、′3−フェノ
キシプロピレンオキシド、3−ナフトキシプロピレンオ
キシド、ブタジェンモノオキシド、3−ビニルオキシプ
ロピレンオキシド、3−トリメチルシリルオキシプロピ
レンオキシド、メチルグリシジルカーボネート、エチル
グリシジルカーボネート、コレステリルグリシジルカー
ボネートなどが表示でき、中でもプロピレンオキシド、
エチレンオキシド、シクロヘキセンオキシドが好ましい
、これらは、単独で用いてもよく、また、2a以上を混
合して用いてもかまわない。
Tamawata 2L Egami Epoxides that can be used in the present invention are preferably monoepoxides, such as ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, inbutylene oxide, 1-pentene oxide, 2
-pentene oxide, 1-hexene oxide, 1-octene oxide, -decene oxide, cyclopentene oxide, cyclohexene oxide, styrene oxide,
Vinyl cyclohexane oxide, 3-phenylpropylene oxide, 3,3.3-4-lifluoropropylene oxide, 3-naphthylpropylene oxide, '3-phenoxypropylene oxide, 3-naphthoxypropylene oxide, butadiene monoxide, 3-vinyl Oxypropylene oxide, 3-trimethylsilyloxypropylene oxide, methylglycidyl carbonate, ethylglycidyl carbonate, cholesterylglycidyl carbonate, etc. can be displayed, among which propylene oxide,
Ethylene oxide and cyclohexene oxide are preferred, and these may be used alone or in combination with 2a or more.

証工皿方 本発明で触媒を合成する際に用いられる酸化亜鉛は、そ
の製造手段は特に問題ではなく、例えば、シュウ酸亜鉛
を400℃以上に加熱分解する方法、ヒドロオキシ炭酸
亜鉛を加熱脱水する方法、金属亜鉛を燃焼させる方法、
あるいは亜鉛鉱石を還元剤ともに焙焼し、生成する亜鉛
蒸気を空気酸化する方法などで製造された酸化亜鉛を用
いることができる。
The manufacturing method for the zinc oxide used in the synthesis of the catalyst in the present invention is not a particular problem; for example, zinc oxalate can be thermally decomposed to 400°C or higher, or zinc hydroxy carbonate can be dehydrated by heating. method, method of burning metal zinc,
Alternatively, zinc oxide produced by roasting zinc ore together with a reducing agent and oxidizing the generated zinc vapor in the air can be used.

宜」UとL四」見乙他 本発明で用いられる触媒を合成する際に用いられる有機
ジカルボン酸としては、たとえば、シュウ酸、マロン酸
、琥珀酸、グルタル酸、アジピン酸、1.5−ペンタン
ジカルボン酸、1.6−ヘキサンジカルボン酸、1.8
−オクタンジカルボン酸、1.10−デカンジカルボン
酸などの脂肪族ジカルボン酸、フタル酸、インフタル酸
、テレフタル酸、1.2−ナフタレンジカルボン酸、1
.3−ナフタレンジカルボン酸、1,4−ナフタレンジ
カルボン酸、1.5−ナフタレンジカルボン酸、1.6
−ナフタレンジカルボン酸、1.7−ナフタレンジカル
ボン酸、1,8−ナフタレンジカルボン酸、2.3−ナ
フタレンジカルボン酸、2,5−ナフタレンジカルボン
酸、2.6−ナフタレンジカルボン酸、2.7−ナフタ
レンジカルボン酸などの芳香族ジカルボン酸が挙げられ
、中でもグルタル酸、アジピン酸が好ましい、これらは
単独で用いても、また、28以上を混合して用いてもか
まわない。
Examples of organic dicarboxylic acids used in synthesizing the catalyst used in the present invention include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, 1.5- Pentanedicarboxylic acid, 1.6-hexanedicarboxylic acid, 1.8
-Aliphatic dicarboxylic acids such as octanedicarboxylic acid, 1.10-decanedicarboxylic acid, phthalic acid, inphthalic acid, terephthalic acid, 1.2-naphthalenedicarboxylic acid, 1
.. 3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1.5-naphthalene dicarboxylic acid, 1.6
-Naphthalene dicarboxylic acid, 1.7-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 2.3-naphthalene dicarboxylic acid, 2,5-naphthalene dicarboxylic acid, 2.6-naphthalene dicarboxylic acid, 2.7-naphthalene Examples include aromatic dicarboxylic acids such as dicarboxylic acids, and among them, glutaric acid and adipic acid are preferred, and these may be used alone or in combination of 28 or more.

