JPH0296647A - Apparatus for detecting biomass - Google Patents

Apparatus for detecting biomass

Info

Publication number
JPH0296647A
JPH0296647A JP24753188A JP24753188A JPH0296647A JP H0296647 A JPH0296647 A JP H0296647A JP 24753188 A JP24753188 A JP 24753188A JP 24753188 A JP24753188 A JP 24753188A JP H0296647 A JPH0296647 A JP H0296647A
Authority
JP
Japan
Prior art keywords
concentration
capacitance
biomass
electrodes
electric capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24753188A
Other languages
Japanese (ja)
Inventor
Takeshi Mishima
健 三島
Morio Mimura
三村 精男
Yoshimasa Takahara
高原 義昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24753188A priority Critical patent/JPH0296647A/en
Publication of JPH0296647A publication Critical patent/JPH0296647A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable non-destructive measurement of the biomass in the state of sediment by providing a permittivity measuring device measuring an electric capacity between electrodes and an arithmetic element converting the electric capacity into the biological concentration while detecting an interface whereon the biological concentration differs. CONSTITUTION:A culture tank 1 is filled up with bacteria 2 and a detecting element 4 moving vertically and provided with a pair of electrodes 3 is fitted thereto. In a state wherein this detecting element 4 is placed at a position being near to the bottom of the culture tank 1, an electric capacity is measured. In this constitution, a signal relating to an electrode position is detected by a potentiometer 6 fitted to a moving device and it is transferred to a computer 9 through a D/A converter 7. Besides, the value of the electric capacity measured by a measuring device 8 is transferred to the computer 9 through an interface, and the biological concentration in each depth in the culture tank 1 is calculated from the relationship between the value of the electric capacity and the biological concentration which is determined beforehand.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、生物量、特に撹拌ないしは懸濁状態ではなく
沈降伏態にある場合の生物量を検出する装置に関するも
のであり、更に詳細には、本発明は、生物(菌体、動物
細胞、植物細胞)が沈降した状態にある際、培養槽や処
理槽において生物濃度を測定するとともに、生物が高濃
度に存在する領域と低濃度に存在する領域との界面をオ
ンラインに計測する装置に関するものである。したがっ
て、本発明は、バイオインダストリをはじめ1食品工業
、医療、下水処理、廃水処理といった分野において非常
に重要な役割を果たすものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for detecting biomass, particularly biomass in a settling state rather than in a stirred or suspended state. The present invention measures the biological concentration in a culture tank or treatment tank when living organisms (bacterial cells, animal cells, plant cells) are in a sedimented state, and also measures the biological concentration in areas where living organisms are present in high concentrations and in low concentrations. This relates to a device that measures the interface with an existing area online. Therefore, the present invention plays a very important role in fields such as bioindustry, food industry, medicine, sewage treatment, and wastewater treatment.

(従来の技術) 各種微生物、動・植物細胞等を用いて有用物質を生産す
るバイオリアクタや培養装置は、その内部の生物量が時
々刻々変化するものであり、バイオリアクタ、培養装置
の制御を行ったり、内部状態を知る上で生物量を測定す
ることが非常に重要である。
(Conventional technology) Bioreactors and culture equipment that produce useful substances using various microorganisms, animal and plant cells, etc., have an internal biomass that changes from moment to moment. It is very important to measure the biomass in order to understand the internal state.

バイオリアクタ等において、細胞の大きさが小さい各種
微生物における懸濁溶液中の菌体濃度の測定では、培地
中での微生物の各種光学的性質に基づいて、菌体濃度を
測定することが一応は可能である。(白日ほか4毛編r
化学計測ハンドブック」朝倉書店(1981−6−20
)P、613)。
In bioreactors, etc., when measuring the bacterial cell concentration in a suspended solution of various microorganisms with small cell sizes, it is possible to measure the bacterial cell concentration based on various optical properties of the microorganism in the culture medium. It is possible. (Hakuhi and other 4 volumes r
Chemical Measurement Handbook” Asakura Shoten (1981-6-20
) P, 613).

