JPH029583B2 - - Google Patents

Info

Publication number
JPH029583B2
JPH029583B2 JP3514982A JP3514982A JPH029583B2 JP H029583 B2 JPH029583 B2 JP H029583B2 JP 3514982 A JP3514982 A JP 3514982A JP 3514982 A JP3514982 A JP 3514982A JP H029583 B2 JPH029583 B2 JP H029583B2
Authority
JP
Japan
Prior art keywords
reaction
general formula
sulfonated
dicyclopentadiene
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3514982A
Other languages
Japanese (ja)
Other versions
JPS58152862A (en
Inventor
Hironobu Shinohara
Noboru Yamahara
Yoshinori Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP3514982A priority Critical patent/JPS58152862A/en
Priority to US06/471,671 priority patent/US4511683A/en
Priority to CA000422859A priority patent/CA1210023A/en
Priority to DE19833307998 priority patent/DE3307998A1/en
Priority to GB08306301A priority patent/GB2119369B/en
Publication of JPS58152862A publication Critical patent/JPS58152862A/en
Publication of JPH029583B2 publication Critical patent/JPH029583B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、シクロペンタジエン誘導体のスルホ
ン化物の製造方法に関するものである。 一般に有機化合物のスルホン酸及びその誘導体
は硫酸に匹敵する程の強酸であり、その性質を生
かして工業的に広く利用されている。またその塩
は水溶性であることから有機材料或いは無機材料
の界面活性剤として極めて重要である。 しかしながら、従来合成されているスルホン化
物の多くは、芳香族若しくは脂肪族などのスルホ
ン化物であり、脂環式化合物のスルホン化物の例
はほとんど知られていない。 本発明者らは、脂環式化合物及びその誘導体を
出発原料としたスルホン化物について鋭意検討を
重ねた結果、特定のシクロペンタジエン類及び/
またはジシクロペンタジエン類と特定のベンゼン
誘導体と反応させると、シクロペンタジエン類及
び/またはジシクロペンタジエン類の骨格にベン
ゼン誘導体の付加した化合物、シクロペンタジエ
ン類及び/またはジシクロペンタジエン類の骨格
を有する重合体など数種の反応生成物の混合体が
得られ、この混合物のスルホン化物またはその塩
は水溶性であることから、有機物若しくは無機物
に対し優れた界面活性作用を有し、特にセメント
の分散作用が優れていることを見出し、また前記
混合体のスルホン化物またはその塩をアルデヒド
により縮合せしめて得られる縮合物は更に優れた
界面活性作用、特に優れたセメント分散作用を有
することを見出し本発明を完成するに至つた。 本発明の目的は、特定のシクロペンタジエン類
及び/または特定のジシクロペンタジエン類と下
記一般式()で表わされる化合物とを反応せし
めて得られる反応生成物混合体をスルホン化する
ことによつてスルホン化物を製造する方法を提供
することにある。 一般式() (式中、R1及びR2は同一または異なる基であり、
水素原子若しくは炭素数1〜6のアルキル基を表
わす。) 以下本発明を具体的に説明する。 本発明においては、下記一般式()で表わさ
れるシクロペンタジエン類及び/または下記一般
式()で表わされるジシクロペンタジエン類と
前記一般式()で表わされる化合物とを酸性化
合物などの触媒の存在下において反応せしめて得
られる反応生成物混合体をスルホン化し、これに
よつてスルホン化物を製造する。 一般式() (式中、R3は水素原子または炭素原子数1〜3
のアルキル基を表わす。) 一般式() (式中、R4及びR5は水素原子または炭素原子数
1〜3のアルキル基を表わす。) これらの一般式()または一般式()で表
わすことができる具体的化合物としては例えばシ
クロペンタジエン、メチルシクロペンタジエン、
エチルシクロペンタジエン、プロピルシクロペン
タジエンなどのアルキルシクロペンタジエン及び
これらのアルキルシクロペンタジエンのうち任意
に組合せて成る二量体例えばジシクロペンタジエ
ンなどを挙げることができる。 また本発明に用いるシクロペンタジエン類また
はジシクロペンタジエン類は反応に支障がない限
り不純物を含有するものであつてもよい。 本発明において用いる前記一般式()で表わ
される化合物としては、例えばベンゼン、トルエ
ン、キシレン(o―、m―、p―)、エチルベン
ゼン、n―プロピルベンゼン、iso―プロピルベ
ンゼン、メチルエチルベンゼン(o―、m―、p
―)、n―ブチルベンゼン、sec―ブチルベンゼ
ン、tert―ブチルベンゼン、iso―プロピルトル
エン(o―、m―、p―)、アミルベンゼン、ヘ
キシルベンゼン、アミルトルエン(o―、m―、
p―)などのモノまたはジアルキル置換ベンゼン
などのベンゼン誘導体が挙げられる。この場合の
アルキル基としては炭素数が1〜6のものであ
り、またアルキル基2個が互いに環を形成した化
合物であるテトラリンなども使用できる。このう
ち好ましいものはR1及びR2が水素原子または炭
素原子数1〜4のアルキル基であり、特に好まし
いものとしてはベンゼン、トルエン、キシレン、
プロピルベンゼン、ブチルベンゼンが挙げられ
る。本発明においてはこれらの化合物を単独で用
いてもよいし、異なるものを二種以上組合せて用
いることもできる。 本発明において、前記特定のシクロペンタジエ
ン類及び/またはジシクロペンタジエン類と前記
一般式()で表わされる化合物とを反応せしめ
る場合には通常、酸性化合物を触媒として用いる
が、酸性化合物としては、例えば硫酸、リン酸、
フツ化水素、三フツ化ホウ素及びその錯体、塩化
アルミニウム、臭化アルミニウム、四塩化錫、塩
化亜鉛、三塩化チタンなどのルイス酸類或いは有
機プロトン酸類を挙げることができる。 斯かる酸性化合物の存在下において、シクロペ
ンタジエン類及び/またはジシクロペンタジエン
類と前記一般式()で表わされる化合物とを通
常100:1〜1:100のモル比で混合し、これに適
宜溶媒を加え、また反応温度としては通常−20〜
150℃、好ましくは0〜120℃として数時間に亘り
反応せしめて反応生成物混合体を得る。このよう
にして得られる反応生成物混合体は、ジシクロペ
ンタジエン類1分子に前記一般式()で表わさ
れる化合物1分子が付加した反応生成物、ジシク
ロペンタジエン類2分子に前記一般式()で表
わされる化合物1分子が付加した反応生成物など
の数種の付加体の他、シクロペンタジエン類及
び/またはジシクロペンタジエン類の重合体及び
その重合体に前記一般式()で表わされる化合
物が付加した反応生成物など多種の化合物が混合
したものである。 この反応生成物混合体における各種反応生成物
の割合は、触媒の種類、反応温度、反応原料の仕
込み割合などによつて適宜変化せしめることがで
きる。この反応生成物混合体は、シクロペンタジ
エン類1分子に前記一般式()で表わされる化
合物が1分子付加した反応生成物の分子量を下限
とし、上限は反応条件によつて変化し特に限定さ
れないが、後述するスルホン化反応の進行の容易
さの点から数平均分子量が10000以下であること
が好ましい。この数平均分子量は、GPC(ゲル・
パーミエイシヨン・クロマトグラフイ)の結果を
数種類の分子量の異なるポリスチレンを標準物質
として用いて作成した検量線から換算したもので
ある。 また反応原料中に予めその他のジエン類或いは
オレフイン類を加えこれをも共反応せしめること
により後述するスルホン化物の界面活性特性をコ
ントロールすることもできる。 斯かる反応生成物混合体をスルホン化する方法
としては、ギルバート(E.E.Gilbert)の著書
「スルホン化および関連反応」(“Sulfonation
and Related Reaction”)、Interscience
Publishers Inc.(1965年)に詳細に記載されてお
り、不飽和化合物、特に不飽和脂肪族或いは不飽
和脂環族化合物に適用されるスルホン化方法を反
応系の状態に応じて適宜選択することができる。 またチヤールズ・ジエイ・ノートン(Charls.
J.Norton)ら、ザ・ジヤーナル・オブ・オーガ
ニツク・ケミストリー(The Journal of
Organic Chemistry)4158頁(1968年)の研究に
示されているような、不飽和結合への亜硫酸塩類
の付加反応によつててもスルホン化物を得ること
ができる。この場合のスルホン化剤としては、通
常アルカリ金属の酸性亜硫酸塩、メタ亜硫酸塩、
或いは亜硫酸塩が単独または混合物として使用さ
れる。これらのスルホン化剤の量は、必要とされ
るスルホン化の度合に応じて異なり一概に決める
ことができないが通常反応生成物混合体における
残存二重結合1個に対し0.1〜10分子の割合で用
いられる。尚反応生成物混合体における残存二重
結合のモル数は、ヨウ素滴定法により求めること
ができ、通常反応原料のシクロペンタジエン類及
び/またはジシクロペンタジエン類1分子に対し
0.3〜1個の割合で二重結合が残存している。 このスルホン化反応においては、触媒の使用は
必ずしも要求されないが、通常無機酸化剤などの
触媒を用いると反応時間を短縮することができ
る。無機酸化剤としては、例えば硝酸塩類、亜硝
酸塩類、塩素酸塩類などが挙げられるが、特に硝
酸塩類が好ましい。 さらに、反応を均一かつ円滑に進行させるため
に適当な溶剤を用いることが望ましい。有利に使
用できる溶剤としては、例えば水、或いはメチル
アルコール、エチルアルコール、プロピルアルコ
ール、イソプロピルアルコール、ブチルアルコー
ル、第3級ブチルアルコールなどの低級アルコー
ル類、低級グリコール類、ケトン類、エーテル
類、エステル類などが挙げられる。これらの溶剤
は適宜2種以上混合して使用することができる。
なかでも低級アルコール類と水との混合溶剤、そ
のうちでも特にプロピルアルコールと水との混合
溶剤がすぐれた溶剤として推奨される。 また、反応生成物混合体におけるシクロペンタ
ジエン類及び/またはジシクロペンタジエン類骨
格を有する重合体を更に均一に溶解するために、
スルホン化反応において不活性な溶媒、例えばベ
ンゼン、トルエン、キシレン、エチルベンゼンな
どの芳香族炭化水素、ペンタン、ヘプタン、デカ
ンなどの脂肪族炭化水素、テトラヒドロフランな
どの環状エーテルなどを併用することもできる。 スルホン化反応における反応温度は通常50〜
200℃、好ましくは70〜150℃、より好ましくは90
〜120℃で行なわれ、また常圧或いは加圧下のい
ずれでも実施することができる。 また副反応の進行をおさえ、不要な無機塩の生
成を低くするために、反応系のPHは通常2〜9、
好ましくは5〜7に保つ。 このようにして得られるスルホン化物は、反応
生成物混合体における残存二重結合の通常20〜
100%がスルホン化されて成るものである。この
スルホン化の度合は得られたスルホン化物をイオ
ン交換法により酸型に変換し、これをアルカリ滴
定することにより求めることができる。 本発明の方法によつて得られるスルホン化物
は、以上のようなものであるから、後述する実施
例からも理解されるように優れた界面活性作用を
有しているため、有機材料或いは無機材料の界面
活性剤として極めて有用であり、例えば乳化剤、
分散剤、湿潤剤、洗浄剤、平滑剤として広く用い
ることができる。そして本発明の方法によつて得
られるスルホン化物は数種の反応生成物が混合さ
れた反応生成物混合体のスルホン化物であつて、
このスルホン化物が全体として十分な効果を有
し、従つて通常遂行することが困難である分離精
製を行なうことが全く不要であり、この結果製造
工程の大幅な省略を図ることができるうえ、反応
生成物混合体における各種反応生成物を単離して
スルホン化する場合に比して、反応生成物混合体
のスルホン化は容易に進行し、しかも低分子量の
ものから高分子量のものに至る広い範囲に亘り大
きな反応速度で以つてスルホン化が達成されるた
め、有利にスルホン化物を得ることができる。 また本発明の方法によつて得られるスルホン化
物は、イオン交換法或いは中和反応などにより、
酸型またはアルカリ金属、アルカリ土類金属、ア
ンモニウム、アミンなどの塩に相互に交換するこ
とができる。 以上のようにして得られたスルホン化物は、こ
れを縮合用単量体として酸触媒の存在下、例えば
アルデヒドにより縮合して縮合物とすることがで
きる。 このアルデヒドとしては、例えばホルムアルデ
ヒド、アセトアルデヒド、プロピオンアルデヒド
などを挙げることができ、このうち反応性の点で
ホルムアルデヒドが好ましい。その使用量は相当
に広い範囲で選定することができるが、縮合度を
