JP2007126547A - Polyalkylene carbonate production method - Google Patents

Polyalkylene carbonate production method Download PDF

Info

Publication number
JP2007126547A
JP2007126547A JP2005319979A JP2005319979A JP2007126547A JP 2007126547 A JP2007126547 A JP 2007126547A JP 2005319979 A JP2005319979 A JP 2005319979A JP 2005319979 A JP2005319979 A JP 2005319979A JP 2007126547 A JP2007126547 A JP 2007126547A
Authority
JP
Japan
Prior art keywords
solvent
carbonate
zinc
polymerization
polyalkylene carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005319979A
Other languages
Japanese (ja)
Inventor
Atsuo Obata
敦生 小畑
Kyoko Ono
恭子 小野
Akito Watanabe
亜希人 渡邊
Hidekazu Ookubo
英主 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005319979A priority Critical patent/JP2007126547A/en
Publication of JP2007126547A publication Critical patent/JP2007126547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a technique of industrially and stably producing a polyalkylene carbonate by making it possible to handle the polymer during production without raising any environmental and hygienic problems in a reaction of carbon dioxide with an epoxide. <P>SOLUTION: A polyalkylene carbonate production method having no environmental and hygienic problems has been found out by polymerizing carbon dioxide and an epoxide in the presence of a hydroxyl- or carboxyl-containing organic compound or water in a solvent containing a carbonate solvent or an ether solvent capable of dissolving the polyalkylene carbonate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二酸化炭素とエポキシドの反応によるポリアルキレンカーボネートの製造法に関する。   The present invention relates to a process for producing a polyalkylene carbonate by reacting carbon dioxide with an epoxide.

炭酸ガスは、工業的生産活動あるいは生物の呼吸等により地球上に大量に放出され、地球温暖化の要因になっている。しかし、炭酸ガスは反応性が乏しいため、資源として有効に利用出来ていない。この炭酸ガスを工業上の資源として有効に利用できれば、地球上の限られた資源の有効利用を図るという面からも意義深いことである。   Carbon dioxide is released on the earth in large quantities due to industrial production activities or the respiration of living organisms, causing global warming. However, since carbon dioxide has poor reactivity, it cannot be effectively used as a resource. If this carbon dioxide gas can be used effectively as an industrial resource, it is significant from the viewpoint of effective use of limited resources on the earth.

この豊富な炭酸ガスを工業上利用する方法として、炭酸ガスを原料とする合成樹脂の製造法が提案されている。例えば、日本化学会誌1982年第2号295ページには炭酸ガスを原料とする合成樹脂の製造法について記載されており、この製造法では触媒として、亜鉛の酢酸塩と脂肪族ジカルボン酸との反応生成物あるいはアルキル亜鉛と水との反応生成物が用いられている([非特許文献1])。   As a method of industrially utilizing such abundant carbon dioxide gas, a synthetic resin production method using carbon dioxide gas as a raw material has been proposed. For example, the Chemical Society of Japan Journal 1982, No. 2, page 295 describes a method for producing a synthetic resin using carbon dioxide as a raw material. In this production method, a reaction between zinc acetate and an aliphatic dicarboxylic acid is used as a catalyst. A product or a reaction product of alkylzinc and water is used ([Non-Patent Document 1]).

また、Polymer Journal 1981年13巻407ページには炭酸ガスを原料とする合成樹脂の製造方法について記載されており、この製造方法では触媒として水酸化亜鉛と、種々の有機カルボン酸との反応生成物が用いられている。([非特許文献2])   Polymer Journal 1981, Vol. 13, page 407 describes a method for producing a synthetic resin using carbon dioxide as a raw material. In this production method, reaction products of zinc hydroxide and various organic carboxylic acids as a catalyst are described. Is used. ([Non-Patent Document 2])

これらの触媒は、重合活性が低いという問題があった。しかし、触媒の活性向上を目的に、特開平2−47134に記載されるように、有機溶媒存在下に酸化亜鉛と脂肪族ジカルボン酸とを機械的粉砕処理手段により反応させる手法が報告されている。([特許文献1])さらに、特開平3−28227にあるように、酸化亜鉛と脂肪族ジカルボン酸との反応からなる触媒系に硫化亜鉛を添加し、さらに活性向上が図られている。([特許文献2])   These catalysts have a problem of low polymerization activity. However, for the purpose of improving the activity of the catalyst, as described in JP-A-2-47134, a method of reacting zinc oxide and aliphatic dicarboxylic acid in the presence of an organic solvent by a mechanical pulverization means has been reported. . Furthermore, as disclosed in JP-A-3-28227, zinc sulfide is added to a catalyst system composed of a reaction between zinc oxide and an aliphatic dicarboxylic acid to further improve the activity. ([Patent Document 2])

またこの反応において、酢酸や安息香酸等の有機酸を微量添加することにより、触媒活性を損なうことなく、得られるポリアルキレンカーボネートの分子量を制御できることも知られている。([特許文献3]、[特許文献4])   In this reaction, it is also known that the molecular weight of the resulting polyalkylene carbonate can be controlled by adding a small amount of an organic acid such as acetic acid or benzoic acid without impairing the catalytic activity. ([Patent Document 3], [Patent Document 4])

これらの亜鉛含有触媒を用いてポリアルキレンカーボネートを製造する際、重合溶媒としてヘキサンやオクタンなどの脂肪族炭化水素、ベンゼンやトルエンなどの芳香族炭化水素、ジクロロメタンや四塩化炭素等のハロゲン化炭化水素が用いられてきた。一般に、脂肪族炭化水素や芳香族炭化水素溶媒は、ポリアルキレンカーボネートを工業的な溶液重合で用いられるポリマー濃度まで溶解できない。従って、これらの溶媒を用いた重合の際、ポリアルキレンカーボネートは、析出した状態で重合される。ポリアルキレンカーボネートの多くは、非晶性のポリマーであり、かつ、ガラス転移点は重合に用いられている温度よりも低い。そのため、重合中に析出したポリマーは不定形で、かつ、合一しやすく、生成したポリマーのハンドリングは非常に困難となる。また、重合中に触媒を析出ポリマー中に取り込んでしまうため、活性が低い傾向にある。さらに、重合後に触媒を取り除く際、濾過もしくは希酸水溶液、希アルカリ水溶液などの洗浄を行うが、ポリアルキレンカーボネートが析出した状態では操作できないため、ポリアルキレンカーボネートを可溶な溶媒に置換する必要もあり、非合理的な操作が必要であった。   When producing polyalkylene carbonates using these zinc-containing catalysts, the polymerization solvents are aliphatic hydrocarbons such as hexane and octane, aromatic hydrocarbons such as benzene and toluene, and halogenated hydrocarbons such as dichloromethane and carbon tetrachloride. Has been used. In general, aliphatic hydrocarbons and aromatic hydrocarbon solvents cannot dissolve polyalkylene carbonates up to the polymer concentration used in industrial solution polymerization. Therefore, in the polymerization using these solvents, the polyalkylene carbonate is polymerized in a precipitated state. Many of the polyalkylene carbonates are amorphous polymers and have a glass transition point lower than the temperature used for the polymerization. Therefore, the polymer precipitated during the polymerization is indefinite and easy to unite, and handling of the produced polymer becomes very difficult. Further, since the catalyst is taken into the precipitated polymer during the polymerization, the activity tends to be low. Furthermore, when removing the catalyst after polymerization, filtration or washing with a dilute acid aqueous solution, dilute alkaline aqueous solution, etc. is performed. However, since the operation cannot be performed in a state where the polyalkylene carbonate is precipitated, it is necessary to replace the polyalkylene carbonate with a soluble solvent. Yes, irrational operation was necessary.