隨緩皿l去迭 上記のような酸化亜鉛および有機ジカルボン酸とを機械
的粉砕処理手段によって接触させ反応させることによっ
て触媒は合成される。
The catalyst is synthesized by bringing the above-mentioned zinc oxide and organic dicarboxylic acid into contact with each other by mechanical pulverization treatment means and causing a reaction.

酸化亜鉛および有機ジカルボン酸との機械的粉砕処理に
よる接触は、具体的にはたとえばボールミル、振動ミル
、衝撃ミル、ワーリングブレンダー、シェアリングミキ
サーなどを用いて行なわれる。さらに、触媒は酸化亜鉛
と有機ジカルボン酸を単に混合するだけでも合成できる
。粉砕時における酸化亜鉛と有機ジカルボン酸の仕込比
率は、通常酸化亜鉛1モルに対して有機ジカルボン酸0
.1モル〜10モル、好ましくは0.5モル〜2モルの
範囲である。
The contact with the zinc oxide and the organic dicarboxylic acid by mechanical pulverization is specifically carried out using, for example, a ball mill, a vibration mill, an impact mill, a Waring blender, a shearing mixer, or the like. Furthermore, the catalyst can be synthesized by simply mixing zinc oxide and an organic dicarboxylic acid. The charging ratio of zinc oxide and organic dicarboxylic acid during pulverization is usually 1 mole of zinc oxide to 0 organic dicarboxylic acid.
.. The amount ranges from 1 mol to 10 mol, preferably from 0.5 mol to 2 mol.

原料の種類や粉砕装置によって、粉砕条件を適当に選ぶ
のが好ましいが、回転ボールミルを例にとれば、ステン
レス鋼製内容積800 ml、内直径100市のボール
円筒に直径15++n+のステンレスw4製ボール10
0個を収容し、被処理物量を20〜40trとした場合
に回転数125rpmで、通常は10分〜30日間、好
ましくは20分〜7日間の粉砕処理に相当する程度に行
なえばよい、振動ミルを例にとれば、ステンレス鋼製内
容積800m1、内直径100+m+のボール円筒に直
径15間のステンレス鋼製ボール2.8kgを収容し、
被処理物量を20〜40fとした場合に衝撃の加速度7
G程度で、通常は1分〜10日間、好ましくは5分〜4
日間の粉砕処理に相当する程度に行なえばよい、また粉
砕処理の温度は、通常室温付近に選べばよく、発熱が著
しい場合には、適当な冷却を行なって、0℃〜150℃
の温度で粉砕することが好ましい。
It is preferable to select the grinding conditions appropriately depending on the type of raw material and the grinding equipment, but if we take a rotary ball mill as an example, we will use a stainless steel ball cylinder with an internal volume of 800 ml and an inner diameter of 100 mm, and a stainless steel W4 ball with a diameter of 15++n+. 10
0 pieces and the amount of material to be processed is 20 to 40 tr, the vibration should be carried out at a rotation speed of 125 rpm, usually for 10 minutes to 30 days, preferably for 20 minutes to 7 days. Taking a mill as an example, a 2.8 kg stainless steel ball with a diameter of 15 mm is housed in a stainless steel ball cylinder with an internal volume of 800 m1 and an internal diameter of 100 m+.
When the amount of material to be processed is 20 to 40f, the acceleration of impact is 7
G level, usually 1 minute to 10 days, preferably 5 minutes to 4 days
It is sufficient to carry out the grinding process to the extent equivalent to one day's grinding process, and the temperature of the grinding process should normally be selected around room temperature, and if heat generation is significant, perform appropriate cooling and raise the temperature to 0°C to 150°C.
It is preferable to grind at a temperature of .