高くしそして不必要な副反応を避けるためには、
スルホン化物中においてシクロペンタジエン類及
び/またはジシクロペンタジエン類の骨格に付加
した前記一般式()で表わされる化合物のモル
数に対して0.5〜2倍のモル数であることが好ま
しく、更に好ましくは0.8〜1.5倍のモル数であ
る。 前記スルホン化物の縮合においては、他の縮合
用単量体例えばベンゼン、トルエン、キシレン、
フエノールなどのベンゼン誘導体;ベンゼン誘導
体のスルホン酸またはその塩;ナフタレン誘導
体;β―ナフタレンスルホン酸ナトリウムなどの
ナフタレン誘導体のスルホン酸またはその塩など
を単独若しくは二種以上を適宜組合せて共に縮合
せしめてもよい。これらを適宜選定することによ
り、得られる縮合物の界面活性特性を自由にコン
トロールすることが可能である。 また縮合に際し、スルホン化物中の低沸点化合
物或いは高沸点化合物を適宜除去した後縮合せし
めるようにしてもよい。 縮合反応における酸触媒としては、硫酸を代表
的なものとして挙げることができる。その使用量
は、特に限定されないが縮合用単量体の全モル数
に対し、通常0.0001〜10倍のモル数であり、好ま
しくは0.01〜5倍のモル数、更に好ましくは0.05
〜3倍のモル数である。これが0.0001倍のモル数
未満である場合には反応速度が小さくなると共に
縮合度が低くなり、一方10倍のモル数を越える場
合には炭化反応が生じ易くなる。またスルホン化
物が酸型である場合にはこれが酸触媒としての作
用を併せて有するため、このモル数を酸触媒のモ
ル数として計算することができる。 また均一な縮合反応を行なうためには、水、低
級アルコール、ギ酸、酢酸などを縮合反応の溶媒
として用いるのが好ましい。その使用量は、反応
速度、溶解度などを考慮して適宜選定すればよい
が、通常縮合反応原料混合物1重量部に対して
0.01〜10重量部であり、また縮合反応温度は通常
30〜150℃であり、好ましくは70〜120℃である。 また得られる縮合物の縮合度は、酸触媒量、縮
合反応温度、縮合反応時間などの反応条件を変え
ることにより適宜選定することができる。また用
途によつてこの縮合度を選定することが望まし
く、例えば後述するようにセメントの分散剤とし
て用いる場合には、縮合物の数平均分子量が500
〜30000であることが好ましく、更に好ましくは
800〜10000である。なおこの数平均分子量は水系
GPC(ゲル・パーミエイシヨン・クロマトグラフ
イ)により測定することができ、分子量の異なる
数種類のポリスチレンスルホン酸ソーダ、アント
ラセンスルホン酸ソーダ及びベンゼンスルホン酸
ソーダを標準物質として用いて作成した検量線か
ら換算したものである。 以上のように、本発明の方法によつて得られる
スルホン化物を縮合して得られる縮合物も優れた
界面活性作用を有しているため、有機材料或いは
無機材料の界面活性剤として極めて有用であり、
例えば乳化剤、分散剤、湿潤剤、洗浄剤、平滑剤
として広く用いることができる。そして当該縮合
物は既述のようにして得られたスルホン化物を縮
合して得られる縮合物であつて、その縮合物が全
体として十分な効果を有し、従つて通常遂行する
ことが困難である分離精製を行なうことが不要で
あり、この結果製造工程の大幅な省略を図ること
ができる。 また本発明の方法によつて得られるスルホン化
物またはその縮合物をセメント用分散剤として用
いた場合には、後述する実施例からも理解される
ように、セメントの水への分散性を著しく向上せ
しめることができ、従つてセメント工法における
優れた減水効果を得ることができる。 以下本発明の実施例を具体的に説明するが、本
発明はこれらの実施例に限定されるものではな
い。 実施例 1 還流冷却器及び撹拌装置を備えて成る容量3
の三つ口フラスコにトルエン1270g及び三フツ化
ホウ素・フエノール錯体12gを入れ温度50℃に昇
温した後、撹拌しながらジシクロペンタジエン
417g及びトルエン320gの混合溶液を約1時間に
亘つて滴下し、さらにこの温度で2時間に亘り反
応させた。反応終了後、炭酸ナトリウム溶液で触
媒を分解して水で洗浄した後、油層分を減圧下で
蒸留して未反応のトルエン1360gとジシクロペン
タジエン35gを留去し、残留物601gを得た。こ
の残留物における残存二重結合をヨウ素滴定法に
より調べたところ、反応したジシクロペンタジエ
ン1モルに対し0.96当量の二重結合が残存してい
た。また残留物の分子量分布をGPC(ゲル・パー
ミエイシヨン・クロマトグラフイ)により調べた
ところ、ジシクロペンタジエン1モルにトルエン
1モルが付加した化合物(約63重量%)の分子量
224を下限とし、ポリスチレン換算分子量8000の
化合物に至るまで種々の分子量の化合物が存在し
ていた。 次いで撹拌装置、温度計を備えて成る容量3
のステンレス製オートクレーブ中に上述の残留物
20g、亜硫酸水素ナトリウム20g、硝酸カリウム
2g、イソプロピルアルコール300ml及び蒸留水
50gを入れ、室温でオートクレーブ中の内圧が
1.0Kg/cm2(ゲージ圧)になるまで空気を供給し
たのちバルブを密閉して、強撹拌で混合しながら
温度110℃で3時間に亘り反応させた。その後室
温まで放冷し、蒸留によりイソプロピルアルコー
ルの大部分を除去した後蒸留水1及び石油エー
テル1.5を加えて充分混合し、分離した石油エ
ーテル層及び沈澱部を除去して得られた水層を濃
縮し蒸発乾固した。これを氷酢酸に溶解し、無機
塩からなる酢酸不溶分を別した。得られた酢酸
可溶分を濃縮することによつて黄色の固体25.8g
を得た。これを「試料1」とする。 この試料1を蒸留水に溶解しイオン交換樹脂に
より酸型に変換し、水酸化ナトリウムにより滴定
したところ、残存二重結合の約96%がスルホン化
されていた。この試料1の水に対する溶解性は40
重量%以上であり、この試料1に水を加えて4重
量%水溶液を作り、その表面張力を測定したとこ
ろ48.9dyn/cmであつた。 実施例 2 実施例1において、はじめに仕込んだトルエン
1270gの代りにエチルベンゼン1510g、滴下トル
エン320gの代りにエチルベンゼン320gを用いた
他は実施例1と同様に反応させ未反応のエチルベ
ンゼン1590gとジシクロペンタジエン52gを留去
し、残留物588gを得た。この残留物における残
存二重結合をヨウ素滴定法により調べたところ、
反応したジシクロペンタジエン1モルに対し0.95
当量の二重結合が残存していた。また残留物の分
子量分布を実施例1と同様にして調べたところ、
ジシクロペンタジエン1モルにエチルベンゼン1
モルが付加した化合物(約58重量%)の分子量
238を下限とし、ポリスチレン換算分子量11000の
化合物に至るまで種々の分子量の化合物が存在し
ていた。 次いで実施例1と同様にしてスルホン化処理を
行ない、黄色の固体23.8gを得た。これを「試料
2」とする。 この試料2を蒸留水に溶解してイオン交換樹脂
により酸型に変換し、水酸化ナトリウムにより滴
定したところ、残存二重結合の約92%がスルホン
化されていた。この試料2の水に対する溶解性は
30重量%以上であり、この試料2に水を加えて4
重量%水溶液を作り、その表面張力を測定したと
ころ47.3dyn/cmであつた。 実施例 3 実施例1において、はじめに仕込んだトルエン
1270gの代りにキシレン1510gを用い、滴下溶液
としてジシクロペンタジエン300g、キシレン320
g及び純度70%のピペリレン100gの混合溶液を
用いた他は実施例1と同様に反応させ未反応のキ
シレン1560g、ジシクロペンタジエン33g及びピ
ペリレン48gを留去し、残留物563gを得た。こ
の残留物における残存二重結合をヨウ素滴定法に
より調べたところ、反応したジシクロペンタジエ
ン1モルに対し0.92モルの二重結合が残存してい
た。また残留物の分子量分布を実施例1と同様に
して調べたところ、ジシクロペンタジエン1モル
にキシレン1モルが付加した化合物(約61重量
%)の分子量238を下限とし、ポリスチレン換算
分子量10500の化合物に至るまで広く分布してい
た。 次いで実施例1と同様にしてスルホン化処理を
行ない、黄色の固体22.9gを得た。これを「試料
3」とする。 この試料3を蒸留水に溶解しイオン交換樹脂に
より酸型に変換し、水酸化ナトリウムにより滴定
したところ、残存二重結合の約94%がスルホン化
されていた。この試料3の水に対する溶解性は30
重量%以上であり、この試料3に水を加えて4重
量%水溶液を作り、その表面張力を測定したとこ
ろ43.8dyn/cmであつた。 参考例 1 撹拌装置、温度計を備えて成る容量0.2の三
つ口フラスコ中に実施例1で得られた試料1を30
ミリモル、ホルムアルデヒド30ミリモル、硫酸30
ミリモル及び蒸留水270ミリモルを仕込み、温度
80℃で24時間に亘り縮合反応させた。得られた反
応物に蒸留水100gを加えた後、PHが7になるま
で炭酸カルシウムを撹拌しながら加え、次いで得
られた混合物を過して液を得た。さらにこの
液にPHが9になるまで炭酸ソーダを撹拌しなが
ら加えた後、過して液を得た。この液を乾
固して11.6gの茶褐色粉末を得た。これを「試料
4」とする。 この試料4の分子量分布を水系GPC(ゲル・パ
ーミエイシヨン・クロマトグラフイ)により測定
したところ、分子量500以下の化合物は全体の5
重量%以下となり、分子量4300に大きなピークが
生じていた。なおこの分子量は、分子量の異なる
数種類のポリスチレンスルホン酸ソーダ、アント
ラセンスルホン酸ソーダ及びベンゼンスルホン酸
ソーダを標準物質として用いて作成した検量線か
ら換算したものである。 またこの試料4の水に対する溶解性は30重量%
以上であり、この試料4に水を加えて4重量%水
溶液を作り、その表面張力を測定したところ
51.3dyn/cmであつた。 参考例 2 実施例2で得られた試料2を用いた他は参考例
1と同様に縮合反応させて10.1gの茶褐色粉末も
得た。これを「試料5」とする。 この試料5の分子量分布を参考例1と同様にし
て測定したところ、分子量500以下の化合物は全
体の3重量%以下となり、分子量4800に大きなピ
ークが生じていた。この試料5の水に対する溶解
性は25重量%以上であり、この試料5に水を加え
て4重量%水溶液を作り、その表面張力を測定し
たところ50.8dyn/cmであつた。 参考例 3 実施例1〜3並びに参考例1及び2において得
られた試料1〜5の各2gを50gの蒸留水に加え
て溶解して合計5種の水溶液を作製した。これら
の水溶液の各々に市販のポルトランドセメント
(秩父セメント(株)製)200gを加えて3分間手練り
した後、内容積98.9c.c.のフローコーンを用い、
JIS R5201に準じてフロー値を測定した。結果は
次表に示す通りである。
The present invention relates to a method for producing a sulfonated product of a cyclopentadiene derivative. In general, organic compounds such as sulfonic acid and its derivatives are strong acids comparable to sulfuric acid, and are widely used industrially due to their properties. Moreover, since the salt is water-soluble, it is extremely important as a surfactant for organic or inorganic materials. However, most of the sulfonated compounds conventionally synthesized are aromatic or aliphatic sulfonated compounds, and few examples of sulfonated alicyclic compounds are known. As a result of intensive studies on sulfonated products using alicyclic compounds and derivatives thereof as starting materials, the present inventors discovered that specific cyclopentadienes and/or
