JPH0297102A - Plane antenna equipment - Google Patents

Plane antenna equipment

Info

Publication number
JPH0297102A
JPH0297102A JP25034788A JP25034788A JPH0297102A JP H0297102 A JPH0297102 A JP H0297102A JP 25034788 A JP25034788 A JP 25034788A JP 25034788 A JP25034788 A JP 25034788A JP H0297102 A JPH0297102 A JP H0297102A
Authority
JP
Japan
Prior art keywords
dielectric plate
radiation elements
distance
radiating element
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25034788A
Other languages
Japanese (ja)
Inventor
Soichi Matsumoto
松本 操一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25034788A priority Critical patent/JPH0297102A/en
Publication of JPH0297102A publication Critical patent/JPH0297102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To vary the resonance frequency without changing dimensions of radiation elements in accordance with the distance between radiation elements and a dielectric plate by providing the fixed or distance variable dielectric plate closely to the radio wave radiation side of a microstrip antenna on which radiation elements are arranged. CONSTITUTION:A dielectric plate 5 having a thickness (t) is provided closely to radiation element 1 with a distance Z between them. In this case, the electric field distribution of radiation elements 1 is spread by the fringing effect, and a length L and a width W of radiation elements 1 look equivalently larger. Consequently, an equivalent specific inductive capacity epsilone at this time is larger than an equivalent specific inductive capacity epsilone0 for the absence of the dielectric plate 5. Thus, a resonance frequency fgamma is lower than a resonance frequency fgamma0 for the absence of the dielectric plate 5. The fringing effect is increased according as the dielectric plate 5 is closer to radiation elements 1, that is, the distance Z is shorter. Consequently, the resonance frequency is changed without changing dimensions of radiation elements 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、衛星通信、レーダ等の分野で電波を送信あ
るいは受信する平面アンテナ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flat antenna device for transmitting or receiving radio waves in fields such as satellite communication and radar.

〔従来の技術〕[Conventional technology]

第9図は従来の平面アンテナ装置の一例を示す平面図及
び断面図、第10図は第9図の一部の構成図であり、図
において、1は放射素子、2は写真食刻により放射素子
1を形成しているプリント基板、3はその接地導体であ
る。又、4は放射素子1に給電するためのマイクロスト
リップアンテナ線路である。
FIG. 9 is a plan view and a sectional view showing an example of a conventional planar antenna device, and FIG. 10 is a block diagram of a part of FIG. A printed circuit board forming the element 1, 3 is its ground conductor. Further, 4 is a microstrip antenna line for feeding power to the radiating element 1.

次に動作について説明する。マイクロストリップ線路4
から放射素子1に給電する周波数f roとした時、第
9図において放射素子1の幅Wをに選定し、長さしを ただし、 ・・・(3) 但し、ε、は基板2の比誘電率、hは基板2の厚み、C
は光速、ε。。は等価比誘電率である。
Next, the operation will be explained. Microstrip line 4
When the frequency of feeding power to the radiating element 1 is f ro, the width W of the radiating element 1 is selected as shown in FIG. dielectric constant, h is the thickness of the substrate 2, C
is the speed of light, ε. . is the equivalent dielectric constant.

に選定することにより放射素子1は共振し、周波数f、
。の電波が放射される。なお、以上の原理についてはア
イ・ジェイ・バール(1,J、Bahl)氏およびピー
・バーティア(p、3hartia)氏による文献「マ
イクロストリップ アンテナ」の第2章(MICRO3
TRIP ANTENNAS’ chapter2)を
参照されたい。
By selecting , the radiating element 1 resonates and the frequency f,
. radio waves are emitted. The above principle is explained in Chapter 2 (MICRO3) of the literature "Microstrip Antenna" by I.J.
Please refer to TRIP ANTENNAS' chapter 2).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の平面アンテナ装置は以上のように構成されており
、基本的に放射素子1の共振現象を利用しているため、
周波数f、から離れた周波数では放射パターン、入力イ
ンピーダンス、軸比の劣化が生じる。従って、広帯域の
アンテナには適さず、周波数ごとに放射素子1の幅W、
及び長さしを変えて共振周波数f、を変化させる必要が
あるなどの問題点があった。
The conventional planar antenna device is configured as described above, and basically utilizes the resonance phenomenon of the radiating element 1.
At frequencies far from the frequency f, the radiation pattern, input impedance, and axial ratio deteriorate. Therefore, it is not suitable for a wideband antenna, and the width W of the radiating element 1 for each frequency is
There are also problems in that it is necessary to change the resonant frequency f by changing the length.