上記のようにして合成された亜鉛含有固体触媒成分は、
有機ジカルボン酸と酸化亜鉛とが化学的に反応している
ものと考えられる。なぜならば原料である有機ジカルボ
ン酸の赤外線吸収スペクトルと比較すると、そのカルボ
ニル基の伸縮振動吸収帯が、有機ジカルボン酸と亜鉛金
属とが反応したことによって低波数側にシフトするとい
う特徴を有しているからである。またさらには本発明で
用いられる亜鉛含有固体触媒成分は、加熱することに−
より有機ジカルボン酸の分解温度とは猫なる温度で分解
するという特徴を有している。
The zinc-containing solid catalyst component synthesized as above is
It is thought that the organic dicarboxylic acid and zinc oxide are chemically reacted. This is because, compared to the infrared absorption spectrum of the organic dicarboxylic acid that is the raw material, the stretching vibration absorption band of the carbonyl group shifts to the lower wave number side due to the reaction between the organic dicarboxylic acid and zinc metal. Because there is. Furthermore, the zinc-containing solid catalyst component used in the present invention can be heated to -
The organic dicarboxylic acid has the characteristic that it decomposes at a certain temperature.

なお、上記のようにして合成された触媒は、その、tま
でも重合反応に供することもできるが、通常、反応の際
に発生する水か重合禁止剤として面くため、重合前に脱
気乾燥することが好ましい。
Note that the catalyst synthesized as described above can be subjected to a polymerization reaction up to t, but usually, the water generated during the reaction acts as a polymerization inhibitor, so it is degassed before polymerization. Drying is preferred.

1立立豆 上記のような触媒を用いて、炭酸ガスとエポキシドとの
共重合を行なうに際しては、通常、ペンタン、ヘキサン
、オクタン、デカン、シクロヘキサンなどの脂肪族炭化
水素、ベンゼン、トルエン、キシレンなどの芳香族炭化
水素、り四ロメタン、メチレンジクロリド、クロロホル
ム、四塩化炭素、1.1−ジクロロエタン、■、2−ジ
クロロエタン、エチルクロリド、トリクロロエタン、1
−クロロプロパン、2−クロロプロパン、1−クロロブ
タン、2−クロロブタン、1−クロロ−2−メチルプロ
パン、クロルベンゼン、ブロモベンゼンなどのハロゲン
化炭化水素の1種類または2種類以上を重合溶媒として
用いることが好ましい。なお、場合によってはモノマー
(エポキシド)それ自身を重合媒体とすることも可能で
あり、また本発明に係る上記のような重合反応を、気相
、たとえば流動触媒床中での重合反応として行なうこと
もできる0重合溶媒、モノマー(エポキシド)、炭酸ガ
ス、触媒の添加順序は特に限定されない。
When copolymerizing carbon dioxide gas and epoxide using the above-mentioned catalyst, usually aliphatic hydrocarbons such as pentane, hexane, octane, decane, cyclohexane, benzene, toluene, xylene, etc. Aromatic hydrocarbons, tetraromethane, methylene dichloride, chloroform, carbon tetrachloride, 1,1-dichloroethane, 2-dichloroethane, ethyl chloride, trichloroethane, 1
- It is preferable to use one or more halogenated hydrocarbons such as chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, chlorobenzene, and bromobenzene as the polymerization solvent. . In some cases, it is possible to use the monomer (epoxide) itself as a polymerization medium, and the above-described polymerization reaction according to the present invention may be carried out in a gas phase, for example, in a fluidized catalyst bed. The order in which the polymerization solvent, monomer (epoxide), carbon dioxide gas, and catalyst are added is not particularly limited.

溶媒とモノマー(エポキシド)の仕込比は、通常、容積
比で0対100ないし99対1、特に、0対100ない
し90対10の範囲が好ましい。
The charging ratio of the solvent and the monomer (epoxide) is generally preferably in the range of 0:100 to 99:1, particularly 0:100 to 90:10, in terms of volume ratio.

反応系に供給する炭酸ガスの圧力は、特には限定されな
いが、Ohf/ ti〜200に+r/d、好ましくは
3hg/−〜100吋/d、さらに好ましくは5 kg
 / cl〜50kg/cdの範囲であることが好まし
い4重合温度は、通常o ’c〜200°C1好ましく
は50°C〜150℃である。
The pressure of carbon dioxide gas supplied to the reaction system is not particularly limited, but Ohf/ti~200+r/d, preferably 3hg/-~100in/d, more preferably 5 kg
The tetrapolymerization temperature, which is preferably in the range of /cl to 50 kg/cd, is usually o'c to 200°C, preferably 50°C to 150°C.