Or, when dicyclopentadiene is reacted with a specific benzene derivative, a compound with a benzene derivative added to the skeleton of cyclopentadiene and/or dicyclopentadiene, a compound having a skeleton of cyclopentadiene and/or dicyclopentadiene, etc. A mixture of several types of reaction products such as coalescence is obtained, and since the sulfonated product or its salt of this mixture is water-soluble, it has an excellent surfactant effect on organic or inorganic substances, and is particularly effective in dispersing cement. They also found that the condensate obtained by condensing the sulfonated product of the above mixture or its salt with an aldehyde has an even better surfactant effect, particularly an excellent cement dispersion effect.The present invention has been achieved. It was completed. An object of the present invention is to react a specific cyclopentadiene and/or a specific dicyclopentadiene with a compound represented by the following general formula () and sulfonate the reaction product mixture obtained. An object of the present invention is to provide a method for producing a sulfonated product. General formula () (In the formula, R 1 and R 2 are the same or different groups,
Represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. ) The present invention will be specifically explained below. In the present invention, a cyclopentadiene represented by the following general formula () and/or a dicyclopentadiene represented by the following general formula () and a compound represented by the above general formula () are combined in the presence of a catalyst such as an acidic compound. The reaction product mixture obtained by the reaction described below is sulfonated, thereby producing a sulfonated product. General formula () (In the formula, R 3 is a hydrogen atom or has 1 to 3 carbon atoms.
represents an alkyl group. ) General formula () (In the formula, R 4 and R 5 represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) Specific compounds that can be represented by these general formulas () or () include, for example, cyclopentadiene. , methylcyclopentadiene,
Examples include alkylcyclopentadiene such as ethylcyclopentadiene and propylcyclopentadiene, and dimers formed by arbitrary combinations of these alkylcyclopentadienes, such as dicyclopentadiene. Further, the cyclopentadienes or dicyclopentadienes used in the present invention may contain impurities as long as they do not interfere with the reaction. Examples of the compound represented by the general formula () used in the present invention include benzene, toluene, xylene (o-, m-, p-), ethylbenzene, n-propylbenzene, iso-propylbenzene, methylethylbenzene (o- ,m-,p
-), n-butylbenzene, sec-butylbenzene, tert-butylbenzene, iso-propyltoluene (o-, m-, p-), amylbenzene, hexylbenzene, amyltoluene (o-, m-,
Examples include benzene derivatives such as mono- or dialkyl-substituted benzenes such as p-). The alkyl group in this case has 1 to 6 carbon atoms, and tetralin, which is a compound in which two alkyl groups mutually form a ring, can also be used. Among these, R 1 and R 2 are preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and particularly preferred are benzene, toluene, xylene,
Examples include propylbenzene and butylbenzene. In the present invention, these compounds may be used alone, or two or more different compounds may be used in combination. In the present invention, when the specific cyclopentadiene and/or dicyclopentadiene is reacted with the compound represented by the general formula (), an acidic compound is usually used as a catalyst. sulfuric acid, phosphoric acid,
Examples include Lewis acids or organic protonic acids such as hydrogen fluoride, boron trifluoride and complexes thereof, aluminum chloride, aluminum bromide, tin tetrachloride, zinc chloride, and titanium trichloride. In the presence of such an acidic compound, cyclopentadiene and/or dicyclopentadiene and the compound represented by the above general formula () are mixed in a molar ratio of usually 100:1 to 1:100, and a solvent is added to this as appropriate. is added, and the reaction temperature is usually -20~
The reaction is carried out at 150 DEG C., preferably from 0 DEG to 120 DEG C., for several hours to obtain a reaction product mixture. The reaction product mixture thus obtained is a reaction product obtained by adding one molecule of the compound represented by the general formula () to one molecule of dicyclopentadiene, and a reaction product obtained by adding one molecule of the compound represented by the general formula () to two molecules of dicyclopentadiene. In addition to several types of adducts such as reaction products to which one molecule of the compound represented by is added, polymers of cyclopentadienes and/or dicyclopentadienes, and compounds represented by the general formula () to the polymers are also used. It is a mixture of various compounds including added reaction products. The ratio of various reaction products in this reaction product mixture can be changed as appropriate depending on the type of catalyst, reaction temperature, charging ratio of reaction raw materials, etc. The lower limit of the molecular weight of this reaction product mixture is the reaction product obtained by adding one molecule of the compound represented by the general formula () to one molecule of cyclopentadiene, and the upper limit varies depending on the reaction conditions and is not particularly limited. The number average molecular weight is preferably 10,000 or less from the viewpoint of ease of proceeding with the sulfonation reaction described below. This number average molecular weight is
The results of permeation chromatography (permeation chromatography) were converted from a calibration curve created using several types of polystyrene with different molecular weights as standard materials. Furthermore, the surface active properties of the sulfonated product, which will be described later, can be controlled by adding other dienes or olefins to the reaction raw materials in advance and co-reacting these as well. Methods for sulfonating such reaction product mixtures are described in EEGilbert's book “Sulfonation and Related Reactions”.
and Related Reaction”), Interscience
Publishers Inc. (1965), and the sulfonation method applied to unsaturated compounds, especially unsaturated aliphatic or unsaturated alicyclic compounds, should be selected appropriately depending on the state of the reaction system. Can be done. Also Charles G. Norton.