しかし撹拌等を行わない場合においては、生物は懸濁状
態ではなく、沈降伏態になるのが通例である。このよう
な場合には撹拌等の操作により槽内の生物濃度を均一に
した後、懸濁液の一部を取り出し、湿体績を求めたり、
乾燥重量を求めたり。
However, when stirring or the like is not performed, the organisms are usually not in a suspended state but in a sedimented state. In such cases, after making the concentration of organisms in the tank uniform by stirring or other operations, a portion of the suspension is taken out and the wet temperature is determined.
Find the dry weight.

細胞や核を染色した後、顕微鏡下で細胞数をカウントす
る等の方法が取られたり、沈降部についてこれらの方法
により生物濃度を求めるとともに、生物の作る界面位置
を振動や超音波、目視等により測定し槽全体の生物量を
推定するのが通例である。したがっていずれの方法を採
用するにせよ生物濃度を検出するにはバイオリアクタや
培養装置から生物をサンプリング法により採取しなけれ
ばならず、生物量の情報をバイオリアクタ等のオンライ
ン制御等に反映することは不可能であった。
After staining cells and nuclei, methods such as counting the number of cells under a microscope are used, and in addition to determining the concentration of organisms in the sedimented area using these methods, the interface position created by organisms is measured by vibration, ultrasound, visual inspection, etc. It is customary to measure and estimate the biomass of the entire tank. Therefore, regardless of which method is adopted, in order to detect the concentration of organisms, it is necessary to collect organisms from the bioreactor or culture device using a sampling method, and the information on the amount of biomass must be reflected in the online control of the bioreactor, etc. was impossible.

また生物が高濃度に存在する領域と低濃度に存在する領
域との界面を上記した光や超音波を用いた方法等で測定
する場合には、生物以外の懸濁固形物(SS)の混在に
よる誤認、m完溶液の色や気泡による誤差の増大、測定
装置の複雑さなどの問題点がある。以上のような種々の
問題により生物量をリアルタイムに計測し、オンライン
制御に反映することは不可能であり、オンラインで生物
量を測定できる方法の開発が重要視されてきたのである
Furthermore, when measuring the interface between an area where living organisms exist at a high concentration and an area where living organisms exist at a low concentration using methods such as the above-mentioned methods using light or ultrasound, suspended solids (SS) other than living organisms may be present. There are problems such as misidentification due to the color of the m-complete solution and increased errors due to air bubbles, and the complexity of the measuring device. Due to the various problems mentioned above, it is impossible to measure biomass in real time and reflect it in online control, and therefore importance has been placed on the development of a method that can measure biomass online.

そして、生物濃度の測定に関しては、先に本発明者によ
り、電気容量(誘電率)を利用して測定する方法が見い
だされ、フロック状になった菌体・細胞や固定化菌体・
細胞等を壊すことなくそのまま測定することが可能とな
った(特願昭62−22481号)。
Regarding the measurement of biological concentration, the present inventors first discovered a method of measuring by using electric capacitance (permittivity), and the method of measuring the concentration of biological organisms was discovered by using capacitance (permittivity).
It has become possible to measure cells as they are without destroying them (Japanese Patent Application No. 22481/1982).

しかしながら、生物が均一に分散した系であれば、その
生物濃度を上記にしたがって単に測定することによりタ
ンク全体の生物量が検出できるけれども、沈降伏態にあ
る場合は、タンク内において生物体が高密度ないしは高
濃度に存在する領域と生物体が低密度ないしは低濃度に
存在する領域とが存在するため、どちらか一方の領域の
生物濃度のみを測定しても、生物密度が領域によって相
違する関係上、この測定値はタンク全体の生物量とはな
り得ない。したがって、この領域を画定すること、つま
り、生物が高濃度に存在する領域と低濃度に存在する領
域との界面を正確に検出することが必要となる。すなわ
ち、この界面を検出することにより、高濃度域及び低濃
度域の体積がそれぞれ直ちに算出できるので、それぞれ
の領域での生物濃度を測定すれば、それぞれの領域での
生物量を検出することができ、これらを合することによ
ってタンク全体の生物量が検出できるのである。 しか
しながら、生物が高濃度に存在する領域と低濃度に存在
する領域との界面を検出するための有効な装置は末だ開
発されておらず、ましてや、本発明のように界面の検出
と生物濃度の検出とを単一の装置で工業的に行うことは
、発明の構成の面はもとより目的の設定自体が新規であ
って、画期的なことである。
However, if the organisms are homogeneously dispersed in the system, the biomass of the entire tank can be detected by simply measuring the concentration of the organisms as described above; Because there are areas where organisms are present at high density or concentration and areas where organisms are present at low density or concentration, measuring only the concentration of organisms in either area does not indicate that the density of organisms differs depending on the area. Moreover, this measurement cannot represent the biomass of the entire tank. Therefore, it is necessary to define this region, that is, to accurately detect the interface between the region where organisms are present in high concentration and the region where organisms are present in low concentration. In other words, by detecting this interface, the volumes of the high-concentration region and the low-concentration region can be calculated immediately, so if the bioconcentration in each region is measured, the biomass in each region can be detected. By combining these, the biomass of the entire tank can be detected. However, an effective device for detecting the interface between a region with a high concentration of living organisms and a region with a low concentration of living organisms has not yet been developed. Industrially performing the detection of the same with a single device is groundbreaking, not only in terms of the structure of the invention but also in the setting of the objective itself.