一方、ジクロロメタン等のハロゲン化溶媒の多くは、ポリアルキレンカーボネートを溶解可能であるが、工業的に使用するには、環境衛生上様々な問題がある。例えば、ジクロロメタンは、オゾン層破壊や地球温暖化を引き起こす環境破壊物質として、また、最近では変異原性物質であることも判明し、人体に直接影響を及ぼす有害物質であることも明確になった。そのため、規制の厳しい物質となっており、製造中に漏洩や大気への放出等を完全に防止することが必要で、工業的な大量生産に使用するのは困難である。さらに、製品の衛生性の観点から、製品中の残留溶媒量を限りなくゼロにする必要があり、そのために多大な溶媒除去エネルギーを必要とする。
特開平2−47134 特開平3−28227 米国特許4943677 特開昭55−12156 日本化学会誌1982年第2号295ページ Polymer Journal 1981年13巻407ページ
On the other hand, many halogenated solvents such as dichloromethane can dissolve polyalkylene carbonate, but there are various problems in environmental hygiene for industrial use. For example, dichloromethane has become clear that it is a harmful substance that directly affects the human body as an environmentally destructive substance that causes ozone depletion and global warming. . Therefore, it is a highly regulated substance, and it is necessary to completely prevent leakage and release to the atmosphere during manufacturing, and it is difficult to use it for industrial mass production. Furthermore, from the viewpoint of product hygiene, it is necessary to make the amount of residual solvent in the product as zero as possible, which requires a large amount of solvent removal energy.
JP-A-2-47134 JP-A-3-28227 US Pat. No. 4,943,777 JP 55-12156 Journal of the Chemical Society of Japan, 1982, No. 2, page 295 Polymer Journal 1981 Volume 13 Page 407

本発明は、上記のような点に鑑みてなされたものであって、二酸化炭素とエポキシドの反応において、環境・衛生上問題がなく、製造中にポリマーをハンドリング可能とし、安定的にポリアルキレンカーボネートを工業的に製造する技術を確立することである。   The present invention has been made in view of the above points, and there is no problem in terms of environment and hygiene in the reaction of carbon dioxide and epoxide, the polymer can be handled during production, and the polyalkylene carbonate is stably produced. Is to establish the technology to industrially manufacture.

本発明者らは上記の問題を解決すべく鋭意検討を重ねた結果、水酸基またはカルボン酸基を有する有機化合物、もしくは水の存在下、ポリアルキレンカーボネートを溶解可能なカーボネート系溶媒もしくはエーテル系溶媒を含む溶媒を用い重合することで、環境・衛生上問題がないポリアルキレンカーボネート製造方法を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have developed a carbonate-based solvent or an ether-based solvent capable of dissolving polyalkylene carbonate in the presence of an organic compound having a hydroxyl group or a carboxylic acid group, or water. By polymerizing using the solvent which contains it, the polyalkylene carbonate manufacturing method which does not have a problem on environment and hygiene was discovered, and it came to complete this invention.

重合溶媒は、ポリアルキレンカーボネートを溶解する能力を有する以外にも、環境破壊性が無く衛生性に優れること、重合活性に悪影響を及ぼさないこと、重合後の触媒除去に問題がないこと、ポリアルキレンカーボネートからの溶媒分離性に優れることなどが必要となる。鋭意検討した結果、カーボネート系溶媒もしくはエーテル系溶媒がこれらの要件を満たすことを見出し、特に、ジメチルカーボネート、メチルエチルカーボネート、1,3−ジオキソラン、ジオキサン等、生成するポリアルキレンカーボネートを25℃以上の温度において5重量%以上溶解する溶媒が有用であることを見出し、発明に至った。   In addition to having the ability to dissolve polyalkylene carbonate, the polymerization solvent has no environmental damage and excellent hygiene, does not adversely affect the polymerization activity, has no problem in removing the catalyst after polymerization, polyalkylene It is necessary to have excellent solvent separation from carbonate. As a result of intensive studies, it has been found that a carbonate-based solvent or an ether-based solvent satisfies these requirements. In particular, dimethyl carbonate, methyl ethyl carbonate, 1,3-dioxolane, dioxane and the like produce polyalkylene carbonate having a temperature of 25 ° C. or higher. It has been found that a solvent that dissolves at 5% by weight or more at temperature is useful, and has led to the invention.

本発明により、二酸化炭素とエポキシドの反応におけるポリアルキレンカーボネートの分子量を制御した製造において、環境破壊物質を使用せず、衛生性に優れ、かつ、安定的に生産することが提供できる。   According to the present invention, in production in which the molecular weight of the polyalkylene carbonate in the reaction of carbon dioxide and epoxide is controlled, it is possible to provide a stable production without using an environmentally destructive substance and with excellent hygiene.

以下に、本発明に関わるポリアルキレンカーボネートの製造方法について具体的に説明する。   Below, the manufacturing method of the polyalkylene carbonate in connection with this invention is demonstrated concretely.

本発明に用いることができるエポキシドは、モノエポキシドが好ましく、例えば、エチレンオキシド、プロピレンオキシド、1−ブテンオキシド、2−ブテンオキシド、イソブチレンオキシド、1−ペンテンオキシド、2−ペンテンオキシド、1-ヘキセンオキシド、1−オクテンオキシド、1−デセンオキシド、シクロペンテンオキシド、シクロヘキセンオキシド、スチレンオキシド、ビニルシクロヘキセンオキシド、3−フェニルプロピレンオキシド、3,3,3−トリフルオロプロピレンオキシド、3−ナフチルプロピレンオキシド、3−フェノキシプロピレンオキシド、3−ナフトキシプロピレンオキシド、ブタジエンモノオキシド、3−トリメチルシリルオキシプロピレンオキシド、メチルグリシジルカーボネート、エチルグリシジルカーボネート、コレステリルグリシジルカーボネートなどが表示でき、中でもエチレンオキシド、プロピレンオキシド、シクロヘキセンオキシドが好ましい。これらは、単独で用いても良く、また、2種以上を混合して用いてもかまわない。   The epoxide that can be used in the present invention is preferably a monoepoxide, such as ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, isobutylene oxide, 1-pentene oxide, 2-pentene oxide, 1-hexene oxide, 1-octene oxide, 1-decene oxide, cyclopentene oxide, cyclohexene oxide, styrene oxide, vinylcyclohexene oxide, 3-phenylpropylene oxide, 3,3,3-trifluoropropylene oxide, 3-naphthylpropylene oxide, 3-phenoxypropylene Oxide, 3-naphthoxypropylene oxide, butadiene monoxide, 3-trimethylsilyloxypropylene oxide, methyl glycidyl carbonate, ethyl glycidyl Carbonates, such as can be displayed cholesterinase glycidyl carbonate, among others, ethylene oxide, propylene oxide, cyclohexene oxide. These may be used singly or in combination of two or more.