本発明では、長時間、重合反応を行なうことによって、
ポリマーの収量を増やすことが可能である。従って、重
合時間は、特には限定されないが、通常、30分〜24
0時間、好ましくは1時間〜80時間、さらに好ましく
は1時間〜lO時間の範囲である。
In the present invention, by carrying out the polymerization reaction for a long time,
It is possible to increase the yield of polymer. Therefore, the polymerization time is not particularly limited, but is usually 30 minutes to 24 minutes.
The range is 0 hours, preferably 1 hour to 80 hours, more preferably 1 hour to 10 hours.

また上記のような重合反応は、回分式、半連続式、連続
式のいずれの方法においても行なうことができ、さらに
重合を反応条件の異なる2段以上に分けて行なうことも
可能である。
Further, the above polymerization reaction can be carried out in any of the batch, semi-continuous, and continuous methods, and it is also possible to carry out the polymerization in two or more stages under different reaction conditions.

重合反応終了の後、触媒残渣はr過することにより、あ
るいは希酸、希アルカリの水溶液による洗浄により除去
することができる。得られたボリマーは、重合媒体のフ
ラッシュや蒸発乾固、あるいは良溶媒に溶解したポリマ
ーをヘキサンやメタノールのような貧溶媒中で析出する
ことによって回収できる。
After the polymerization reaction is completed, the catalyst residue can be removed by filtration or by washing with a dilute acid or dilute alkali aqueous solution. The resulting polymer can be recovered by flashing or evaporating the polymerization medium to dryness, or by precipitating the polymer dissolved in a good solvent in a poor solvent such as hexane or methanol.

九匪ム豆遇 本発明によれば、特定の触媒を用いることにより、これ
まで利用されていなかった炭酸ガスを原料として有用な
ポリマーが合成できる。このポリマーは、良好な透明性
を有しており、かつ加熱すると完全に分解するという特
徴を有している。このため、このポリマーは、一般成形
物、フィルム、ファイバーなどに用いられるばかりでな
く、光ファイバー、光ディスク、セラミックバインダー
ロストフオームキャスティングなどの材料としても応用
可能である。また、このポリマーは生体内で分解できる
性質を有しているため、医用材料の生分解性を必要とす
る用途にら応用可能である。
According to the present invention, by using a specific catalyst, a useful polymer can be synthesized from carbon dioxide gas, which has not been used hitherto, as a raw material. This polymer has good transparency and is characterized by complete decomposition when heated. Therefore, this polymer can be used not only for general molded products, films, fibers, etc., but also as a material for optical fibers, optical disks, ceramic binder lost form casting, etc. Furthermore, since this polymer has the property of being degradable in vivo, it can be applied to applications that require biodegradability of medical materials.

さらにこのポリマーを制振材として用いた場合にも、優
れた性能を発揮する。
Furthermore, when this polymer is used as a vibration damping material, it also exhibits excellent performance.

以下本発明を実施例によってさらに詳しく説明するが、
本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to the following examples.

K旌伍ユ く触媒調製〉 市販の酸化亜鉛10.0gとグルタル酸16.2gとを
、直径15鮨のステンレス製ボール100個を収容した
内容積800の1、内直径100間のステンレス製ボー
ルミル円筒に装入し、該ボールミル円筒を25rpmで
回転させながら1時間酸化細石とグルタル酸とを接触さ
せた。得られた固体処理物を150℃で減圧乾燥し、ヘ
キサンスラリーとした後、触媒として用いた。
Catalyst Preparation> 10.0 g of commercially available zinc oxide and 16.2 g of glutaric acid were mixed in a stainless steel ball mill with an internal volume of 800 mm and an internal diameter of 100 mm, containing 100 stainless steel balls with a diameter of 15 mm. The oxidized fine stones and glutaric acid were placed in a cylinder and brought into contact with each other for 1 hour while rotating the ball mill cylinder at 25 rpm. The obtained solid treated product was dried under reduced pressure at 150°C to form a hexane slurry, which was then used as a catalyst.

く重合〉 内容積21のオー1〜クレープに、プロピレンオキシド
2000il、ヘキサン700 nnl、触媒5.4g
を加え、反応系に炭酸ガスを供給して系内を80°C1
20kg/−・Gとし、消費される炭酸ガスを新たに系
内に供給しながら2時間重合を行なった。
Polymerization> 2000 il of propylene oxide, 700 nnl of hexane, and 5.4 g of catalyst in O-1 to crepe with an internal volume of 21
and supply carbon dioxide gas to the reaction system to raise the temperature inside the system to 80°C1.
Polymerization was carried out at a pressure of 20 kg/-.G for 2 hours while newly feeding consumed carbon dioxide into the system.

