JPH029582B2 - - Google Patents

Info

Publication number
JPH029582B2
JPH029582B2 JP3514782A JP3514782A JPH029582B2 JP H029582 B2 JPH029582 B2 JP H029582B2 JP 3514782 A JP3514782 A JP 3514782A JP 3514782 A JP3514782 A JP 3514782A JP H029582 B2 JPH029582 B2 JP H029582B2
Authority
JP
Japan
Prior art keywords
sulfonated
structural formula
general formula
reaction
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3514782A
Other languages
Japanese (ja)
Other versions
JPS58152860A (en
Inventor
Hironobu Shinohara
Noboru Yamahara
Yoshinori Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP3514782A priority Critical patent/JPS58152860A/en
Priority to US06/471,671 priority patent/US4511683A/en
Priority to CA000422859A priority patent/CA1210023A/en
Priority to DE19833307998 priority patent/DE3307998A1/en
Priority to GB08306301A priority patent/GB2119369B/en
Publication of JPS58152860A publication Critical patent/JPS58152860A/en
Publication of JPH029582B2 publication Critical patent/JPH029582B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシクロペンタジエン骨格、ベンゼン環
及びスルホン酸基を含有して成るシクロペンタジ
エン誘導体スルホン化物の縮合物の製造方法に関
するものである。 一般に有機化合物のスルホン酸やその誘導体は
硫酸に匹敵する程の強酸であり、その性質を生か
して工業的に広く利用されている。またその塩は
水溶性であることから有機材料或いは無機材料の
界面活性剤として極めて重要である。 しかしながら、従来合成されているスルホン化
物の多くは、芳香族若しくは脂肪族などのスルホ
ン化物であり、脂環式化合物のスルホン化物の例
はほとんど知られていない。 本発明者らは、脂環式化合物及びその誘導体を
出発原料としたスルホン化物について、鋭意検討
を重ねた結果、特定の構造を有するシクロペンタ
ジエン誘導体スルホン化物がアルデヒドにより縮
合し得るものであることを見出し、そして得られ
た縮合物が有機材料或いは無機材料に対し極めて
すぐれた界面活性作用を有することを見出し、本
発明を完成するに至つた。 即ち本発明は、下記一般式で表わされるシクロ
ペンタジエン誘導体スルホン化物を縮合すること
によつて縮合物を製造する方法を提供することを
目的とする。 一般式 (式中、R1,R2及びR3は同一又は異なる基であ
り、水素原子若しくは、炭素原子数1〜6のアル
キル基を表わし、 R4及びR5は同一又は異なる基であり、水素原
子若しくは炭素原子数1〜3のアルキル基を表わ
し、nは1若しくは2を表わし、 Mは水素原子、アルカリ金属原子、アルカリ土
類金属原子、アンモニウム若しくはアミンを表わ
す。) 以上本発明を具体的に説明する。 本発明においては、前記一般式で表わされるシ
クロペンタジエン誘導体スルホン化物を縮合せし
め、これによつて縮合物を製造する。 本発明においていう縮合物とは、前記一般式で
表わされるシクロペンタジエン誘導体スルホン化
物のうち同一のものを縮合せしめて得られる縮合
物の他、前記一般式で表わされるシクロペンタジ
エン誘導体スルホン化物のうち異なるものを縮合
せしめて得られる縮合物、または前記一般式で表
わされるシクロペンタジエン誘導体スルホン化物
とこれと縮合し得る前記一般式で表わされるシク
ロペンタジエン誘導体スルホン化物以外の縮合用
単量体の混合物を縮合せしめて得られる縮合物を
も表わすものである。 前記一般式において、Mが水素、アルカリ金
属、アンモニウム又はアミンのときはn=1であ
りMがアルカリ土類金属のときはn=2である。 上記アルカリ金属としてはナトリウム、カリウ
ムなどを挙げることができ、アミンとしてはメチ
ルアミン、エチルアミン、プロピルアミン、ジメ
チルアミン、ジエチルアミン、トリメチルアミ
ン、トリエチルアミン、ブチルアミン、ジブチル
アミン、トリブチルアミンなどのアルキルアミ
ン;エチレンジアミン、ジエチレントリアミン、
トリエチレンテトラミンなどのポリアミン;モル
ホリン、ピペリジンなどを挙げることができ、ア
ルカリ土類金属としてはカルシウム、マグネシウ
ム、亜鉛などを挙げることができる。またこれら
のMは種種のイオン交換技法或いは中和反応によ
り他種のMと相互に交換することが可能である。 なお前記一般式で表わされるシクロペンタジエ
ン誘導体スルホン化物におけるR1,R2及びR3
して好ましいものは、水素、メチル基、プロピル
基及びブチル基であり、R4及びR5として好まし
いものは水素である。 前記一般式で表わされるシクロペンタジエン誘
導体スルホン化物を製造するには種々の製造法が
考えられるが、例えば下記構造式()の化合物
をスルホン化し、その後必要に応じてスルホン酸
塩とする方法により前記一般式で表わされるシク
ロペンタジエン誘導体スルホン化物を製造するこ
とができる。 構造式() (R1,R2,R3,R4及びR5は前記一般式における
と同様) ここでスルホン化方法としては、ギルバート
(E.E.Gilbert)の著書「スルホン化および関連反
応」(“Sulfonation and Related Reaction”)、
Interscience Publishers Inc.(1965年)に詳細に
記載されており、不飽和化合物、特に不飽和脂肪
族或いは不飽和脂環族化合物に適用されるスルホ
ン化方法を反応系の状態に応じて適宜選択するこ
とができる。 またチヤールズ・ジエイ・ノートン(Charls.