本発明に用いられる触媒としては、亜鉛を含有する触媒を適用するのが好ましい。亜鉛含有触媒として、錯体触媒と酸化亜鉛−脂肪族ジカルボン酸反応物に大別され、いずれの触媒系も適用可能であるが、以下に酸化亜鉛−脂肪族ジカルボン酸反応物の製法について具体的に説明する。   As the catalyst used in the present invention, it is preferable to apply a catalyst containing zinc. The zinc-containing catalyst is roughly classified into a complex catalyst and a zinc oxide-aliphatic dicarboxylic acid reactant, and any of the catalyst systems can be applied. Hereinafter, a specific method for producing a zinc oxide-aliphatic dicarboxylic acid reactant will be described. explain.

酸化亜鉛は、どのようにして製造されたものであっても良く、例えば、シュウ酸亜鉛を400℃以上に加熱分解する方法、ヒドロキシ炭酸亜鉛を加熱脱水する方法、金属亜鉛を燃焼させる方法、あるいは、亜鉛鉱石を還元剤と共に焼成し、生成する亜鉛蒸気を空気酸化する方法などで製造された酸化亜鉛を用いることができる。   The zinc oxide may be produced in any way, for example, a method of thermally decomposing zinc oxalate to 400 ° C. or higher, a method of heating and dehydrating zinc hydroxycarbonate, a method of burning metallic zinc, or Zinc oxide produced by, for example, a method in which zinc ore is calcined with a reducing agent and the generated zinc vapor is oxidized with air can be used.

脂肪族ジカルボン酸として、例えば、シュウ酸、マロン酸、グルタル酸、アジピン酸、1,5−ペンタンジカルボン酸、1,6−ヘキサンジカルボン酸、1,8−オクタンジカルボン酸、1,10−デカンジカルボン酸などのジカルボン酸が挙げられる。これらのうち、グルタル酸、アジピン酸が特に好ましい。これらは単独で用いることもでき、また、2種以上を混合して用いることもできる。   Examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, glutaric acid, adipic acid, 1,5-pentanedicarboxylic acid, 1,6-hexanedicarboxylic acid, 1,8-octanedicarboxylic acid, and 1,10-decanedicarboxylic acid. And dicarboxylic acids such as acids. Of these, glutaric acid and adipic acid are particularly preferred. These can also be used alone or in combination of two or more.

触媒の製造時に、有機溶媒を共存させることもできる。有機溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、灯油などの脂肪族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、フェノール、クレゾール、キシレノールなどのフェノール類あるいはこれらのエーテル誘導体、ジエチルエーテル、ジブチルエーテル、メチルブチルエーテル、エチレングリコールジメチルエーテル、ジオキサン、ジオキソランなどのエーテル類あるいはこれらのアルキルまたはアリール誘導体、メタノール、エタノール、プロパノール、イソブタノール、ヘキサノール、エチレングリコール、ジエチレングリコール、グリセリンなどのアルコール類あるいはその誘導体、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチルなどのエステル類、アセトニトリル、プロピオニトリル、ブチロニトリルなどのニトリル類及びその誘導体、エチレンジアミン、ブチルアミン、アニリン等のアミン類及びその誘導体、N,N−ジメチルホルムアミドなどのアミド類などが例示できるが、いずれを用いた場合でも粉砕状態を改善し、活性を向上させるのに有効である。   An organic solvent can be allowed to coexist during the production of the catalyst. Examples of the organic solvent include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, and kerosene, aromatic hydrocarbons such as benzene, toluene, and xylene, phenols such as phenol, cresol, and xylenol, or ether derivatives thereof. Ethers such as diethyl ether, dibutyl ether, methyl butyl ether, ethylene glycol dimethyl ether, dioxane, dioxolane or alkyl or aryl derivatives thereof, alcohols such as methanol, ethanol, propanol, isobutanol, hexanol, ethylene glycol, diethylene glycol, glycerin or the like Its derivatives are methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, ethyl butyrate. Esters, nitriles such as acetonitrile, propionitrile, butyronitrile and derivatives thereof, amines such as ethylenediamine, butylamine, aniline and derivatives thereof, amides such as N, N-dimethylformamide, etc. Even when used, it is effective in improving the pulverized state and improving the activity.

しかしながら、有機溶媒としては、粉砕温度で液体であることが望ましく、さらに、酸化亜鉛と脂肪族ジカルボン酸との反応により生成する水を取り込むことができる有機溶媒が特に好ましい。具体的には、ベンゼン、トルエン、キシレン、ジオキサン、テトラヒドロフラン、オキセタン、メタノール、エタノール、プロパノール、イソブタノール、酢酸エチル、酢酸ブチル、プロピオン酸メチル、アセトニトリル、プロピオニトリル、ジメチルホルムアミドなどが好ましい。また、これらの有機溶媒は単独で用いることもでき、2種以上を混合して用いることもできる。   However, the organic solvent is preferably a liquid at the pulverization temperature, and more preferably an organic solvent that can take in water produced by the reaction between zinc oxide and aliphatic dicarboxylic acid. Specifically, benzene, toluene, xylene, dioxane, tetrahydrofuran, oxetane, methanol, ethanol, propanol, isobutanol, ethyl acetate, butyl acetate, methyl propionate, acetonitrile, propionitrile, dimethylformamide and the like are preferable. Moreover, these organic solvents can also be used independently and can also be used in mixture of 2 or more types.

酸化亜鉛−脂肪族ジカルボン酸反応物に、硫化亜鉛を添加し、活性向上させることもできる。硫化亜鉛はどのように製造されたものであっても良く、例えば、硫酸亜鉛溶液に硫化アンモニウムを加える方法、あるいは酢酸酸性の亜鉛塩溶液に硫化水素を通じて沈殿させる方法などによって製造された硫化亜鉛を用いることができる。   Zinc sulfide can be added to the zinc oxide-aliphatic dicarboxylic acid reactant to improve the activity. Zinc sulfide may be produced by any method. For example, zinc sulfide produced by a method of adding ammonium sulfide to a zinc sulfate solution or a method of precipitating hydrogen sulfide into an acidic zinc salt solution is used. Can be used.