反応終了後、装置を冷却した後脱圧し、ヘキサンスラリ
ーとなっている白色(触媒を含んでいるため)ポリマー
を沢過した。乾燥後のポリマーの重量は45.4gを接
触させた。触媒1g当りのポリマーの収量は8.4gで
あった。
After the reaction was completed, the apparatus was cooled and depressurized, and a large amount of the white polymer (because it contained the catalyst), which was a hexane slurry, was filtered out. The weight of the polymer after drying was 45.4 g. The yield of polymer per gram of catalyst was 8.4 g.

尺1盟l二A 実施例1において、酸化亜鉛とグルタル酸との接触時間
を表1に示すように変えた以外は、実施例1と同様にし
て触媒の調製を行なった。得られた触媒を用いて、実施
例1と同様にして重合を行なった。その結果を表1に示
す。
A catalyst was prepared in the same manner as in Example 1, except that the contact time between zinc oxide and glutaric acid was changed as shown in Table 1. Polymerization was carried out in the same manner as in Example 1 using the obtained catalyst. The results are shown in Table 1.

去−−1 実10肌旦 く触媒調製〉 市販の酸化亜鉛10.0gとグルタル酸16、2gとを
、直径15關のステンレス製ボール2.8kzを収容し
た内容積800 ml、内直径100市のステンレス製
ボールミル円筒に装入し、衝撃の加速度7Gで15分粉
砕接触させた。固体処理物は、実施PA]と同様に減圧
乾燥したのちヘキサンスラリーとして重合に供した。
-1 Preparation of commercially available zinc oxide and 16.2 g of glutaric acid in a 800 ml, inner diameter 100 mm container containing a 2.8 kHz stainless steel ball with a diameter of 15 mm. The sample was placed in a stainless steel ball mill cylinder and brought into pulverization contact for 15 minutes at an impact acceleration of 7G. The solid treated product was dried under reduced pressure in the same manner as in Example PA] and then subjected to polymerization as a hexane slurry.

〈重合〉 触媒量を5gとした後は実施例1と同様にして行なった
。ポリマーの乾燥後の平旦は34.3gであった。触媒
1g当りのポリマーの我欲は6.9gであった。
<Polymerization> The polymerization was carried out in the same manner as in Example 1, except that the amount of catalyst was changed to 5 g. The average weight of the polymer after drying was 34.3 g. The polymer content per gram of catalyst was 6.9 g.

笈角mニヱ 実施例5において、酸化亜鉛とグルタル酸との接触時間
を表2に示すように変えた以外は、実施例5と同様にし
て触媒の調製を行なった。得られた触媒を用いて、実施
例1と同様にして重合を行なった。その結果を表2に示
す。
A catalyst was prepared in the same manner as in Example 5, except that the contact time between zinc oxide and glutaric acid was changed as shown in Table 2. Polymerization was carried out in the same manner as in Example 1 using the obtained catalyst. The results are shown in Table 2.

六−−2 は1gであった。6--2 was 1g.

一双伍l グルタル酸のメタノール溶液中に、酢酸亜鈴のメタノー
ル溶液を滴下して合成した触媒を用いた以外は、比較例
1と同様に行なった。触媒1g当りのポリマーの収量は
1.7gであった。
Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that a catalyst synthesized by dropping a methanol solution of dumbbell acetate into a methanol solution of glutaric acid was used. The yield of polymer per gram of catalyst was 1.7 g.

く触媒調製〉 市販の酢酸亜鉛20gをメタノール200m1に溶かし
、この/8液を撹拌しつつ、この中にグルタル酸12g
をメタノール150+nlに溶かした溶液を室温で30
分かけて滴下した。室温で更に2時間1覚拌を続けた後
、白色の析出物を沢過し、メタノールで洗浄した1d1
50’(、?1′″減圧乾燥して、ヘギサンスラリーと
して重合に供した。
Catalyst Preparation> Dissolve 20 g of commercially available zinc acetate in 200 ml of methanol, and while stirring this /8 solution, add 12 g of glutaric acid into it.
A solution of 150+nl of methanol was prepared at room temperature for 30+nl.
It was dripped over several minutes. After stirring for another 2 hours at room temperature, the white precipitate was filtered and washed with methanol.
50'(?1''') was dried under reduced pressure and subjected to polymerization as a hegisane slurry.