この発明は上記のような従来のものの問題点を解消する
ためになされたもので、プリント基板2上に写真食刻さ
れた放射素子1の幅W、長さし及びプリント基板の厚み
hの寸法を変化させることなく、共振周波数f、、を変
化させることができる平面アンテナ装置を得ることを目
的とする。
This invention was made in order to solve the problems of the conventional ones as described above, and the width W and length of the radiating element 1 photo-etched on the printed circuit board 2 and the thickness h of the printed circuit board 2 are fixed. An object of the present invention is to obtain a planar antenna device that can change the resonant frequency f, without changing the resonant frequency f.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る平面アンテナ装置は、放射素子を配置し
たマイクロストリップアンテナの電波を放射する側に、
固定あるいは距離可変の誘電体板を近接して設けたもの
である。
The planar antenna device according to the present invention includes a microstrip antenna on which a radiating element is arranged, on the radio wave radiating side.
A fixed or variable-distance dielectric plate is provided adjacently.

〔作用〕[Effect]

この発明においては、平面アンテナ装置は放射素子を配
置したマイクロストリップアンテナと近接した誘電体板
により、それらの距離に応じて放射素子の寸法を変化さ
せることな(、共振周波数を変化させることができる。
In this invention, the planar antenna device uses a dielectric plate adjacent to a microstrip antenna in which a radiating element is arranged, so that the dimensions of the radiating element can be changed (and the resonant frequency can be changed) according to the distance between them. .

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図及び第2図は本発明の一実施例による平面アンテナ装
置を示し、図において、1は放射素子、2は写真食刻に
より素子1を形成しているプリント基板、3はその地板
、4は放射素子1に給電するためのマイクロストリップ
線路、5は放射素子1の電波の放射方向に距離Zだけ離
れて近接して設けられた厚さtの誘電体板である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figures 1 and 2 show a planar antenna device according to an embodiment of the present invention. In the figures, 1 is a radiating element, 2 is a printed circuit board on which the element 1 is formed by photo-etching, 3 is a base plate thereof, and 4 is a A microstrip line 5 for feeding power to the radiating element 1 is a dielectric plate having a thickness t that is provided close to the radiating element 1 at a distance Z in the radio wave radiation direction.

次に動作について説明する。マイクロストリップ線路4
から放射素子1に給電された電波はある周波数で共振現
象を起こし、その周波数で電波は放射される。この時、
第9図に示すように誘電体板5を設けない場合には(1
)式及び(2)式で求められる放射素子lの幅W、長さ
しを選ぶことによって周波数frOで共振を生じる。
Next, the operation will be explained. Microstrip line 4
The radio waves fed to the radiating element 1 from above cause a resonance phenomenon at a certain frequency, and the radio waves are radiated at that frequency. At this time,
As shown in FIG. 9, when the dielectric plate 5 is not provided (1
) and (2) by selecting the width W and length of the radiating element l to produce resonance at the frequency frO.