触媒は、機械的粉砕処理手段によって緊密に接触させ、反応させることによって合成される。機械的粉砕処理は、例えば、ボールミル、振動ミル、衝撃ミル、遊星ボールミルなどを用いて行われる。粉砕時における酸化亜鉛と脂肪族ジカルボン酸の仕込み比率は、0.1〜10モル、好ましくは0.5〜2モルの範囲である。また、硫化亜鉛を添加する場合には、粉砕時における酸化亜鉛と硫化亜鉛の仕込み比率は、通常酸化亜鉛1モルに対し、硫化亜鉛0.001〜0.1モル、好ましくは0.01〜0.05モルの範囲である。有機溶媒を添加する場合には、添加する有機溶媒量はこれら酸化亜鉛と脂肪族ジカルボン酸の合計重量100重量部に対して、1〜5000重量部好ましくは5〜1000重量部である。   The catalyst is synthesized by intimate contact and reaction by means of a mechanical grinding process. The mechanical pulverization process is performed using, for example, a ball mill, a vibration mill, an impact mill, a planetary ball mill, or the like. The charging ratio of zinc oxide and aliphatic dicarboxylic acid during pulverization is in the range of 0.1 to 10 mol, preferably 0.5 to 2 mol. In addition, when zinc sulfide is added, the charging ratio of zinc oxide and zinc sulfide at the time of pulverization is usually 0.001 to 0.1 mol of zinc sulfide, preferably 0.01 to 0, relative to 1 mol of zinc oxide. .05 mole range. When an organic solvent is added, the amount of the organic solvent to be added is 1 to 5000 parts by weight, preferably 5 to 1000 parts by weight, with respect to 100 parts by weight of the total weight of these zinc oxide and aliphatic dicarboxylic acid.

原料の種類や粉砕装置によって、粉砕条件を適当に選ぶのが好ましいが、回転ボールミルを例にとれば、ステンレス鋼製内容量800ml、内直径100mmのボール内筒に直径15mmのステンレス鋼製ボール100個を収容し、被処理物量を20〜40gとした場合に回転数125rpmで、通常は10分〜30日間、好ましくは20分〜7日間の粉砕処理に相当する程度に行えばよい。振動ミル、遊星ボールミルを例にとれば、ステンレス鋼製内容量800ml、内直径100mmのボール内筒に直径15mmのステンレス鋼製ボール2.8kgを収容し、被処理物量を20〜40gとした場合に衝撃加速度2〜15Gで、通常は1分〜10日間、好ましくは5分〜4日間の粉砕処理に相当する程度に行えばよい。また、粉砕温度は通常室温付近を選べば良く、0〜150℃で粉砕することが好ましい。   It is preferable to select the pulverization conditions appropriately according to the type of raw material and the pulverizer, but if a rotary ball mill is taken as an example, a stainless steel ball 100 having a diameter of 15 mm and a ball inner cylinder having an inner volume of 800 mm and an inner diameter of 100 mm are used. When an individual is accommodated and the amount of an object to be processed is 20 to 40 g, the rotation speed is 125 rpm, usually 10 minutes to 30 days, preferably 20 minutes to 7 days. Taking a vibration mill and a planetary ball mill as an example, when a stainless steel ball of 2.8 kg is accommodated in a ball inner cylinder with a stainless steel inner capacity of 800 ml and an inner diameter of 100 mm, and the amount of workpiece is 20 to 40 g The impact acceleration is 2 to 15 G, and it is usually performed to the extent corresponding to the grinding treatment for 1 minute to 10 days, preferably 5 minutes to 4 days. Moreover, what is necessary is just to select grinding | pulverization temperature normally room temperature vicinity, and it is preferable to grind | pulverize at 0-150 degreeC.

これらの触媒を用い、カーボネート系溶媒またはエーテル系溶媒の存在下、二酸化炭素とエポキシ類とを重合し、ポリアルキレンカーボネートを製造する。カーボネート系溶媒またはエーテル系溶媒としては、生成するポリアルキレンカーボネートを25℃以上の温度において5重量%以上溶解する溶媒が好ましく、更に好ましくは25〜200℃、特に好ましくは25〜150℃で5重量%以上溶解する溶媒が好ましい。これらの例として例えば、ポリアルキレンカーボネートを溶解可能なジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネートなどのカーボネート系溶媒、1,3−ジオキソラン、ジオキサン等のエーテル溶媒を用いることができる。これらの溶媒は単独で用いることもでき、2種以上を混合して用いることもできる。さらに、環境衛生上問題のない脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒などに、ポリアルキレンカーボネートが溶解可能なレベルまでカーボネート系溶媒もしくはエーテル系溶媒を混合して使用することもできる。   Using these catalysts, carbon dioxide and epoxies are polymerized in the presence of a carbonate solvent or an ether solvent to produce a polyalkylene carbonate. As the carbonate-based solvent or ether-based solvent, a solvent in which the polyalkylene carbonate to be produced is dissolved at 5% by weight or more at a temperature of 25 ° C. or more is preferable, more preferably 25 to 200 ° C., particularly preferably 25 to 150 ° C. % Or more is preferred. Examples of these include, for example, carbonate solvents such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, and ethyl propyl carbonate that can dissolve polyalkylene carbonate, and ethers such as 1,3-dioxolane and dioxane. A solvent can be used. These solvents may be used alone or in combination of two or more. Further, a carbonate solvent or an ether solvent can be mixed and used in an aliphatic hydrocarbon solvent or an aromatic hydrocarbon solvent that is free from environmental health problems to a level at which the polyalkylene carbonate can be dissolved.

重合溶媒は、ポリアルキレンカーボネートを溶解する能力を有する以外にも、環境負荷・衛生性上工業的に溶媒として使用できること、重合活性に悪影響を及ぼさないこと、重合後の触媒除去に問題がないことなどが必要となる。上記の重合溶媒は、これらの要件を満たすが、さらには、ポリアルキレンカーボネートからの溶媒分離性に優れることが必要となる。ポリアルキレンカーボネートからの溶媒分離は、重合溶媒のフラッシュや蒸発乾固、あるいはヘキサンやメタノールのような貧溶媒中に析出させた後、析出物中の残留溶媒や使用した貧溶媒を気化することにより行う。従って、気化による脱溶媒が必要となるため、比較的低沸点の溶媒が好ましく、上記の重合溶媒中ではジメチルカーボネート、メチルエチルカーボネート、1,3−ジオキソランやジオキサンが特に好ましい。   In addition to having the ability to dissolve polyalkylene carbonate, the polymerization solvent can be used industrially as a solvent for environmental impact and hygiene, has no adverse effect on polymerization activity, and has no problem in removing the catalyst after polymerization. Etc. are required. The above-mentioned polymerization solvent satisfies these requirements, but further needs to be excellent in solvent separation from the polyalkylene carbonate. Solvent separation from polyalkylene carbonate can be achieved by flashing the polymerization solvent, evaporating to dryness, or by precipitating in a poor solvent such as hexane or methanol, and then evaporating the residual solvent in the precipitate and the poor solvent used. Do. Accordingly, since solvent removal by vaporization is required, a solvent having a relatively low boiling point is preferable. Among the above polymerization solvents, dimethyl carbonate, methyl ethyl carbonate, 1,3-dioxolane and dioxane are particularly preferable.