く重合〉Polymerization>

Claims (1)

【特許請求の範囲】[Claims] 酸化亜鉛と有機ジカルボン酸とを機械的粉砕処理手段に
より接触せしめることによって得られる亜鉛含有固体触
媒成分の存在下に、炭酸ガスとエポキシドとの共重合を
行なうことを特徴とするポリアルキレンカーボネートの
製造方法。
Production of polyalkylene carbonate characterized by copolymerizing carbon dioxide gas and epoxide in the presence of a zinc-containing solid catalyst component obtained by bringing zinc oxide and organic dicarboxylic acid into contact with each other by mechanical pulverization treatment means. Method.
JP63199283A 1988-08-09 1988-08-09 Method for producing polyalkylene carbonate Expired - Lifetime JP2571269B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP63199283A JP2571269B2 (en) 1988-08-09 1988-08-09 Method for producing polyalkylene carbonate
EP89307863A EP0358326B1 (en) 1988-08-09 1989-08-02 Process for preparing a zinc-containing solid catalyst and process for preparing polyalkylene carbonate
DE68927577T DE68927577T2 (en) 1988-08-09 1989-08-02 Process for producing a zinc-containing solid catalyst and process for producing polyalkylene carbonate
US07/389,300 US4981948A (en) 1988-08-09 1989-08-03 Zinc-containing solid catalyst, process of preparing same and process for preparing polyalkylene carbonate
CA000607739A CA1335499C (en) 1988-08-09 1989-08-08 Zinc-containing solid catalyst, process of preparing same and process for preparing polyalkylene carbonate
CN89107585A CN1023809C (en) 1988-08-09 1989-08-09 Einc-containing solid catalyst, process of preparing same and process for preparing polyalkylene carbonate
KR1019890011351A KR930003163B1 (en) 1988-08-09 1989-08-09 Zinc containing solid catalyst and process for preparing polyalkylene carbonate
CN93106147A CN1035556C (en) 1988-08-09 1993-05-21 A process for preparing a zinc-containing solid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63199283A JP2571269B2 (en) 1988-08-09 1988-08-09 Method for producing polyalkylene carbonate

Publications (2)

Publication Number Publication Date
JPH0297525A true JPH0297525A (en) 1990-04-10
JP2571269B2 JP2571269B2 (en) 1997-01-16

Family

ID=16405219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63199283A Expired - Lifetime JP2571269B2 (en) 1988-08-09 1988-08-09 Method for producing polyalkylene carbonate

Country Status (1)