J.Norton)ら、ザ・ジヤーナル・オブ・オーガ
ニツク・ケミストリー(The Journal of
Organic Chemistry)4158頁(1968年)の研究に
示されているような、不飽和結合への亜硫酸塩類
の付加反応によつても前記一般式で表わされるシ
クロペンタジエン誘導体スルホン化物を得ること
ができる。 この場合のスルホン化剤としては、通常アルカ
リ金属の酸性亜硫酸塩、メタ亜硫酸塩、或いは亜
硫酸塩が単独または混合物として使用される。こ
のスルホン化反応において、触媒の使用は必ずし
も要求されないが、通常無機酸化剤などの触媒を
用いると反応時間を短縮することができる。無機
酸化剤としては、例えば硝酸塩類、亜硝酸塩類、
塩素酸塩類などが挙げられるが、特に硝酸塩類が
好ましい。 さらに、反応を均一かつ円滑に進行させるため
に適当な溶剤を用いることが望ましい。有利に使
用できる溶剤としては、例えば水、或いはメチル
アルコール、エチルアルコール、プロピルアルコ
ール、イソプロピルアルコール、ブチルアルコー
ル、第3級ブチルアルコールなどの低級アルコー
ル類、低級グリコール類、ケトン類、エーテル
類、エステル類などが挙げられる。これらの溶剤
は適宜2種以上混合して使用することができる。
なかでも低級アルコール類と水との混合溶剤、そ
のうちでも特にプロピルアルコールと水との混合
溶剤がすぐれた溶剤として推奨される。 反応温度は通常50〜200℃、好ましくは70〜150
℃、より好ましくは90〜120℃で行なわれ、また
常圧或いは加圧下のいずれでも実施することがで
きる。 副反応の進行をおさえ、不要な無機塩の生成を
低くするために、反応系のPHは通常2〜9、好ま
しくは5〜7に保つ。 上記構造式()で表わされる化合物は、例え
ば下記構造式()で表わされる化合物と下記構
造式()で表わされる化合物とのフリーデルク
ラフト反応で得ることができる。 構造式() (R1,R2,及びR3は前記一般式におけると同様) 構造式() (R4及びR5は前記一般式におけると同様) 前記構造式()で表わされる化合物としては
ベンゼンまたはアルキルベンゼンを挙げることが
でき、アルキルベンゼンとしては、トルエン、キ
シレン(o―,m―,p―)、エチルベンゼン、
n―プロピルベンゼン、iso―プロピルベンゼン、
メチルエチルベンゼン(o―,m―,p―)、1,
2,4―トリメチルベンゼン、n―ブチルベンゼ
ン、sec―ブチルベンゼン、tert―ブチルベンゼ
ン、iso―プロピルトルエン(o―,m―,p
―)、アミルベンゼン、ヘキシルベンゼン、アミ
ルトルエン(o―,m―,p―)などのモノ、ジ
またはトリアルキル置換ベンゼンなどが挙げられ
る。この場合のアルキル基としては炭素数が1〜
6のものであり、またアルキル基2個が互いに環
を形成した化合物であるテトラリンなども使用で
きる。特に好ましい構造式()で表わされる化
合物としてはR3が水素である化合物でありベン
ゼン、トルエン、キシレン、プロピルベンゼン、
ブチルベンゼンが挙げられる。 また前記構造式()で表わされる化合物はシ
クロペンタジエン類の1種または2種からなる二
量体であり、シクロペンタジエン類としてはシク
ロペンタジエンの他、メチルシクロペンタジエ
ン、エチルシクロペンタジエン、プロピルシクロ
ペンタジエンなどのアルキルシクロペンタジエン
などを挙げることができる。このうち好ましいも
のは入手の容易性及び経済性の面からジシクロペ
ンタジエンである。 前記構造式()で表わされる化合物と構造式
()で表わされる化合物とのフリーデルクラフ
ト反応により前記構造式()で表わされる化合
物を合成するための触媒としては、酸性化合物、
例えば硫酸、リン酸、弗化水素、三弗化硼素及び
その錯体、塩化アルミニウム、臭化アルミニウ
ム、四塩化錫、塩化亜鉛、三塩化チタンなどのル
イス酸類或いは有機プロトン酸塩を挙げることが
でき、反応は公知の方法、例えば特開昭52−
133968号に準拠して行われ、例えば上記触媒の存
在下、前記構造式()で表わされる化合物及び
構造式()で表わされる化合物を、好ましくは
0〜100℃、特に好ましくは20〜70℃で1〜5時
間程度反応させることにより得ることができる。 また前記構造式()で表わされる化合物は構
造式()で表わされる化合物と下記構造式