また、上記重合反応において、分子量制御剤、すなはち微量の水酸基またはカルボン酸基を有する有機化合物、または水を添加することで、生成する重合体の分子量を制御できる。ここで用いる水酸基またはカルボン酸基を有する有機化合物としては、芳香族カルボン酸、脂肪族カルボン酸、フェノール系化合物、アルコール系化合物が挙げられる。具体的には、芳香族カルボン酸として、安息香酸、o−トルイル酸、m−トルイル酸、p−トルイル酸、フタル酸、イソフタル酸、テレフタル酸、1−ナフトエ酸、2−ナフトエ酸、また脂肪族カルボン酸として、酢酸、プロピオン酸、酪酸、フェニル酢酸、トリメチル酢酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、またフェノール系化合物として、フェノール、ヒドロキノン、レゾルシン、o−クレゾール、m−クレゾール、p−クレゾール、2,6−ジメチルフェノール、ビスフェノールA、さらにアルコール系化合物として、ベンジルアルコール、t−ブタノール等が挙げられる。また、これらの分子量制御剤は単独で用いることもでき、2種以上を混合して用いることもできる。   In the above polymerization reaction, the molecular weight of the polymer to be produced can be controlled by adding a molecular weight control agent, that is, an organic compound having a trace amount of hydroxyl group or carboxylic acid group, or water. Examples of the organic compound having a hydroxyl group or a carboxylic acid group used here include aromatic carboxylic acids, aliphatic carboxylic acids, phenolic compounds, and alcoholic compounds. Specifically, as aromatic carboxylic acid, benzoic acid, o-toluic acid, m-toluic acid, p-toluic acid, phthalic acid, isophthalic acid, terephthalic acid, 1-naphthoic acid, 2-naphthoic acid, and fat Acetic acid, propionic acid, butyric acid, phenylacetic acid, trimethylacetic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and phenolic compounds such as phenol, hydroquinone, resorcin, o-cresol, m -Cresol, p-cresol, 2,6-dimethylphenol, bisphenol A, and examples of alcohol compounds include benzyl alcohol and t-butanol. Moreover, these molecular weight control agents can also be used independently, and 2 or more types can also be mixed and used for them.

前記の分子量制御剤の添加量は、通常触媒中に含まれるZnに対し、モル比で、0.05〜20特に0.10〜10の範囲が好ましい。あまりにも添加量が多いと反応速度が低下し、生産性が低下するおそれがある。   The addition amount of the molecular weight control agent is preferably in the range of 0.05 to 20, particularly 0.10 to 10, in terms of molar ratio to Zn contained in the catalyst. If the amount added is too large, the reaction rate may decrease and productivity may decrease.

溶媒とエポキシドの仕込み比は、通常容積比で10:90〜99:1特に20:80〜90:10の範囲が好ましい。炭酸ガスの圧力は特に限定されないが、0.1〜20MPa、好ましくは0.2〜10MPa、さらに好ましくは0.5〜5MPaの圧力で重合するのは好ましい。重合温度は通常0〜200℃、好ましくは50〜150℃である。重合時間を伸ばすことによって、ポリマーの収量を増やすことが可能である。重合時間は特に限定されないが、通常10分〜240時間、好ましくは30分〜80時間、さらに好ましくは1〜10時間の範囲で重合を行う。重合溶媒、エポキシド、炭酸ガス、触媒の添加順序は特に限定されない。また、重合は回分式、半連続式、連続式のいずれの方法において行うことができ、さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。   The charge ratio of the solvent and the epoxide is usually in the range of 10:90 to 99: 1, particularly 20:80 to 90:10 in terms of volume ratio. The pressure of the carbon dioxide gas is not particularly limited, but the polymerization is preferably performed at a pressure of 0.1 to 20 MPa, preferably 0.2 to 10 MPa, more preferably 0.5 to 5 MPa. The polymerization temperature is usually 0 to 200 ° C, preferably 50 to 150 ° C. By increasing the polymerization time, it is possible to increase the polymer yield. The polymerization time is not particularly limited, but the polymerization is usually carried out in the range of 10 minutes to 240 hours, preferably 30 minutes to 80 hours, more preferably 1 to 10 hours. The order of addition of the polymerization solvent, epoxide, carbon dioxide gas and catalyst is not particularly limited. The polymerization can be carried out by any of batch, semi-continuous and continuous methods, and the polymerization can be carried out in two or more stages having different reaction conditions.

重合反応終了の後、触媒残さは濾過することによって、あるいは希酸水溶液、希アルカリ水溶液などで洗浄することによって除去できる。   After completion of the polymerization reaction, the catalyst residue can be removed by filtration or by washing with a dilute acid aqueous solution, dilute alkali aqueous solution or the like.

以下、本発明を実施例によって説明するが、勿論本発明はこの実施例に限られるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, Of course, this invention is not limited to this Example.

<実施例1>
触媒調製
市販の酸化亜鉛10.4g、グルタル酸16.3g、硫化亜鉛0.25g、ジオキサン23.1gを、直径15.8mmのステンレス製ボール30個及び直径19mmのステンレス製ボール30個が収容された内容積500mlのステンレス製ボールミル内筒に仕込み、遊星ボールミルにて加速度3.5Gで9時間粉砕接触させた。得られた接触処理物を150℃、3hrで減圧乾燥させて、亜鉛含有触媒を得た。
<Example 1>
Catalyst preparation Commercially available 10.4 g of zinc oxide, 16.3 g of glutaric acid, 0.25 g of zinc sulfide, and 23.1 g of dioxane, containing 30 stainless steel balls with a diameter of 15.8 mm and 30 stainless steel balls with a diameter of 19 mm. The sample was placed in an inner cylinder of a stainless steel ball mill having an inner volume of 500 ml and contacted with a planetary ball mill at an acceleration of 3.5 G for 9 hours. The obtained contact-treated product was dried under reduced pressure at 150 ° C. for 3 hours to obtain a zinc-containing catalyst.

重合
内容積0.3リットルのオートクレーブに、89gのジメチルカーボネートと、上記亜鉛含有触媒0.24g、エチレンオキサイド23gを仕込み、室温にて炭酸ガスを圧力1.5MPaとなるよう加えた。その後、80℃まで昇温し、2時間重合を行った。昇温直後には、2.7MPaまで圧力は上昇したが、反応と共に炭酸ガスが消費され圧力は降下した。重合終了後、オートクレーブを冷却した後、脱圧し、重合液を取り出した。重合液は、ポリマーが完全に溶解した状態であった。取り出したポリマー溶液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、14.3gであり、触媒活性は58.7g/g−catであった。GPCで分析した重量平均分子量は、26万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、28ppmであった。
In an autoclave having a polymerization internal volume of 0.3 liter, 89 g of dimethyl carbonate, 0.24 g of the zinc-containing catalyst, and 23 g of ethylene oxide were charged, and carbon dioxide was added at room temperature to a pressure of 1.5 MPa. Then, it heated up to 80 degreeC and superposed | polymerized for 2 hours. Immediately after the temperature increase, the pressure increased to 2.7 MPa, but carbon dioxide was consumed with the reaction and the pressure decreased. After completion of the polymerization, the autoclave was cooled and then depressurized to take out the polymerization solution. The polymerization solution was in a state where the polymer was completely dissolved. The taken-out polymer solution was filtered with a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 14.3 g and the catalytic activity was 58.7 g / g-cat. The weight average molecular weight analyzed by GPC was 260,000. Further, the residual zinc concentration in the polymer obtained by drying after filtration was 28 ppm.