J. Norton et al., The Journal of Organic Chemistry
Sulfonated products can also be obtained by the addition reaction of sulfites to unsaturated bonds, as shown in the study in J. Organic Chemistry, p. 4158 (1968). In this case, the sulfonating agent is usually an alkali metal acid sulfite, metasulfite,
Alternatively, sulfites are used alone or in mixtures. The amount of these sulfonating agents varies depending on the degree of sulfonation required and cannot be determined unconditionally, but is usually at a ratio of 0.1 to 10 molecules per remaining double bond in the reaction product mixture. used. The number of moles of double bonds remaining in the reaction product mixture can be determined by iodometric titration, and is usually determined per molecule of cyclopentadiene and/or dicyclopentadiene as the reaction raw material.
Double bonds remain at a ratio of 0.3 to 1. In this sulfonation reaction, the use of a catalyst is not necessarily required, but the reaction time can usually be shortened by using a catalyst such as an inorganic oxidizing agent. Examples of the inorganic oxidizing agent include nitrates, nitrites, chlorates, etc., with nitrates being particularly preferred. Furthermore, it is desirable to use an appropriate solvent to allow the reaction to proceed uniformly and smoothly. Solvents that can be advantageously used include, for example, water, lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, and tertiary butyl alcohol, lower glycols, ketones, ethers, and esters. Examples include. Two or more of these solvents can be used in combination as appropriate.
Among these, mixed solvents of lower alcohols and water, especially mixed solvents of propyl alcohol and water, are recommended as excellent solvents. In addition, in order to more uniformly dissolve the polymer having a cyclopentadiene and/or dicyclopentadiene skeleton in the reaction product mixture,
Solvents that are inert in the sulfonation reaction, such as aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, aliphatic hydrocarbons such as pentane, heptane, and decane, and cyclic ethers such as tetrahydrofuran, can also be used in combination. The reaction temperature in the sulfonation reaction is usually 50~
200℃, preferably 70-150℃, more preferably 90
It is carried out at ~120°C, and can be carried out either at normal pressure or under pressure. In addition, in order to suppress the progress of side reactions and reduce the production of unnecessary inorganic salts, the pH of the reaction system is usually 2 to 9.
Preferably it is kept at 5-7. The sulfonated products thus obtained are typically 20 to 20% of the remaining double bonds in the reaction product mixture.
It is 100% sulfonated. The degree of sulfonation can be determined by converting the obtained sulfonated product into an acid form by an ion exchange method and subjecting it to alkaline titration. Since the sulfonated product obtained by the method of the present invention is as described above, it has an excellent surfactant action as will be understood from the examples described later, and therefore it can be used as an organic material or an inorganic material. It is extremely useful as a surfactant, such as an emulsifier,
It can be widely used as a dispersant, wetting agent, cleaning agent, and smoothing agent. The sulfonated product obtained by the method of the present invention is a sulfonated product of a reaction product mixture in which several types of reaction products are mixed,
This sulfonated product has a sufficient effect as a whole, and therefore there is no need to carry out separation and purification, which is normally difficult to carry out.As a result, the manufacturing process can be significantly omitted, and the reaction Compared to the case where the various reaction products in the product mixture are isolated and sulfonated, the sulfonation of the reaction product mixture proceeds more easily and can be applied over a wide range from low molecular weight to high molecular weight. Since the sulfonation is achieved at a high reaction rate over a period of time, sulfonated products can be advantageously obtained. In addition, the sulfonated product obtained by the method of the present invention can be processed by ion exchange method or neutralization reaction, etc.
They can be interchanged into acid forms or salts of alkali metals, alkaline earth metals, ammonium, amines, etc. The sulfonated product obtained as described above can be condensed with, for example, an aldehyde in the presence of an acid catalyst using this as a condensation monomer to form a condensate. Examples of the aldehyde include formaldehyde, acetaldehyde, and propionaldehyde, among which formaldehyde is preferred from the viewpoint of reactivity. The amount used can be selected within a fairly wide range, but in order to achieve a high degree of condensation and avoid unnecessary side reactions,
In the sulfonated product, the number of moles is preferably 0.5 to 2 times the number of moles of the compound represented by the general formula () added to the skeleton of the cyclopentadiene and/or dicyclopentadiene, more preferably The number of moles is 0.8 to 1.5 times higher. In the condensation of the sulfonated product, other condensation monomers such as benzene, toluene, xylene,
Benzene derivatives such as phenol; sulfonic acids or salts thereof of benzene derivatives; naphthalene derivatives; sulfonic acids or salts thereof of naphthalene derivatives such as sodium β-naphthalene sulfonate, etc. may be condensed together singly or in an appropriate combination of two or more. good. By appropriately selecting these, it is possible to freely control the surface active properties of the resulting condensate. Further, during the condensation, the low boiling point compound or high boiling point compound in the sulfonated product may be appropriately removed before condensation. As the acid catalyst in the condensation reaction, sulfuric acid can be cited as a typical example. The amount used is not particularly limited, but it is usually 0.0001 to 10 times the number of moles, preferably 0.01 to 5 times the number of moles, and more preferably 0.05 times the number of moles of the condensation monomer.