ここで、放射素子lに近接して距離Zだけ離れた位置に
厚さtの誘電体板5を設けた場合、放射素子1での電界
分布はフリンジング効果により拡がった分布となり、等
価的に放射素子1の長さし及び幅Wは大きく見える。従
ってこの時の等価比誘電率a、は誘電体板5を設けない
場合の等価比誘電率ε。。に比べて大きくなる。これに
より、共振周波数f、、は誘電体板5を設けない場合の
共振周波数fF(+に比べて(4)式で表わされる周波
数Δf。
Here, if a dielectric plate 5 with a thickness of t is provided close to the radiating element l and separated by a distance Z, the electric field distribution in the radiating element 1 becomes a widened distribution due to the fringing effect, and is equivalently The length and width W of the radiating element 1 appear large. Therefore, the equivalent relative permittivity a at this time is the equivalent relative permittivity ε when the dielectric plate 5 is not provided. . becomes larger compared to As a result, the resonant frequency f, , is the frequency Δf expressed by equation (4) compared to the resonant frequency fF (+) when the dielectric plate 5 is not provided.

たけ低くなる。It gets lower.

第3図はVSWR(電圧定在波比)を示すが、破線L1
は誘電体板5を設けない場合の特性、実線L2は誘電体
板5を設けた場合の特性である。
Figure 3 shows VSWR (voltage standing wave ratio), where the broken line L1
is the characteristic when the dielectric plate 5 is not provided, and the solid line L2 is the characteristic when the dielectric plate 5 is provided.

なお、上記実施例では放射素子1の形状として矩形のも
のを示したが、第4図に示すように円形放射素子11の
場合でも同様の効果を奏する。
In the above embodiment, the shape of the radiating element 1 is rectangular, but the same effect can be obtained even when the radiating element 11 is circular as shown in FIG.

また、第6図は放射素子1を配置したプリント基板2と
誘電体板との間隔2を可変できる可動機構6を設けたも
のである。第7図のグラフL3は距離Zを変化させた場
合の誘電体板5の厚さtをパラメータにした場合の共振
周波数f、を示すグラフである。誘電体板5を放射素子
1に近いほど、即ちZが小さいほどフリンジング効果は
大きく、共振周波数は最も低くなるが、放射素子1から
離れるほど、即ちZが大きいほど誘電体板5の影響は少
なくなり、共振周波数f、は誘電体板5を設けない場合
の共振周波数に近づく。
Further, FIG. 6 shows a device provided with a movable mechanism 6 that can vary the distance 2 between the printed circuit board 2 on which the radiating element 1 is arranged and the dielectric plate. Graph L3 in FIG. 7 is a graph showing the resonance frequency f when the thickness t of the dielectric plate 5 is used as a parameter when the distance Z is changed. The closer the dielectric plate 5 is to the radiating element 1, that is, the smaller Z is, the greater the fringing effect is, and the lowest the resonant frequency is. As a result, the resonant frequency f approaches the resonant frequency when the dielectric plate 5 is not provided.

従って、可動機構6を用いて放射素子1と誘電体板5と
の間隔Zを変化させることによって放射素子1の寸法を
変えることなく、共振周波数を変えることのできる同調
可能な平面アンテナ装置が実現できる。
Therefore, by changing the distance Z between the radiating element 1 and the dielectric plate 5 using the movable mechanism 6, a tunable planar antenna device is realized in which the resonant frequency can be changed without changing the dimensions of the radiating element 1. can.