<実施例2>
実施例1において、重合にジメチルカーボネートの代わりに、1,3−ジオキソランを用いた以外は、実施例1で得られた触媒を用い、実施例1と同様に重合した。重合後、取り出した重合液は、ポリマーが完全に溶解した状態であった。取り出したポリマー溶液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、19.2gであり、触媒活性は79.1g/g−catであった。GPCで分析した重量平均分子量は、35万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、30ppmであった。
<Example 2>
In Example 1, polymerization was carried out in the same manner as in Example 1 except that 1,3-dioxolane was used instead of dimethyl carbonate for the polymerization, and the catalyst obtained in Example 1 was used. After polymerization, the taken out polymerization solution was in a state in which the polymer was completely dissolved. The taken-out polymer solution was filtered with a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 19.2 g and the catalyst activity was 79.1 g / g-cat. The weight average molecular weight analyzed by GPC was 350,000. Moreover, the residual zinc concentration in the polymer obtained by drying after filtration was 30 ppm.

<比較例1>
実施例1において、重合にジメチルカーボネートの代わりに、n−ヘキサンを用いた以外は、実施例1で得られた触媒を用い、実施例1と同様に重合した。重合後、取り出した重合液は、白色で不定形のポリマーが析出していた。1mmの孔径を持つ金網により濾過を実施し、ポリマー塊と母液を分離し、ポリマー塊を乾燥させた。ポリマーの収量は、12.3gであり、触媒活性は48.3g/g−catであった。GPCで分析した重量平均分子量は、51万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、3300ppmであった。
<Comparative Example 1>
In Example 1, polymerization was carried out in the same manner as in Example 1 except that n-hexane was used instead of dimethyl carbonate for the polymerization, and the catalyst obtained in Example 1 was used. After the polymerization, the polymer solution taken out had white and amorphous polymer deposited. Filtration was performed through a wire mesh having a 1 mm pore diameter to separate the polymer mass from the mother liquor, and the polymer mass was dried. The polymer yield was 12.3 g and the catalytic activity was 48.3 g / g-cat. The weight average molecular weight analyzed by GPC was 510,000. The residual zinc concentration in the polymer obtained by drying after filtration was 3300 ppm.

<実施例3>
実施例2において、溶媒に分子量制御剤として安息香酸0.10gを添加した以外は実施例2と同様に重合した。重合後、取り出した重合液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、11.5gであり、触媒活性は44.8g/g−catであった。GPCで分析した重量平均分子量は、6.4万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、4ppmであった。
<Example 3>
In Example 2, polymerization was performed in the same manner as in Example 2 except that 0.10 g of benzoic acid was added as a molecular weight control agent to the solvent. After the polymerization, the removed polymer solution was filtered through a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 11.5 g and the catalytic activity was 44.8 g / g-cat. The weight average molecular weight analyzed by GPC was 64,000. The residual zinc concentration in the polymer obtained by drying after filtration was 4 ppm.

<実施例4>
実施例3において、反応時間を6時間とした以外は実施例3と同様に重合した。重合後、取り出した重合液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、16.6gであり、触媒活性は65.6g/g−catであった。GPCで分析した重量平均分子量は、7.0万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、6ppmであった。
<Example 4>
In Example 3, polymerization was performed in the same manner as in Example 3 except that the reaction time was 6 hours. After the polymerization, the removed polymer solution was filtered through a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 16.6 g and the catalyst activity was 65.6 g / g-cat. The weight average molecular weight analyzed by GPC was 70,000. Moreover, the residual zinc concentration in the polymer obtained by drying after filtration was 6 ppm.

<実施例5>
実施例2において、溶媒に分子量制御剤として水0.015gを添加した以外は実施例2と同様に重合した。重合後、取り出した重合液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、12.4gであり、触媒活性は48.6g/g−catであった。GPCで分析した重量平均分子量は、2.8万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、4ppmであった。
<Example 5>
In Example 2, polymerization was performed in the same manner as in Example 2 except that 0.015 g of water was added as a molecular weight control agent to the solvent. After the polymerization, the removed polymer solution was filtered through a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 12.4 g and the catalyst activity was 48.6 g / g-cat. The weight average molecular weight analyzed by GPC was 28,000. The residual zinc concentration in the polymer obtained by drying after filtration was 4 ppm.

<実施例6>
実施例2において、溶媒に分子量制御剤としてグルタル酸0.11gを添加した以外は実施例2と同様に重合した。重合後、取り出した重合液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、11.4gであり、触媒活性は44.8g/g−catであった。GPCで分析した重量平均分子量は、3.8万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、7ppmであった。
<Example 6>
In Example 2, polymerization was performed in the same manner as in Example 2 except that 0.11 g of glutaric acid was added as a molecular weight control agent to the solvent. After the polymerization, the removed polymer solution was filtered through a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 11.4 g and the catalytic activity was 44.8 g / g-cat. The weight average molecular weight analyzed by GPC was 38,000. Moreover, the residual zinc concentration in the polymer obtained by drying after filtration was 7 ppm.

<実施例7>
実施例2において、溶媒に分子量制御剤としてo−クレゾール0.059gを添加した以外は実施例2と同様に重合した。重合後、取り出した重合液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、20.8gであり、触媒活性は75.9g/g−catであった。GPCで分析した重量平均分子量は、8.7万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、5ppmであった。
<Example 7>
In Example 2, polymerization was performed in the same manner as in Example 2 except that 0.059 g of o-cresol was added as a molecular weight control agent to the solvent. After the polymerization, the removed polymer solution was filtered through a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 20.8 g and the catalytic activity was 75.9 g / g-cat. The weight average molecular weight analyzed by GPC was 87,000. The residual zinc concentration in the polymer obtained by drying after filtration was 5 ppm.

<実施例8>
実施例2において、溶媒に分子量制御剤としてトリメチル酢酸0.083gを添加した以外は実施例2と同様に重合した。重合後、取り出した重合液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、10.7gであり、触媒活性は40.2g/g−catであった。GPCで分析した重量平均分子量は、2.9万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、4ppmであった。
<Example 8>
In Example 2, polymerization was performed in the same manner as in Example 2 except that 0.083 g of trimethylacetic acid was added as a molecular weight control agent to the solvent. After the polymerization, the removed polymer solution was filtered through a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 10.7 g and the catalyst activity was 40.2 g / g-cat. The weight average molecular weight analyzed by GPC was 29,000. The residual zinc concentration in the polymer obtained by drying after filtration was 4 ppm.