~3 times the number of moles. If this is less than 0.0001 times the number of moles, the reaction rate will be low and the degree of condensation will be low, while if it exceeds 10 times the number of moles, carbonization reaction will likely occur. Furthermore, when the sulfonated product is in the acid form, it also acts as an acid catalyst, so this number of moles can be calculated as the number of moles of the acid catalyst. In order to carry out a uniform condensation reaction, it is preferable to use water, lower alcohol, formic acid, acetic acid, etc. as a solvent for the condensation reaction. The amount to be used may be selected appropriately taking into account the reaction rate, solubility, etc., but is usually based on 1 part by weight of the condensation reaction raw material mixture.
0.01 to 10 parts by weight, and the condensation reaction temperature is usually
The temperature is 30 to 150°C, preferably 70 to 120°C. Further, the degree of condensation of the resulting condensate can be appropriately selected by changing reaction conditions such as the amount of acid catalyst, the condensation reaction temperature, and the condensation reaction time. It is also desirable to select the degree of condensation depending on the application. For example, when used as a dispersant for cement as described later, the number average molecular weight of the condensate is 500.
~30000 is preferable, more preferably
It is 800-10000. Note that this number average molecular weight is for water-based
Can be measured by GPC (gel permeation chromatography), and is converted from a calibration curve created using several types of sodium polystyrene sulfonate, sodium anthracene sulfonate, and sodium benzene sulfonate as standard substances with different molecular weights. This is what I did. As mentioned above, the condensate obtained by condensing the sulfonated product obtained by the method of the present invention also has an excellent surface-active effect, so it is extremely useful as a surfactant for organic or inorganic materials. can be,
For example, it can be widely used as an emulsifier, a dispersant, a wetting agent, a cleaning agent, and a smoothing agent. The condensate is a condensate obtained by condensing the sulfonated product obtained as described above, and the condensate has a sufficient effect as a whole, and therefore is difficult to carry out normally. It is not necessary to carry out a certain separation and purification, and as a result, a large number of manufacturing steps can be omitted. Furthermore, when the sulfonated product or its condensate obtained by the method of the present invention is used as a dispersant for cement, the dispersibility of cement in water is significantly improved, as will be understood from the examples described below. Therefore, an excellent water reduction effect can be obtained in the cement construction method. Examples of the present invention will be specifically described below, but the present invention is not limited to these Examples. Example 1 Capacity 3 comprising reflux condenser and stirring device
Put 1270 g of toluene and 12 g of boron trifluoride/phenol complex into a three-necked flask, raise the temperature to 50°C, and add dicyclopentadiene while stirring.
A mixed solution of 417 g and 320 g of toluene was added dropwise over about 1 hour, and the reaction was further continued at this temperature for 2 hours. After the reaction was completed, the catalyst was decomposed with a sodium carbonate solution and washed with water, and then the oil layer was distilled under reduced pressure to remove 1360 g of unreacted toluene and 35 g of dicyclopentadiene, yielding 601 g of a residue. When the remaining double bonds in this residue were examined by iodometric titration, it was found that 0.96 equivalents of double bonds remained per mole of reacted dicyclopentadiene. In addition, when the molecular weight distribution of the residue was investigated by GPC (gel permeation chromatography), it was found that the molecular weight of a compound (approximately 63% by weight) in which 1 mol of toluene was added to 1 mol of dicyclopentadiene.
Compounds with various molecular weights existed, with a lower limit of 224 and a polystyrene equivalent molecular weight of 8,000. Next, capacity 3 is equipped with a stirring device and a thermometer.
The above residue in the stainless steel autoclave
20g, sodium bisulfite 20g, potassium nitrate 2g, isopropyl alcohol 300ml and distilled water
50g was added, and the internal pressure in the autoclave at room temperature
After supplying air until the pressure reached 1.0 Kg/cm 2 (gauge pressure), the valve was sealed, and the mixture was reacted at a temperature of 110° C. for 3 hours with vigorous stirring. After that, it was left to cool to room temperature, and after removing most of the isopropyl alcohol by distillation, 1 part of distilled water and 1.5 parts of petroleum ether were added and thoroughly mixed, and the separated petroleum ether layer and precipitate were removed to obtain the aqueous layer. Concentrate and evaporate to dryness. This was dissolved in glacial acetic acid, and the acetic acid insoluble portion consisting of inorganic salts was separated. By concentrating the obtained acetic acid soluble content, 25.8 g of yellow solid was obtained.
I got it. This will be referred to as "Sample 1". When this sample 1 was dissolved in distilled water, converted into an acid form using an ion exchange resin, and titrated with sodium hydroxide, approximately 96% of the remaining double bonds were found to be sulfonated. The solubility of this sample 1 in water is 40