また、第8図は放射素子1を配置したプリント基板2の
上部に間隔Zだけ離れた位置に誘電体板からなるレドー
ム51が配置され、ベース7上に固定された可動機構6
1により上記間隔Zを可変できるようにしたものであり
、可動機構61を設けるだけで共振周波数を変えること
のできる同調可能な平面アンテナ装置が実現できる。
Further, FIG. 8 shows a radome 51 made of a dielectric plate arranged at a distance Z above the printed circuit board 2 on which the radiating element 1 is arranged, and a movable mechanism 6 fixed on the base 7.
1 allows the above-mentioned interval Z to be varied, and by simply providing the movable mechanism 61, a tunable planar antenna device that can change the resonance frequency can be realized.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、放射素子に近接して
固定あるいは距離可変の誘電体板を設けたので、放射素
子の寸法を変えることな(、共振周波数を可変できる平
面アンテナ装置が得られる効果がある。
As described above, according to the present invention, since a fixed or distance-variable dielectric plate is provided close to the radiating element, a planar antenna device that can change the resonant frequency without changing the dimensions of the radiating element can be obtained. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による平面アンテナ装置を示
す図であり、第1図(a)はその平面図、第1図(b)
はその断面図、第2図は第1図の一部の構成図、第3図
は平面アンテナ装置のVSWR特性グラフを示す図、第
4図は本発明の他の実施例を示す図であり、第4図(a
)はその平面図、第4図(blはその断面図、第5図は
本発明の他の実施例を示す図であり、第5図(alはそ
の平面図、第5図(blはその断面図、第6図は本発明
の他の実施例を示す図であり、第6図(alはその平面
図、第6図(′b)はその断面図、第7図は間隔Zを変
化させた場合の共振周波数の変化を示す図、第8図は本
発明の他の実施例を示す図であり、第8図(aiはその
平面図、第8図(b)はその断面図、第9図は従来の平
面アンテナ装置を示す図であり、第9図(alはその平
面図、第9図(blはその断面図、第10図は第9図の
一部の構成図である。 図において、■は矩形の放射素子、2は写真食刻により
放射素子1を形成しているプリント基板、3はその接地
導体、4は放射素子1に給電するためのマイクロストリ
ップ線路、5は誘電体板、6はプリント基板2と誘電体
板5の間隔を変化させる可動機構、7はマイクロストリ
ップアンテナを固定するベース、11は円形の放射素子
、51はレドーム、61はベース7に固定された可動機
構、Llは誘電体板5を設けない場合のVSWR特性、
L2は誘電体板5を設けた場合のVSWR特性、L3は
放射素子1と誘電体板5の間隔を変化させた場合の共振
周波数変化を示す特性カーブである。 なお図中同一符号は同−又は相当部分を示す。 第1図
FIG. 1 is a diagram showing a planar antenna device according to an embodiment of the present invention, FIG. 1(a) is a plan view thereof, and FIG. 1(b) is a plan view thereof.
2 is a sectional view thereof, FIG. 2 is a configuration diagram of a part of FIG. 1, FIG. 3 is a diagram showing a VSWR characteristic graph of the planar antenna device, and FIG. 4 is a diagram showing another embodiment of the present invention. , Figure 4 (a
) is a plan view thereof, FIG. 4 (bl is a sectional view thereof, and FIG. 5 is a diagram showing another embodiment of the present invention, FIG. The cross-sectional view and FIG. 6 are views showing another embodiment of the present invention, and FIG. FIG. 8 is a diagram showing another embodiment of the present invention, and FIG. 8 (ai is a plan view thereof, FIG. 8(b) is a cross-sectional view thereof, FIG. 9 is a diagram showing a conventional planar antenna device. In the figure, ■ is a rectangular radiating element, 2 is a printed circuit board forming the radiating element 1 by photo-etching, 3 is its ground conductor, 4 is a microstrip line for feeding power to the radiating element 1, and 5 is a A dielectric plate, 6 is a movable mechanism for changing the distance between the printed circuit board 2 and the dielectric plate 5, 7 is a base for fixing the microstrip antenna, 11 is a circular radiating element, 51 is a radome, and 61 is fixed to the base 7. Ll is the VSWR characteristic when the dielectric plate 5 is not provided,
L2 is a VSWR characteristic when the dielectric plate 5 is provided, and L3 is a characteristic curve showing a change in resonance frequency when the distance between the radiating element 1 and the dielectric plate 5 is changed. Note that the same reference numerals in the figures indicate the same or equivalent parts. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)特定の周波数で共振して電波を放射する放射素子
を同一面上に配置してなるマイクロストリップアンテナ
と、 該マイクロストリップアンテナの上方にこれと並行に設
けられた、固定あるいは上下位置が調節可能な誘電体板
とを備えたことを特徴とする平面アンテナ装置。
(1) A microstrip antenna in which a radiating element that resonates at a specific frequency and radiates radio waves is arranged on the same surface, and a fixed or vertical position is provided above and parallel to the microstrip antenna. A planar antenna device comprising: an adjustable dielectric plate.
JP25034788A 1988-10-04 1988-10-04 Plane antenna equipment Pending JPH0297102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25034788A JPH0297102A (en) 1988-10-04 1988-10-04 Plane antenna equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25034788A JPH0297102A (en) 1988-10-04 1988-10-04 Plane antenna equipment