(発明が解決しようとする問題点) 上記したように、従来の技術では、沈降伏態にある生物
量をそのままの状態でオンラインに計測することは、ま
ったく不可能であった。
(Problems to be Solved by the Invention) As described above, with the conventional techniques, it has been completely impossible to measure the biomass in the sedimentation state online as it is.

(問題点を解決するための手段) 本発明は、上記の技術の現状に鑑みでなされたものであ
って、生物が沈降伏態にある培養槽、処理槽において電
極を挿入して電気容量(誘電率)を測定することにより
生物濃度を計測するとともに、当該測定電極を垂直方向
に上下させたところ、全く予期せざることに生物の高濃
度域と低濃度域の境目(界面)を測定できることを発見
し、その結果、培養槽、処理槽における生物量を測定す
ることに成功したものである。
(Means for Solving the Problems) The present invention has been made in view of the current state of the technology as described above, and involves inserting an electrode into a culture tank or treatment tank in which living organisms are in a sedimentation state. In addition to measuring the biological concentration by measuring the dielectric constant (permittivity), by moving the measurement electrode vertically up and down, we were able to unexpectedly measure the boundary (interface) between high and low biological concentration areas. As a result, they succeeded in measuring the amount of biomass in culture tanks and treatment tanks.

すなわち本発明においては、少なくとも1対の電極を装
着した電気容量の測定部と測定部を移動せしめる駆動部
とが必要である。電極としては、電気容量を測定するこ
とができ且つ生物細胞の影響と電極分極とが重なり合う
ことの少ない電極であればすべての電極が使用される。
That is, the present invention requires a capacitance measurement section equipped with at least one pair of electrodes and a drive section for moving the measurement section. Any electrode can be used as long as it can measure capacitance and the influence of biological cells and electrode polarization are unlikely to overlap.

例えば白金黒電極を用いれば有利に測定できる。検出部
の設置数は特に限定はないが、設置数が多いと生物濃度
の検出及び界面の検出が短時間に実施できる。検出部は
、上下方向のみ移動可能としてもよいが。
For example, the measurement can be advantageously performed using a platinum black electrode. There is no particular limitation on the number of detection units installed, but if a large number of detection units are installed, biological concentration detection and interface detection can be performed in a short time. The detection unit may be movable only in the vertical direction.

左右いずれの方向にも移動可能にしておけば、測定が更
に能率よく行われる。検出部の電極は正対していても良
いし、同一平面上に装着されていても良い、検出部を移
動させたとき、電極がつくる電界内に沈降している生物
主体のSSが進入し電界外とおなし濃度にすみやかにな
る場合には正対している電極を用いるのが良いが、固形
化していたり、粘度が高いなどの理由により電界内外の
生物濃度が均一になり難い場合には電極を同一平面上に
装置する方式が有利である。
If it is movable in either the left or right direction, measurements can be made more efficiently. The electrodes of the detection part may be facing directly or may be mounted on the same plane. When the detection part is moved, the bio-based SS that has settled into the electric field created by the electrodes enters the electric field. It is better to use electrodes that are directly facing each other when the concentration of organisms inside and outside the electric field is quickly equalized, but if it is difficult to equalize the concentration of organisms inside and outside the electric field due to solidification or high viscosity, electrodes should be used. A coplanar arrangement is advantageous.