When water was added to Sample 1 to make a 4% by weight aqueous solution and the surface tension was measured, it was found to be 48.9 dyn/cm. Example 2 In Example 1, toluene initially charged
The reaction was carried out in the same manner as in Example 1, except that 1510 g of ethylbenzene was used instead of 1270 g, and 320 g of ethylbenzene was used instead of 320 g of dropped toluene, and 1590 g of unreacted ethylbenzene and 52 g of dicyclopentadiene were distilled off to obtain 588 g of a residue. When the residual double bonds in this residue were investigated by iodometric titration, it was found that
0.95 per mole of reacted dicyclopentadiene
An equivalent amount of double bonds remained. In addition, when the molecular weight distribution of the residue was investigated in the same manner as in Example 1,
1 mol of dicyclopentadiene to 1 mol of ethylbenzene
Molecular weight of the compound (approximately 58% by weight) with moles added
Compounds with various molecular weights existed, with a lower limit of 238 and a compound with a polystyrene equivalent molecular weight of 11,000. Next, sulfonation treatment was carried out in the same manner as in Example 1 to obtain 23.8 g of a yellow solid. This will be referred to as "Sample 2." When this sample 2 was dissolved in distilled water, converted into an acid form using an ion exchange resin, and titrated with sodium hydroxide, approximately 92% of the remaining double bonds were found to be sulfonated. The solubility of this sample 2 in water is
30% by weight or more, and by adding water to this sample 2,
A wt% aqueous solution was prepared and its surface tension was measured and found to be 47.3 dyn/cm. Example 3 In Example 1, toluene initially charged
Use 1510 g of xylene instead of 1270 g, and add 300 g of dicyclopentadiene and 320 g of xylene as the dropping solution.
The reaction was carried out in the same manner as in Example 1 except that a mixed solution of 100 g of piperylene with a purity of 70% was used, and 1560 g of unreacted xylene, 33 g of dicyclopentadiene and 48 g of piperylene were distilled off to obtain 563 g of a residue. When the remaining double bonds in this residue were examined by iodometric titration, it was found that 0.92 mol of double bonds remained per 1 mol of reacted dicyclopentadiene. In addition, when the molecular weight distribution of the residue was investigated in the same manner as in Example 1, the lower limit was the molecular weight of 238 for a compound in which 1 mole of xylene was added to 1 mole of dicyclopentadiene (approximately 61% by weight), and a compound with a polystyrene equivalent molecular weight of 10,500 It was widely distributed. Next, sulfonation treatment was carried out in the same manner as in Example 1 to obtain 22.9 g of a yellow solid. This will be referred to as "Sample 3." When this sample 3 was dissolved in distilled water, converted into an acid form using an ion exchange resin, and titrated with sodium hydroxide, approximately 94% of the remaining double bonds were found to be sulfonated. The solubility of this sample 3 in water is 30
When water was added to this sample 3 to make a 4% by weight aqueous solution and the surface tension was measured, it was found to be 43.8 dyn/cm. Reference Example 1 Sample 1 obtained in Example 1 was placed in a three-neck flask with a capacity of 0.2 and equipped with a stirrer and a thermometer.
mmol, formaldehyde 30 mmol, sulfuric acid 30
Prepare 270 mmol of distilled water and the temperature
A condensation reaction was carried out at 80°C for 24 hours. After adding 100 g of distilled water to the obtained reaction product, calcium carbonate was added with stirring until the pH reached 7, and then the obtained mixture was filtered to obtain a liquid. Further, soda carbonate was added to this liquid while stirring until the pH reached 9, and then filtered to obtain a liquid. This liquid was dried to obtain 11.6 g of brown powder. This will be referred to as "Sample 4." When the molecular weight distribution of sample 4 was measured by aqueous GPC (gel permeation chromatography), it was found that 5 of the total compounds with a molecular weight of 500 or less
% by weight or less, and a large peak appeared at a molecular weight of 4,300. Note that this molecular weight was calculated from a calibration curve prepared using several types of sodium polystyrene sulfonate, sodium anthracene sulfonate, and sodium benzene sulfonate having different molecular weights as standard substances. Also, the solubility of sample 4 in water is 30% by weight.
The above is the result of adding water to this sample 4 to make a 4% by weight aqueous solution and measuring its surface tension.
It was 51.3 dyn/cm. Reference Example 2 A condensation reaction was carried out in the same manner as in Reference Example 1, except that Sample 2 obtained in Example 2 was used, and 10.1 g of brown powder was also obtained. This will be referred to as "Sample 5." When the molecular weight distribution of this sample 5 was measured in the same manner as in Reference Example 1, compounds with a molecular weight of 500 or less accounted for 3% by weight or less of the total, and a large peak appeared at a molecular weight of 4,800. The solubility of Sample 5 in water was 25% by weight or more, and when water was added to Sample 5 to prepare a 4% by weight aqueous solution, the surface tension was measured to be 50.8 dyn/cm. Reference Example 3 2 g each of Samples 1 to 5 obtained in Examples 1 to 3 and Reference Examples 1 and 2 were added to 50 g of distilled water and dissolved to prepare a total of 5 types of aqueous solutions. After adding 200 g of commercially available Portland cement (manufactured by Chichibu Cement Co., Ltd.) to each of these aqueous solutions and kneading by hand for 3 minutes, using a flow cone with an internal volume of 98.9 cc,
Flow values were measured according to JIS R5201. The results are shown in the table below.