Publications (1)

Publication Number Publication Date
JPH0297102A true JPH0297102A (en) 1990-04-09

Family

ID=17206565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25034788A Pending JPH0297102A (en) 1988-10-04 1988-10-04 Plane antenna equipment

Country Status (1)

Country Link
JP (1) JPH0297102A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187493A (en) * 2013-03-22 2014-10-02 Advanced Telecommunication Research Institute International Resonance frequency variable antenna, electromagnetic wave energy recovery apparatus including the same, and adjustment method of resonance frequency variable antenna
JP2016158047A (en) * 2015-02-24 2016-09-01 東芝テック株式会社 Antenna
WO2018154676A1 (en) * 2017-02-23 2018-08-30 日本電業工作株式会社 Antenna and sector antenna
WO2023090139A1 (en) * 2021-11-17 2023-05-25 株式会社村田製作所 Antenna module and communication device having same mounted thereon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187493A (en) * 2013-03-22 2014-10-02 Advanced Telecommunication Research Institute International Resonance frequency variable antenna, electromagnetic wave energy recovery apparatus including the same, and adjustment method of resonance frequency variable antenna
JP2016158047A (en) * 2015-02-24 2016-09-01 東芝テック株式会社 Antenna
WO2018154676A1 (en) * 2017-02-23 2018-08-30 日本電業工作株式会社 Antenna and sector antenna
WO2023090139A1 (en) * 2021-11-17 2023-05-25 株式会社村田製作所 Antenna module and communication device having same mounted thereon

Similar Documents

Publication Publication Date Title
US4843400A (en) Aperture coupled circular polarization antenna
US6292143B1 (en) Multi-mode broadband patch antenna
US4125837A (en) Dual notch fed electric microstrip dipole antennas
George et al. New compact microstrip antenna
US7079082B2 (en) Coplanar waveguide continuous transverse stub (CPW-CTS) antenna for wireless communications
US6903692B2 (en) Dielectric antenna
US6278410B1 (en) Wide frequency band planar antenna
WO2005067549A2 (en) Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
Ourir et al. Electronically reconfigurable metamaterial for compact directive cavity antennas
EP1196962B1 (en) Tuneable spiral antenna
US6977613B2 (en) High performance dual-patch antenna with fast impedance matching holes
CN112310639A (en) Flat panel antenna including liquid crystal
WO2003026068A1 (en) Electronically tuned active antenna apparatus
Zhang et al. Broadband dual‐band CPW‐fed closed rectangular ring monopole antenna with a vertical strip for WLAN operation
GB2064877A (en) Microstrip antenna
JPH02284505A (en) Micro strip antenna
JPH0297102A (en) Plane antenna equipment
Sboui et al. Low-profile slotted SIW cavity backed antenna for frequency agility
JP7425868B2 (en) electromagnetic band gap structure
JPH09162634A (en) Microstrip antenna system
US20220359993A1 (en) Antenna device which is suitable for wireless communications according to a 5g network standard, rf transceiver containing an antenna device, and method for use in wireless communications according to a 5g network standard
JPH1168454A (en) Multiple frequency array antenna
US6965348B2 (en) Broadband antenna structures
Das et al. Magneto optical technique for beam steering by ferrite based patch arrays
JP2003087050A (en) Slot-type bowtie antenna device, and constituting method therefor