生物細胞は大雑把にいえば細胞核を含む細胞質とそれを
取り囲む細胞膜、壁から構成されている。
Roughly speaking, biological cells are composed of a cytoplasm containing a cell nucleus, a cell membrane surrounding the cytoplasm, and a wall.

このうち細胞膜は脂質が主体となって構成されており非
常に電気抵抗値が高い、したがって細胞を含んだ測定対
象は、電解液(基質中にはイオンが含まれており電解液
とみなせる)中に、内部に電解液を(細胞液中にはイオ
ンが含まれており電解液とみなせる)含んだ油の粒子(
細胞)が存在するエマルジョン系とみなすことができる
。このような系については、花卉ら(たとえば文献二マ
イクロカプセルとはどんなものか、花卉哲也他1表面、
第24巻、第7号、1986年)によって理論的解析が
行われてきている。花卉の理論を用いるとエマルジョン
系のオイルの状態等(例えば、オイルの占ぬる容積割合
等)を定常的に解析することができる。
Among these, the cell membrane is mainly composed of lipids and has a very high electrical resistance value.Therefore, the measurement target including cells is in an electrolyte solution (the substrate contains ions and can be regarded as an electrolyte solution). In addition, oil particles containing an electrolyte (cell fluid contains ions and can be considered an electrolyte) inside
It can be regarded as an emulsion system in which cells (cells) are present. Regarding such systems, see Hana et al.
24, No. 7, 1986), a theoretical analysis has been carried out. Using floriculture theory, it is possible to regularly analyze the state of emulsion oil (for example, the volume ratio of oil, etc.).

この様な背景のもとに本発明者らは種々の菌体、細胞を
もちいて実験を繰り返した結果、電気容量の測定をlO
K&〜10MHzの周波数帯域で行ったところ、この帯
域の電気容量が生物量の増加とともに特に増加する性質
があることを発見した。したがって本発明においては、
他の周波数帯域でもよいが、特に上記範囲内で電気容量
を測定するのが工業上有利である。
Against this background, the present inventors repeated experiments using various bacterial bodies and cells, and as a result, the measurement of capacitance was
When conducting this study in the frequency band of K&~10 MHz, we found that the capacitance in this band particularly increases with increasing biomass. Therefore, in the present invention,
Although other frequency bands may be used, it is particularly industrially advantageous to measure capacitance within the above range.

通常、計測装置により得られる測定値は電気容量であり
誘電率を直接求めることはできない。その理由は、電気
容量は測定のための電極面積、形状、電極間距離等によ
り変わるためである。しかしあらかじめセル定数等を求
めておけば、誘電率への変換は容易である。つぎに一対
の電極を装着した検出部を垂直方向に移動させることに
より測定値(電気容量)から生物量を求める方法の一例
について述べる。
Usually, the measured value obtained by a measuring device is the capacitance, and the dielectric constant cannot be directly determined. The reason for this is that the capacitance varies depending on the area, shape, distance between electrodes, etc. of the electrodes for measurement. However, if the cell constant etc. are determined in advance, conversion to the dielectric constant is easy. Next, an example of a method for determining biomass from measured values (electrical capacitance) by vertically moving a detection unit equipped with a pair of electrodes will be described.

電気容量は、電極、培養装置等の形状等の影響をうける
ため、あらかじめ電極がつくる電界内に生物がいない状
態での電気容量の周波数特性を求めておき、測定対象の
周波数特性から減じることにより、菌体の存在によりも
たらされる電気容量の変化を求める。この時、生物の存
在により数キロヘルツ(にHz)から数メガヘルツ(M
Hz) (この範囲は、環境のイオン濃度、測定対象の
種類等)により違いがある)の広い周波数領域にわたっ
て電気容量の増加が見られる。したがって電気容量から
生物濃度を算出するには、細胞濃度の変化に対して最も
著しい変化を示す周波数での値を採用してもよいし、適
当なデータ処理を施してもよい、予め電気容量と生物濃
度(乾燥重量、菌体数等)との関係を求めておけば、電
気容量から容易に生物濃度の算出が可能となる。
Since electrical capacitance is affected by the shape of the electrodes, culture equipment, etc., the frequency characteristics of the electrical capacitance in a state where no living organisms are present in the electric field created by the electrodes are determined in advance, and then subtracted from the frequency characteristics of the measurement target. , determine the change in capacitance caused by the presence of bacterial cells. At this time, due to the presence of living things, the frequency ranges from several kilohertz (Hz) to several megahertz (M
Hz) (This range varies depending on the ion concentration of the environment, the type of measurement target, etc.) An increase in capacitance is observed over a wide frequency range. Therefore, in order to calculate the biological concentration from the capacitance, it is possible to adopt the value at the frequency that shows the most significant change in response to changes in the cell concentration, or to perform appropriate data processing. If the relationship with the biological concentration (dry weight, number of bacterial cells, etc.) is determined, the biological concentration can be easily calculated from the capacitance.