<実施例9>
実施例2において、溶媒に分子量制御剤としてベンジルアルコール0.11gを添加した以外は実施例2と同様に重合した。重合後、取り出した重合液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、27.7gであり、触媒活性は109.8g/g−catであった。GPCで分析した重量平均分子量は、6.6万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、7ppmであった。
<Example 9>
In Example 2, polymerization was performed in the same manner as in Example 2 except that 0.11 g of benzyl alcohol was added as a molecular weight control agent to the solvent. After the polymerization, the removed polymer solution was filtered through a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 27.7 g and the catalytic activity was 109.8 g / g-cat. The weight average molecular weight analyzed by GPC was 66,000. Moreover, the residual zinc concentration in the polymer obtained by drying after filtration was 7 ppm.

<実施例10>
実施例8において、ベンジルアルコールの添加量を0.18gに増加した以外は実施例8と同様に重合した。重合後、取り出した重合液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、27.7gであり、触媒活性は105.4g/g−catであった。GPCで分析した重量平均分子量は、4.5万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、4ppmであった。
<Example 10>
In Example 8, polymerization was performed in the same manner as in Example 8 except that the amount of benzyl alcohol added was increased to 0.18 g. After the polymerization, the removed polymer solution was filtered through a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 27.7 g and the catalyst activity was 105.4 g / g-cat. The weight average molecular weight analyzed by GPC was 45,000. The residual zinc concentration in the polymer obtained by drying after filtration was 4 ppm.

<実施例11>
実施例8において、ベンジルアルコールの添加量を0.40gに増加した以外は実施例8と同様に重合した。重合後、取り出した重合液を、孔径1ミクロンのフィルターにより濾過を実施し、固体である亜鉛含有触媒を除去し、濾液を乾燥してポリマーを得た。ポリマーの収量は、28.6gであり、触媒活性は113.2g/g−catであった。GPCで分析した重量平均分子量は、2.1万であった。また、濾過後に乾燥して得られたポリマー中の残留亜鉛濃度は、6ppmであった。
<Example 11>
In Example 8, polymerization was performed in the same manner as in Example 8 except that the amount of benzyl alcohol added was increased to 0.40 g. After the polymerization, the removed polymer solution was filtered through a filter having a pore size of 1 micron to remove the solid zinc-containing catalyst, and the filtrate was dried to obtain a polymer. The polymer yield was 28.6 g and the catalytic activity was 113.2 g / g-cat. The weight average molecular weight analyzed by GPC was 21,000. Moreover, the residual zinc concentration in the polymer obtained by drying after filtration was 6 ppm.

Claims (7)

水酸基またはカルボン酸基を有する有機化合物、もしくは水の存在下、二酸化炭素とエポキシドとを溶液共重合する際に、カーボネート系溶媒もしくはエーテル系溶媒を用いることを特徴とするポリアルキレンカーボネートの製造法。 A method for producing a polyalkylene carbonate, which comprises using a carbonate solvent or an ether solvent in solution copolymerization of carbon dioxide and epoxide in the presence of an organic compound having a hydroxyl group or a carboxylic acid group, or water. 二酸化炭素とエポキシドの反応の際、亜鉛含有触媒を用いる請求項1記載のポリアルキレンカーボネートの製造法。 The method for producing a polyalkylene carbonate according to claim 1, wherein a zinc-containing catalyst is used in the reaction of carbon dioxide and epoxide. 亜鉛含有触媒が、酸化亜鉛と脂肪族ジカルボン酸とを機械的粉砕処理手段により接触させて得られる亜鉛含有固体触媒である請求項2記載のポリアルキレンカーボネートの製造法。 The method for producing a polyalkylene carbonate according to claim 2, wherein the zinc-containing catalyst is a zinc-containing solid catalyst obtained by bringing zinc oxide and an aliphatic dicarboxylic acid into contact with each other by a mechanical pulverization means. カーボネート系溶媒もしくはエーテル系溶媒が、生成するポリアルキレンカーボネートを25℃以上の温度において5重量%以上溶解する溶媒である請求項1記載のポリアルキレンカーボネートの製造法。 The method for producing a polyalkylene carbonate according to claim 1, wherein the carbonate solvent or ether solvent is a solvent for dissolving 5% by weight or more of the produced polyalkylene carbonate at a temperature of 25 ° C or higher. カーボネート系溶媒が、ジメチルカーボネート及びメチルエチルカーボネートの少なくとも1種である請求項4記載のポリアルキレンカーボネートの製造法。 The method for producing a polyalkylene carbonate according to claim 4, wherein the carbonate solvent is at least one of dimethyl carbonate and methyl ethyl carbonate. エーテル系溶媒が、1,3−ジオキソラン及びジオキサンの少なくとも1種である請求項4記載のポリアルキレンカーボネートの製造法。 The process for producing a polyalkylene carbonate according to claim 4, wherein the ether solvent is at least one of 1,3-dioxolane and dioxane. 水酸基またはカルボン酸基を有する有機化合物が芳香族カルボン酸、脂肪族カルボン酸、フェノール系化合物、アルコール系化合物であることを特徴とする請求項1記載のポリアルキレンカーボネートの製造法。 2. The method for producing a polyalkylene carbonate according to claim 1, wherein the organic compound having a hydroxyl group or a carboxylic acid group is an aromatic carboxylic acid, an aliphatic carboxylic acid, a phenol compound, or an alcohol compound.
JP2005319979A 2005-11-02 2005-11-02 Polyalkylene carbonate production method Pending JP2007126547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319979A JP2007126547A (en) 2005-11-02 2005-11-02 Polyalkylene carbonate production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319979A JP2007126547A (en) 2005-11-02 2005-11-02 Polyalkylene carbonate production method

Publications (1)

Publication Number Publication Date
JP2007126547A true JP2007126547A (en) 2007-05-24

Family

ID=38149463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319979A Pending JP2007126547A (en) 2005-11-02 2005-11-02 Polyalkylene carbonate production method

Country Status (1)