()で表わされる化合物とのフリーデルクラフ
ト反応によつても合成することができる。 構造式() (R4及びR5は、前記一般式におけると同様、X
は水酸基またはハロゲンである。) 上記構造式()で表わされる化合物として
は、例えばヒドロキシ―ジヒドロ―ジシクロペン
タジエン、クロロ―ジヒドロ―ジシクロペンタジ
エン、ブロモ―ジヒドロ―ジシクロペンタジエン
などを挙げることができる。 前記構造式()で表わされる化合物と構造式
()で表わされる化合物のフリーデルクラフト
反応は構造式()で表わされる化合物と構造式
()で表わされる化合物とのフリーデルクラフ
ト反応と同様の触媒、同様の反応温度、同様の反
応時間により行なうことができる。前記構造式
()で表わされる化合物は、フリーデルクラフ
ト反応に活性なハロゲン原子を有しているため、
これを用いてフリーデルクラフト反応を行なうこ
とにより高選択率で構造式()で表わされる化
合物を得ることができる。 前記一般式で表わされるシクロペンタジエン誘
導体スルホン化物は、一般的には白色ないし微黄
色の固体であるが、出発原料である構造式()
で表わされる化合物、構造式()で表わされる
化合物及び構造式()で表わされる化合物の種
類並びにその組合せによつて変り得るものであ
る。 以上のような方法などによつて得られる前記一
般式で表わされるシクロペンタジエン誘導体スル
ホン化物、または前記一般式で表わされるシクロ
ペンタジエン誘導体スルホン化物とこれと縮合し
得る前記一般式で表わされるシクロペンタジエン
誘導体スルホン化物以外の縮合用単量体との混合
物(以下、これらを「縮合用組成物」と記す。)
を、酸触媒の存在下、例えばアルデヒドにより縮
合することにより本発明が実施される。 前記一般式で表わされるシクロペンタジエン誘
導体スルホン化物は同一のものであつてもよい
し、また前記一般式で表わされる範囲内のもので
あれば異なるものを数種組合せて用いてもよい。 前記アルデヒドとしては、例えばホルムアルデ
ヒド、アセトアルデヒド、プロピオンアルデヒド
などを挙げることができ、このうち反応性の点で
ホルムアルデヒドが好ましい。その使用量は相当
に広い範囲で選定することができるが、縮合度を
高くしそして不必要な副反応を避けるためには、
縮合用組成物の全モル数に対し、0.5〜2倍のモ
ル数であることが好ましく、更に好ましくは0.8
〜1.5倍のモル数である。 前記酸触媒としては、硫酸を代表的なものとし
て挙げることができる。その使用量は、縮合用組
成物の全モル数に対し、0.0001〜10倍のモル数で
あり、好ましくは0.01〜5倍のモル数、更に好ま
しくは0.05〜3倍のモル数である。これが0.0001
倍のモル数未満である場合には反応速度が小さく
なると共に縮合度が低くなり、一方10倍のモル数
を越える場合には炭化反応が生じ易くなる。また
縮合用組成物が前記一般式においてMが水素原子
であるシクロペンタジエン誘導体スルホン化物を
含有するものである場合には、当該シクロペンタ
ジエン誘導体スルホン化物自体が酸となり、これ
が酸触媒としての作用を併せて有するため、この
モル数を酸触媒のモル数として計算することがで
きる。 また均一な縮合反応を行なうためには、水、低
級アルコール、ギ酸、酢酸などを縮合反応の溶媒
として用いるのが好ましい。その使用量は、反応
速度、溶解度などを考慮して適宜選定すればよ
い。例えば前記一般式で表わされるシクロペンタ
ジエン誘導体スルホン化物のみより成る縮合用組
成物を用いて本発明を実施する場合において、前
記溶媒として水を用いるときには、その使用量
は、当該シクロペンタジエン誘導体スルホン化物
の全モル数に対して2〜100倍のモル数であり、
好ましくは5〜20倍のモル数である。 また縮合反応温度は、30〜150℃であり、好ま
しくは70〜120℃である。 前記一般式で表わされるシクロペンタジエン誘
導体スルホン化物以外の縮合用単量体としては、
例えばベンゼン、トルエン、キシレン、フエノー
ルなどのベンゼン誘導体;ベンゼン誘導体のスル
ホン酸またはその塩;ナフタレン誘導体;β―ナ
フタレンスルホン酸ナトリウムなどのナフタレン
誘導体のスルホン酸またはその塩などを挙げるこ
とができるが、特にこれらに限定されるものでは
ない。またこれらを2種以上組合せて用いてもよ