つぎに生物のつくる界面の検出方法の一例のついて述べ
る。濃度検出部(電極)を培養槽の最も底面に近い位置
に置いた状態で電気容量を測定する。
Next, we will discuss an example of a method for detecting interfaces created by living organisms. The capacitance is measured with the concentration detection part (electrode) placed at the position closest to the bottom of the culture tank.

つぎに電極を上部に移動させながら順次電気容量を測定
する。生物の高濃度域では大きな値を示すが電極が低濃
度域に移動すると測定値は速やかに小さな値を示すよう
になる。この測定値が急速に減少する時の電極位置が界
面の高さに対応する。
Next, the capacitance is sequentially measured while moving the electrode upward. The measured value shows a large value in a high biological concentration area, but as the electrode moves to a low concentration area, the measured value quickly becomes a small value. The electrode position at which this measured value rapidly decreases corresponds to the height of the interface.

なお界面が明瞭でない場合でも各高さにおける生物濃度
をしることができる。
Note that even if the interface is not clear, the biological concentration at each height can be determined.

第1図は1本発明に係る計測システムの1例を示したも
のである。培養槽1には、その内部に菌体等2を満たす
とともに、垂直方向に移動できる一対の電極3を装置し
た検出部4をとりつけておく、濃度検出部(@極)4を
培養槽の最も底面に近い位置に置いた状態で電気容量を
測定する。つぎに電極を移動装置5により上部に移動さ
せながら順次電気容量を測定する。ft極位置に関する
信号は移動袋!(巻取りドラム等)に取り付けたポテン
ショメータ6等により検出した後、 D/Aコンバータ
7を介してコンピュータ9に転送する。′#S定した電
気容量値はインターフェイスを介してコンピュータ9に
転送され、あらかじめ求めていた電気容量値と生物濃度
の関係から培養槽内の各深さにおける生物濃度を算出す
る。電極部が低濃度域に移動すると測定値は速やかに小
さな値を示すようになる。この測定値が急速に減少する
時の電極位置から界面の高さを測定することができる。
FIG. 1 shows an example of a measurement system according to the present invention. The culture tank 1 is filled with bacterial cells etc. 2, and a detection unit 4 equipped with a pair of vertically movable electrodes 3 is installed. Measure the capacitance with the device placed close to the bottom. Next, the capacitance is sequentially measured while moving the electrode upward using the moving device 5. The signal regarding the ft pole position is a moving bag! After being detected by a potentiometer 6 or the like attached to a winding drum or the like, it is transferred to a computer 9 via a D/A converter 7. '#S The determined capacitance value is transferred to the computer 9 via the interface, and the bioconcentration at each depth in the culture tank is calculated from the relationship between the capacitance value and the bioconcentration determined in advance. When the electrode section moves to a low concentration area, the measured value quickly begins to show a small value. The height of the interface can be measured from the electrode position when this measured value rapidly decreases.

測定装置8としては、周波数が固定の装置でも使用可能
であるが、複数の周波数で電気容量の測定ができるタイ
プのものが望ましい、測定装置8としては、 i、cR
メータ等等電電率測定装置適宜使用される。電極3は1
本実施例においては1基設置したが、必要に応じて複数
基設置してもよい。
As the measuring device 8, a device with a fixed frequency can be used, but it is preferable to use a type that can measure capacitance at multiple frequencies.As the measuring device 8, i, cR
An isoelectric constant measuring device such as a meter is used as appropriate. Electrode 3 is 1
Although one unit was installed in this embodiment, a plurality of units may be installed as necessary.