Country Link
JP (1) JP2007126547A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119454A1 (en) * 2008-03-25 2009-10-01 旭硝子株式会社 Hydroxy compound, process for production thereof, and prepolymer and polyurethane each comprising the hydroxy compound
KR20110112061A (en) * 2010-04-06 2011-10-12 에스케이이노베이션 주식회사 Precise control of molecular weight and chain shape control in carbon dioxide/epoxide alternating copolymerization and preparation of low molecular weight poly(alkylene carbonate) thereby
CN105061746A (en) * 2015-08-04 2015-11-18 中国科学院长春应用化学研究所 Preparation method of poly(carbonic ester-ether)polyol
KR20160012726A (en) 2014-07-25 2016-02-03 주식회사 엘지화학 Process for producing polyalkylene carbonate
KR20170061904A (en) 2015-11-27 2017-06-07 주식회사 엘지화학 A preparation method of polyalkylene carbonate
US9732187B2 (en) 2013-11-18 2017-08-15 Lg Chem, Ltd. Manufacturing method of polyalkylene carbonate resin
US9751981B2 (en) 2013-10-30 2017-09-05 Lg Chem, Ltd. Manufacturing method of organic zinc catalyst and manufacturing method of polyalkylene carbonate resin
KR101782502B1 (en) 2014-11-14 2017-09-27 주식회사 엘지화학 Polyalkylene carbonate resin with improved thermal stability
US9803048B2 (en) 2013-11-04 2017-10-31 Lg Chem, Ltd. Organic zinc catalyst and preparation method thereof
KR20180113068A (en) * 2017-04-05 2018-10-15 강남제비스코 주식회사 The polyester varnish for insulating electric wire with low viscosity, and its manufacturing method
US10577462B2 (en) 2014-11-04 2020-03-03 Lg Chem, Ltd. Production method of poly(alkylene carbonate) particles
US10633488B2 (en) 2016-03-09 2020-04-28 Lg Chem Ltd. Organic zinc catalyst, preparation method thereof, and method for preparing polyalkylene carbonate resin using the catalyst

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119454A1 (en) * 2008-03-25 2009-10-01 旭硝子株式会社 Hydroxy compound, process for production thereof, and prepolymer and polyurethane each comprising the hydroxy compound
JPWO2009119454A1 (en) * 2008-03-25 2011-07-21 旭硝子株式会社 Hydroxy compound, process for producing the same, prepolymer and polyurethane using the hydroxy compound
CN101977965B (en) * 2008-03-25 2012-11-28 旭硝子株式会社 Hydroxy compound, process for its production, prepolymer employing the hydroxy compound, and polyurethane
JP5381977B2 (en) * 2008-03-25 2014-01-08 旭硝子株式会社 Method for producing hydroxy compound, and method for producing prepolymer and polyurethane
KR20110112061A (en) * 2010-04-06 2011-10-12 에스케이이노베이션 주식회사 Precise control of molecular weight and chain shape control in carbon dioxide/epoxide alternating copolymerization and preparation of low molecular weight poly(alkylene carbonate) thereby
JP2013523971A (en) * 2010-04-06 2013-06-17 エスケー イノベーション カンパニー リミテッド Precise control of molecular weight and control of chain shape of carbon dioxide / epoxide copolymer and production of low molecular weight poly (alkylene carbonate) using the same
KR101715657B1 (en) 2010-04-06 2017-03-14 에스케이이노베이션 주식회사 Precise control of molecular weight and chain shape control in carbon dioxide/epoxide alternating copolymerization and preparation of low molecular weight poly(alkylene carbonate) thereby
US9751981B2 (en) 2013-10-30 2017-09-05 Lg Chem, Ltd. Manufacturing method of organic zinc catalyst and manufacturing method of polyalkylene carbonate resin
US9803048B2 (en) 2013-11-04 2017-10-31 Lg Chem, Ltd. Organic zinc catalyst and preparation method thereof
US9732187B2 (en) 2013-11-18 2017-08-15 Lg Chem, Ltd. Manufacturing method of polyalkylene carbonate resin
KR20160012726A (en) 2014-07-25 2016-02-03 주식회사 엘지화학 Process for producing polyalkylene carbonate
US10577462B2 (en) 2014-11-04 2020-03-03 Lg Chem, Ltd. Production method of poly(alkylene carbonate) particles
KR101782502B1 (en) 2014-11-14 2017-09-27 주식회사 엘지화학 Polyalkylene carbonate resin with improved thermal stability
CN105061746A (en) * 2015-08-04 2015-11-18 中国科学院长春应用化学研究所 Preparation method of poly(carbonic ester-ether)polyol
KR20170061904A (en) 2015-11-27 2017-06-07 주식회사 엘지화학 A preparation method of polyalkylene carbonate
KR102041328B1 (en) 2015-11-27 2019-11-06 주식회사 엘지화학 A preparation method of polyalkylene carbonate
US10633488B2 (en) 2016-03-09 2020-04-28 Lg Chem Ltd. Organic zinc catalyst, preparation method thereof, and method for preparing polyalkylene carbonate resin using the catalyst
US10836860B2 (en) 2016-03-09 2020-11-17 Lg Chem, Ltd. Organic zinc catalyst, preparation method thereof, and method for preparing polyalkylene carbonate resin using the catalyst
KR20180113068A (en) * 2017-04-05 2018-10-15 강남제비스코 주식회사 The polyester varnish for insulating electric wire with low viscosity, and its manufacturing method
KR101961540B1 (en) 2017-04-05 2019-03-22 강남제비스코 주식회사 The polyester varnish for insulating electric wire with low viscosity, and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2007126547A (en) Polyalkylene carbonate production method
TWI476228B (en) Production method of aliphatic polycarbonate
CN1035556C (en) A process for preparing a zinc-containing solid catalyst
TWI404743B (en) Organic zinc catalyst and the production method of polyalkylene carbonate using the catalyst
JP6194119B2 (en) Method for producing organozinc catalyst and method for producing polyalkylene carbonate resin
JP2732475B2 (en) Zinc-containing solid catalyst and method for producing polyalkylene carbonate using the catalyst
US20180079765A1 (en) Double Metal Cyanide Catalyst and Epoxide/Carbon Dioxide Copolymer Prepared Using the Same
CN101928390B (en) Metal cyanide coordination catalyst and preparation method and application thereof
JP5524602B2 (en) Solid acid catalyst
JP2006002063A (en) Method for producing polyalkylene carbonate
JPWO2011004730A1 (en) Method for producing aliphatic polycarbonate particles
CN102884103A (en) Method for producing polyalkylene carbonates
US10836860B2 (en) Organic zinc catalyst, preparation method thereof, and method for preparing polyalkylene carbonate resin using the catalyst
CN105764954B (en) Organozinc catalyst and preparation method thereof and the method for using the catalyst preparation polyalkylene carbonate resin
JP6272473B2 (en) Method for producing polyalkylene carbonate resin
WO2012134643A2 (en) Preparation of antiplasticizers for thermoplastic polyesters
JP2693584B2 (en) Method for producing catalyst component for producing polyalkylene carbonate
JP2018536737A (en) Organo zinc-supported catalyst and method for producing the same, and method for producing polyalkylene carbonate resin using the catalyst
CN105709785B (en) A kind of catalyst being used to prepare carbonic acid glyceride, its application method and its application
JP2571269B2 (en) Method for producing polyalkylene carbonate
CN112707560A (en) Titanium-containing waste liquid treatment method, titanium dioxide raw material and application
KR101794913B1 (en) Separation method of organic zinc catalyst
JP2012180445A (en) Method of manufacturing aliphatic polycarbonate
JP5529498B2 (en) Process for producing dimethyl terephthalate from polyester
JPH0482880A (en) Production of glycidyl compound

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080414