【表】 一方試料1〜5の何れも加えない他は同様にし
てフロー値を測定したところわずか87mmであつ
た。 以上の実施例1〜3並びに参考例1及び2より
理解されるように、本発明の方法によつて得られ
るスルホン化物及びその縮合物は、泡立ちがよ
く、且つ優れた界面活性作用を有するものであ
り、また参考例3より理解されるように、本発明
の方法によつて得られるスルホン化物またはその
縮合物をセメント用分散剤として用いた場合には
セメントの水への分散作用が極めて大きく優れて
いるものであることがわかる。
[Table] On the other hand, when the flow value was measured in the same manner except that none of Samples 1 to 5 was added, it was only 87 mm. As understood from the above Examples 1 to 3 and Reference Examples 1 and 2, the sulfonated products and condensates thereof obtained by the method of the present invention foam well and have excellent surfactant action. Moreover, as understood from Reference Example 3, when the sulfonated product or its condensate obtained by the method of the present invention is used as a dispersant for cement, the dispersion effect of cement in water is extremely large. It turns out that it is excellent.

Claims (1)

【特許請求の範囲】 1 下記一般式()で表わされるシクロペンタ
ジエン類及び/または下記一般式()で表わさ
れるジシクロペンタジエン類と下記一般式()
で表わされる化合物とを反応せしめて得られる反
応生成物混合体をスルホン化することを特徴とす
るスルホン化物の製造方法。 一般式() (式中、R1及びR2は同一または異なる基であり、
水素原子若しくは炭素原子数1〜6のアルキル基
を表わす。) 一般式() (式中、R3は水素原子または炭素原子数1〜3
のアルキル基を表わす。) 一般式() (式中、R4及びR5は水素原子または炭素原子数
1〜3のアルキル基を表わす。)
[Scope of Claims] 1 Cyclopentadiene represented by the following general formula () and/or dicyclopentadiene represented by the following general formula () and the following general formula ()
1. A method for producing a sulfonated product, which comprises sulfonating a reaction product mixture obtained by reacting a compound represented by: General formula () (In the formula, R 1 and R 2 are the same or different groups,
Represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. ) General formula () (In the formula, R 3 is a hydrogen atom or has 1 to 3 carbon atoms.
represents an alkyl group. ) General formula () (In the formula, R 4 and R 5 represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
JP3514982A 1982-03-08 1982-03-08 Sulfonated cyclopentadiene derivative and its condensation product Granted JPS58152862A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3514982A JPS58152862A (en) 1982-03-08 1982-03-08 Sulfonated cyclopentadiene derivative and its condensation product
US06/471,671 US4511683A (en) 1982-03-08 1983-03-03 Sulfonic acid compound having cyclopentadiene skeleton and composition comprising same and cement
CA000422859A CA1210023A (en) 1982-03-08 1983-03-04 Sulfonic acid compound having cyclopentadiene skeleton and composition comprising same and cement
DE19833307998 DE3307998A1 (en) 1982-03-08 1983-03-07 SULPHONIC ACID COMPOUNDS WITH CYCLOPENTADIENEBAU, THEIR PRODUCTION AND THEIR USE AS DISPERSING AGENTS
GB08306301A GB2119369B (en) 1982-03-08 1983-03-08 Cyclopentadiene-derived sulphonic acids dispersants for cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3514982A JPS58152862A (en) 1982-03-08 1982-03-08 Sulfonated cyclopentadiene derivative and its condensation product