測定対象が微生物に限らず、動物細胞、植物細胞でも測
定できるのはもちろんである。また菌体等が各種固定化
剤を用いて固定化した場合、あるいは付着性動物細胞の
培養に通常用いられるプラスチックビーズ(例えば、フ
ァルマシア社製すイトデックス等)の表面に付着増殖し
た細胞についても自由に測定することができる。次に、
本発明の実施例についてのべるが、これらは単なる例示
であって、なんら本発明を制限するものではない。
Of course, the measurement target is not limited to microorganisms, but also animal cells and plant cells. In addition, when bacterial cells are immobilized using various fixatives, or when cells grow attached to the surface of plastic beads commonly used for culturing adherent animal cells (for example, Itodex manufactured by Pharmacia), Can be measured freely. next,
Examples of the present invention will be described below, but these are merely illustrative and do not limit the present invention in any way.

実施例1 高さ40備の位置まで溶液をみたし、沈降部が20−に
なるまで活性汚泥を充填した試料について。
Example 1 Regarding a sample in which the solution was filled up to a height of 40 mm and activated sludge was filled until the sedimentation area reached 20 mm.

中心間距離2aINした位置に表面積2dの白金板を一
対同一平面上に装着した電極を用いて生物量の計測を行
い、第2図の結果を得た1図中、横軸は培養槽の底面か
らの垂直方向への電極位置であり、縦軸は各電極位置で
の測定周波数300KHzにおける電気容量値から菌体
を含まない溶液中での測定値を減じた値である。検出部
が高濃度域にある場合にはほぼ一定値をしめすが、電極
が低濃度域に移動するにつれて減少し、電極が完全に低
濃度域に移動した後は、低い一定値を示した。高濃度域
と低濃度域の平均値を示す電極位置が菌体の高濃度域と
低濃度域の界面位置と一致し、本計測装置により界面を
検出することができた。高濃度域での菌体濃度を電気容
量値と菌体濃度の関係から求め、上記によって測定した
界面位置より培養装置中の菌体量を測定した。
The biomass was measured using a pair of electrodes equipped with a pair of platinum plates with a surface area of 2d on the same plane at a distance of 2aIN between centers, and the results shown in Figure 2 were obtained.In Figure 1, the horizontal axis is the bottom of the culture tank. The vertical axis is the value obtained by subtracting the measured value in a solution containing no bacterial cells from the capacitance value at a measurement frequency of 300 KHz at each electrode position. When the detection part was in the high concentration area, it showed a nearly constant value, but as the electrode moved to the low concentration area, it decreased, and after the electrode moved completely to the low concentration area, it showed a low constant value. The electrode position showing the average value of the high concentration area and the low concentration area coincided with the interface position between the high concentration area and the low concentration area of bacterial cells, and this measuring device was able to detect the interface. The bacterial cell concentration in the high concentration range was determined from the relationship between the capacitance value and the bacterial cell concentration, and the amount of bacterial cells in the culture device was measured from the interface position measured as described above.

(発明の効果) 本発明は、電気容It(誘電率)を測定する検出部を垂
直方向への移動を可能にすることにより生物濃度と生物
の作る界面位置を同時に検出し、沈降状態にある生物量
をオンライン・リアルタイムに計測することを可能とす
る従来なしえなかった新規にして卓越した効果を有する
ものである。
(Effects of the Invention) The present invention simultaneously detects the concentration of organisms and the position of the interface created by the organisms by enabling vertical movement of the detection unit that measures electric capacitance It (permittivity). This is a novel and outstanding effect that has not been possible before, making it possible to measure biomass online and in real time.

したがって本発明によれば、沈降状態にある生物量を非
破壊的に測定することができ、バイオテクノロジー、水
処理分野、その他各方面において広く本発明を利用する
ことができる。
Therefore, according to the present invention, biomass in a sedimented state can be measured non-destructively, and the present invention can be widely used in biotechnology, water treatment fields, and various other fields.