い。これらを適宜選定することにより、得られる
縮合物のHLB(界面活性特性)を自由にコントロ
ールすることが可能である。これらの使用量は当
該縮合物の特性を損わない範囲とするのが好まし
く、また水への溶解性も考慮して例えば縮合用組
成物中における前記一般式で表わされるシクロペ
ンタジエン誘導体スルホン化物の含有割合は、好
ましくは20モル%以上、更に好ましくは50モル%
以上となる範囲内である。 また得られる縮合物の縮合度は、酸触媒量、縮
合反応温度、縮合反応時間などの反応条件を変え
ることにより適宜選定することができる。また用
途によつてこの縮合度を選定することが必要であ
り、例えばセメントの分散剤として用いる場合に
は、前記一般式で表わされるシクロペンタジエン
誘導体スルホン化物が2〜100単位縮合されてい
る縮合物が好ましい。 本発明の方法によつて得られる縮合物は、後述
する実施例の説明からも理解されるように、優れ
た界面活性作用を有しているため、有機材料或い
は無機材料の界面活性剤として極めて有用であ
り、例えば乳化剤、分散剤、湿潤剤、洗浄剤、平
滑剤として広く用いることができ、特にセメント
の分散剤として用いる場合にはセメントの水への
分散性を著しく向上させることができ、従つてセ
メント工法における減水効果を得ることができ
る。 以下本発明の実施例を具体的に説明するが、本
発明はこれらの実施例に限定されるものではな
い。 実施例 1 還流冷却器及び撹拌装置を備えて成る容量3
の三つ口フラスコにトルエン1270g及び三フツ化
ホウ素・フエノール錯体12gを入れ温度50℃に昇
温した後、撹拌しながらジシクロペンタジエン
417g及びトルエン320gの混合溶液を約1時間に
亘つて滴下し、さらにこの温度で2時間に亘り反
応させた。反応終了後、炭酸ナトリウム水溶液で
触媒を分解し水で洗浄した後、油層分を減圧下で
蒸留しジシクロペンタジエンのトルエン付加体を
423g得た。 次いで撹拌装置、温度計を備えて成る容量3
のステンレス製オートクレーブ中に上述のジシク
ロペンタジエンのトルエン付加体200g、亜硫酸
水素ナトリウム97.8g、硝酸カリウム8.0g、イ
ソプロピルアルコール1360ml及び蒸留水200mlを
入れ、室温でオートクレーブ中の内圧が1.0Kg/
cm2(ゲージ圧)になるまで空気を供給したのちバ
ルブを密閉して、強撹拌下で混合しながら温度
110℃で5時間に亘り反応させた。その後室温ま
で放冷後、反応混合物を取りだし蒸留水50ml及び
石油エーテル1500mlを加えて充分混合し、分離し
た石油エーテル層及び沈澱部を除いた残部を濃縮
し蒸発乾固して淡黄色の粉末139gが得られた。
この粉末をソツクスレー抽出器を用い石油エーテ
ルで1時間未反応物を抽出除去し、残液を乾燥後
氷酢酸300mlに溶解し、無機塩からなる酢酸不溶
分を別した。得られた酢酸可溶分を濃縮するこ
とによつて白黄色の固体129gを得た。そしてこ
の固体をエタノール抽出によつて精製し、ジシク
ロペンタジエンのトルエン付加体のスルホン化物
のナトリウム塩を得た。 次に撹拌装置、温度計を備えて成る容量0.2
の三つ口フラスコ中に上述のナトリウム塩30ミリ
モル、ホルムアルデヒド30ミリモル、硫酸30ミリ
モル及び蒸留水270ミリモルを仕込み、温度80℃
で24時間に亘り縮合反応させた。得られた反応物
に蒸留水100gを加えた後、PHが7になるまで炭
酸カルシウムを撹拌しながら加え、次いで得られ
た混合物を過して液を得た。この液にPHが
9になるまで炭酸ソーダを撹拌しながら加えた
後、過して液を得た。この液を乾固して
11.2gの茶褐色粉末を得た。 この茶褐色粉末の赤外吸収スペクトルを第1図
に示す。これより縮合したメチレン基のはさみ振
動の吸収(1450cm-1)が極めて強いことがわか
る。また水系GPC(ゲル・パーミエイシヨン・ク
ロマトグラフイ)により分子量を測定したとこ
ろ、数平均分子量は4900であつた。なお本明細書
における数平均分子量は、分子量の異なる数種類
のポリスチレンスルホン酸ソーダ、アントラセン
スルホン酸ソーダ及びベンゼンスルホン酸ソーダ
を標準物質として用いて作成した検量線から換算
したものである。さらに元素の定量分析を行ない
その組成を調べたところ、炭素原子が61.5%、水