Country Link
JP (1) JP2571269B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530021A (en) * 2002-06-20 2005-10-06 ポスコ Method for producing aliphatic polycarbonate polymerization catalyst and method for polymerizing aliphatic polycarbonate using the same
JP2005530022A (en) * 2002-06-20 2005-10-06 ポスコ Method for producing aliphatic polycarbonate polymerization catalyst and method for polymerizing aliphatic polycarbonate using the same
EP1726316A1 (en) 2005-05-24 2006-11-29 Medpak, Llc Wound care system comprising a polyalkylene carbonate film dressing
JP2018531314A (en) * 2016-03-11 2018-10-25 エルジー・ケム・リミテッド Economical process for producing a resin composition comprising a polyalkylene carbonate having improved thermal stability and processability
JP2022509661A (en) * 2018-12-21 2022-01-21 エルジー・ケム・リミテッド Regeneration method of waste organozinc catalyst by surface modification treatment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768628B1 (en) 2000-08-02 2007-10-18 미쯔이카가쿠 가부시기가이샤 Resin composition and use thereof
KR101374568B1 (en) * 2010-09-01 2014-03-17 에스케이이노베이션 주식회사 Resin composition for paper-coating
JP6364076B2 (en) 2013-11-18 2018-07-25 エルジー・ケム・リミテッド Organozinc catalyst, process for producing the same, and process for producing polyalkylene carbonate resin using the same
JP7104807B2 (en) 2018-12-20 2022-07-21 エルジー・ケム・リミテッド A method for producing an organozinc catalyst, and a method for producing a polyalkylene carbonate resin using an organozinc catalyst produced from this method.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151116A (en) * 1976-06-07 1977-12-15 Nok Corp Novel organic acid metal salts and their preparation and epoxide polymerization catalyst containing same
JPS63199282A (en) * 1987-02-13 1988-08-17 Shiseido Co Ltd Antioxidant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151116A (en) * 1976-06-07 1977-12-15 Nok Corp Novel organic acid metal salts and their preparation and epoxide polymerization catalyst containing same
JPS63199282A (en) * 1987-02-13 1988-08-17 Shiseido Co Ltd Antioxidant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530021A (en) * 2002-06-20 2005-10-06 ポスコ Method for producing aliphatic polycarbonate polymerization catalyst and method for polymerizing aliphatic polycarbonate using the same
JP2005530022A (en) * 2002-06-20 2005-10-06 ポスコ Method for producing aliphatic polycarbonate polymerization catalyst and method for polymerizing aliphatic polycarbonate using the same
JP4708019B2 (en) * 2002-06-20 2011-06-22 ポスコ Method for producing aliphatic polycarbonate polymerization catalyst and method for polymerizing aliphatic polycarbonate using the same
EP1726316A1 (en) 2005-05-24 2006-11-29 Medpak, Llc Wound care system comprising a polyalkylene carbonate film dressing
JP2018531314A (en) * 2016-03-11 2018-10-25 エルジー・ケム・リミテッド Economical process for producing a resin composition comprising a polyalkylene carbonate having improved thermal stability and processability
US10829635B2 (en) 2016-03-11 2020-11-10 Lg Chem, Ltd. Economical method of preparing a resin composition including polyalkylene carbonate with improved thermal stability and processability
JP2022509661A (en) * 2018-12-21 2022-01-21 エルジー・ケム・リミテッド Regeneration method of waste organozinc catalyst by surface modification treatment
US11944961B2 (en) 2018-12-21 2024-04-02 Lg Chem, Ltd. Method for regenerating waste organic zinc catalyst through surface modification

Also Published As

Publication number Publication date
JP2571269B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
EP0358326B1 (en) Process for preparing a zinc-containing solid catalyst and process for preparing polyalkylene carbonate
JPH0247134A (en) Solid catalyst containing zinc and preparation and use of the same catalyst
Ang et al. A review of copolymerization of green house gas carbon dioxide and oxiranes to produce polycarbonate
US3953383A (en) Catalytic process for copolymerizing epoxy compounds with carbon dioxide
US20140011972A1 (en) Carbocatalysts for polymerization
JP4590284B2 (en) Method for producing polycarbonate
CN111393630B (en) Polymer polyol and preparation method thereof
JPH0297525A (en) Production of polyalkylene carbonate
CN101942081A (en) Method for preparing aliphatic polycarbonates by catalyzing by metal cyanide coordination catalyst
JP2007126547A (en) Polyalkylene carbonate production method
US6844287B2 (en) Supported catalysts for the fixation of carbon dioxide into aliphatic polycarbonates and a process for preparing the same
JPWO2011004730A1 (en) Method for producing aliphatic polycarbonate particles
JP2693584B2 (en) Method for producing catalyst component for producing polyalkylene carbonate
Howard et al. Polymer-supported metal catalysts for the heterogeneous polymerisation of lactones
US3585259A (en) Process for manufacturing friable solid polyester products
JP2005530022A (en) Method for producing aliphatic polycarbonate polymerization catalyst and method for polymerizing aliphatic polycarbonate using the same
JPH023425A (en) Preparation of polyalkylene carbonate
KR102323811B1 (en) Method for preparing organic zinc catalyst and preparing method of polyalkylene carbonate resin by using organic zinc catalyst produced by the same
JP7128965B2 (en) Method for regenerating waste organic zinc catalyst by surface modification treatment
KR100635240B1 (en) Polyester polycondensation with lithium titanyl oxalate catalyst
GB2352449A (en) Synthesis of polycarbonates
WO2022209774A1 (en) Organozinc catalyst regeneration method
JPS63189434A (en) Production of block copolymer
JPH02255805A (en) Anionic polymerization catalyst and its production
JPS5915135B2 (en) Method for producing polyacetal polymer

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12