Publications (2)

Publication Number Publication Date
JPS58152862A JPS58152862A (en) 1983-09-10
JPH029583B2 true JPH029583B2 (en) 1990-03-02

Family

ID=12433838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3514982A Granted JPS58152862A (en) 1982-03-08 1982-03-08 Sulfonated cyclopentadiene derivative and its condensation product

Country Status (1)

Country Link
JP (1) JPS58152862A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096689A (en) * 1983-10-31 1985-05-30 Japan Synthetic Rubber Co Ltd Coal slurry composition

Also Published As

Publication number Publication date
JPS58152862A (en) 1983-09-10

Similar Documents

Publication Publication Date Title
JPS6059903B2 (en) Method for producing internal olefin sulfonate
JPH021142B2 (en)
Skell et al. Configuration of Free-Radicals. Non-stereospecificity of cis-and trans-2-Butene-Sulfur Dioxide Copolymerizations
JPH029583B2 (en)
JPH0218327B2 (en)
JPH029582B2 (en)
US4511683A (en) Sulfonic acid compound having cyclopentadiene skeleton and composition comprising same and cement
JPH0214344B2 (en)
EP0049070A1 (en) Production of aromatic polysulphones
Priddy Alkylation of biphenyl under mild friedel-crafts conditions
JP3780581B2 (en) Organic compound conversion catalyst
EP0009267B1 (en) Process for the preparation of p-nitroso-diphenylhydroxylamines
EP0108654B1 (en) Sulfonic acid compound having cyclopentadiene skeleton and composition comprising same and cement
US4036887A (en) Preparation of 3-bromobenzaldehyde
Zoss et al. Preparation and properties of alkylphenol-acetylene resins
JPH0214345B2 (en)
Crovatt et al. Some Properties of Benzenesulfonyl Peroxide
JPS59227755A (en) Hydraulic cement composition
JPH0240091B2 (en)
JPS59184152A (en) Production of sulfonated substance
JPH03188029A (en) Preparation of bis-chloromethyl-substituted aromatic compound
JP3247971B2 (en) Method for producing 4-hydroxyphenethyl alcohol compound
JPS6119608A (en) Production of polymer of sulfonated norbornene derivative
JPS6127930A (en) Preparation of diarylalkane compound
JPS58172338A (en) Manufacture of pinacolone