素原子が6.8%、イオウ原子が10.1%であつた。 これらの結果から、上述の茶褐色粉末は下記構
造式で表わされる縮合物であることが確認され
た。 (式中、mは1以上の整数を表わす。) 尚この構造式の組成はm=14としたとき炭素原
子が61.0%、水素原子が7.1%、イオウ原子が9.9
%であり、前述の実測値と極めて良く一致してい
る。 実施例 2 実施例1においてトルエンの代りにキシレン
1060gを用い、これとジシクロペンタジエン350
gとを実施例1と同様にして反応させジシクロペ
ンタジエンのキシレン付加体340gを得た。 このキシレン付加体を200g用いた他は実施例
1と同様にしてジシクロペンタジエンのキシレン
付加体のスルホン化物のナトリウム塩124gを得
た。 次にこのナトリウム塩を用いて実施例1と同様
にして縮合反応させ10.3gの茶褐色粉末を得た。
また水系GPCにより分子量を測定したところ、
数平均分子量は5400であつた。さらに元素の定量
分析を行ないその組成を調べたところ、炭素原子
が63.0%、水素原子が7.5%、イオウ原子が9.4%
であつた。 これらの結果から、上述の茶褐色粉末は実施例
1に示した構造式においてトルエンの代りにキシ
レンを置き換えた構造を有する縮合物であること
が確認された。 尚この構造式の組成はm=15としたとき炭素原
子が62.1%、水素原子が7.4%、イオウ原子が9.5
%であり、前述の実測値と極めて良く一致してい
る。 実施例 3 実施例1においてトルエンの代りにベンゼン
1950gを用い、これとジシクロペンタジエン630
gとを実施例1と同様にして反応させジシクロペ
ンタジエンのベンゼン付加体203gを得た。 このベンゼン付加体を200g用いた他は実施例
1と同様にしてジシクロペンタジエンのベンゼン
付加体のスルホン化物のナトリウム塩122gを得
た。 次にこのナトリウム塩を用いて実施例1と同様
にして縮合反応させ10.1gの茶褐色粉末を得た。
また水系GPCにより分子量を測定したところ、
数平均分子量は3100であつた。さらに元素の定量
分析を行ないその組成を調べたところ、炭素原子
が59.8%、水素原子が6.8%、イオウ原子が10.6%
であつた。 これらの結果から、上述の茶褐色粉末は実施例
1に示した構造式においてトルエンの代りにベン
ゼンを置き換えた構造を有する縮合物であること
が確認された。 尚この構造式の組成はm=9としたとき炭素原
子が59.9%、水素原子が6.7%、イオウ原子が10.4
%であり、前述の実測値と極めて良く一致してい
る。 実施例 4 実施例1において、硫酸を60ミリモルとした他
は同様にして本発明に係る縮合物を得た。この縮
合物の分子量を水系GPCにより測定したところ、
数平均分子量は18600であり、その分布は650〜
100000の範囲に亘るものであつた。 実施例 5 実施例1において得られた縮合物1gを蒸留水
30gに溶解してこれを強酸タイプのカチオン性イ
オン交換樹脂30gに接触させて、計算量の98%が
ナトリウム原子の代りに水素原子が置換された酸
型の縮合物を得た。 実施例 6 実施例5において得られた酸型の縮合物に水酸
化カルシウム水溶液をPHが7になるまで撹拌しな
がら加えて水素原子の代りにカルシウム原子が置
換されたカルシウム塩型の縮合物を得た。 実施例 7 実施例1において得られたジシクロペンタジエ
ンのトルエン付加体のスルホン化物のナトリウム
塩28.5ミリモル、フエノール1.5ミリモル、ホル
ムアルデヒド30ミリモル、硫酸30ミリモル及び蒸
留水270ミリモルを実施例1と同様にして縮合反
応させ、9.6gの茶褐色粉末を得た。また水系
GPCにより分子量を測定したところ、数平均分
子量は5800であつた。さらに元素の定量分析を行
ないその組成を調べたところ、計算値と2%の誤
差範囲内で一致していた。 実施例 8 実施例1において得られたジシクロペンタジエ
ンのトルエン付加体のスルホン化物のナトリウム
塩7.5ミリモル、トルエン22.5ミリモル、ホルム
アルデヒド30ミリモル、硫酸30ミリモル及び蒸留
水270ミリモルを実施例1と同様にして縮合反応
させ、4.5gの黄白色粉末を得た。また水系GPC
により分子量を測定したところ、数平均分子量は
4200であつた。さらに元素の定量分析を行ないそ
の組成を調べたところ、計算値と4%の誤差範囲