本発明によれば、2層に分かれた場合だけでなく3層以
上に分かれた場合でもタンク全体の生物量を測定するこ
とができるし、浮遊菌体のように高濃度領域が上方に存
在する場合でもタンク全体の生物量を正確に且つオンラ
イン・リアルタイムに計測することができる。
According to the present invention, the biomass of the entire tank can be measured not only when the tank is divided into two layers but also when the tank is divided into three or more layers. The biomass of the entire tank can be measured accurately and online in real time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の検出装置の1実施例を図示したもので
あり、そして、第2図は界面の高さと電気容量との関係
を図示したグラフである。 第  1 図 代理人 弁理士 戸 1)親 男
FIG. 1 illustrates one embodiment of the detection device of the present invention, and FIG. 2 is a graph illustrating the relationship between the height of the interface and the capacitance. Figure 1 Agent Patent attorney 1) Parent Male

Claims (1)

【特許請求の範囲】[Claims] 少なくとも1対の電極を装着した生物濃度の検出部と、
検出部を移動せしめるための駆動部と、電極間の電気容
量(誘電率)を測定する誘電率測定装置と、電気容量(
誘電率)を生物濃度に変換するとともに生物濃度が相違
する界面を検出する演算部からなること、を特徴とする
生物量の検出装置。
a biological concentration detection unit equipped with at least one pair of electrodes;
A drive section for moving the detection section, a dielectric constant measuring device for measuring the capacitance (permittivity) between the electrodes, and a dielectric constant measuring device for measuring the capacitance (permittivity) between the electrodes.
1. A biomass detection device comprising: a calculation unit that converts dielectric constant (permittivity) into bioconcentration and detects interfaces where bioconcentrations differ.
JP24753188A 1988-10-03 1988-10-03 Apparatus for detecting biomass Pending JPH0296647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24753188A JPH0296647A (en) 1988-10-03 1988-10-03 Apparatus for detecting biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24753188A JPH0296647A (en) 1988-10-03 1988-10-03 Apparatus for detecting biomass

Publications (1)

Publication Number Publication Date
JPH0296647A true JPH0296647A (en) 1990-04-09

Family

ID=17164886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24753188A Pending JPH0296647A (en) 1988-10-03 1988-10-03 Apparatus for detecting biomass

Country Status (1)

Country Link
JP (1) JPH0296647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330752A (en) * 2001-05-08 2002-11-19 Sanden Corp Apparatus for counting number of microorganisms

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191046A (en) * 1987-02-04 1988-08-08 Kobe Steel Ltd Measurement of amount of biomass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191046A (en) * 1987-02-04 1988-08-08 Kobe Steel Ltd Measurement of amount of biomass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330752A (en) * 2001-05-08 2002-11-19 Sanden Corp Apparatus for counting number of microorganisms

Similar Documents

Publication Publication Date Title
US6264815B1 (en) Apparatus and method for testing using dielectrophoresis
EP0075412B1 (en) Measuring electrophoretic mobility
Yardley et al. On-line, real-time measurements of cellular biomass using dielectric spectroscopy
EP0282532B1 (en) Determination of biomass
JP2016502089A (en) Method and apparatus for monitoring sedimentation parameters of a fluid medium sample
ITUD20080190A1 (en) PROCEDURE FOR THE BACTERIOLOGICAL SURVEY ON PLASMA
EP0235234B1 (en) Apparatus and methods for measuring cell adhesion
Clarke et al. Monitoring reactor biomass
Junker et al. On-line and in-situ monitoring technology for cell density measurement in microbial and animal cell cultures
Markx et al. The dielectric permittivity at radio frequencies and the Bruggeman probe: novel techniques for the on-line determination of biomass concentrations in plant cell cultures
EP0277789A2 (en) Method for measuring biomass
JPH0296647A (en) Apparatus for detecting biomass
JPH0231148A (en) Method for measuring biomass
JP4290936B2 (en) A device for separating phases from a two-phase mixture and its application to the determination of physical and chemical parameters of a two-phase mixture
KR100949311B1 (en) Sensor for measuring concentration of microbes
Kanevskiy et al. Electrophysical sensor systems for in vitro monitoring of bacterial metabolic activity
CN214334761U (en) Portable demulsifier quality detection device
GB2588422A (en) Shape analysis device
CN217484137U (en) Marine algae on-line detection device based on flow cytometry
US6232091B1 (en) Electrooptical apparatus and method for monitoring cell growth in microbiological culture
JPH0569462B2 (en)
RU2401308C2 (en) Method of cultivated microbiological objects count
SU1004469A1 (en) Method for determining concentration of live cells of microbial biomass
JP2009156604A (en) Particulate measuring pretreatment kit
JPS63191046A (en) Measurement of amount of biomass