内で一致していた。 実施例 9 実施例1において得られたジシクロペンタジエ
ンのトルエン付加体のスルホン化物のナトリウム
塩20ミリモル、β―ナフタレンスルホン酸ナトリ
ウム10ミリモル、ホルムアルデヒド30ミリモル、
硫酸30ミリモル及び蒸留水270ミリモルを実施例
1と同様にして縮合反応させ、12.8gの茶褐色粉
末を得た。また水系GPCにより分子量を測定し
たところ、数平均分子量は4300であつた。さらに
元素の定量分析を行ないその組成を調べたとこ
ろ、計算値と4%の誤差範囲内で一致していた。 実施例 10 以上の実施例1〜9の各々において得られた縮
合物の4%水溶液をそれぞれ作り、温度25℃にお
ける表面張力を測定した。結果は第1表に示す。
The present invention relates to a method for producing a condensate of a sulfonated cyclopentadiene derivative containing a cyclopentadiene skeleton, a benzene ring, and a sulfonic acid group. In general, organic compounds such as sulfonic acid and its derivatives are strong acids comparable to sulfuric acid, and are widely used industrially due to their properties. Moreover, since the salt is water-soluble, it is extremely important as a surfactant for organic or inorganic materials. However, most of the sulfonated compounds conventionally synthesized are aromatic or aliphatic sulfonated compounds, and few examples of sulfonated alicyclic compounds are known. As a result of intensive studies on sulfonated products using alicyclic compounds and derivatives thereof as starting materials, the present inventors have found that cyclopentadiene derivative sulfonated products having a specific structure can be condensed with aldehydes. The inventors have discovered that the resulting condensate has an extremely excellent surfactant effect on organic or inorganic materials, and have completed the present invention. That is, an object of the present invention is to provide a method for producing a condensate by condensing a sulfonated cyclopentadiene derivative represented by the following general formula. general formula (In the formula, R 1 , R 2 and R 3 are the same or different groups and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 4 and R 5 are the same or different groups, and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. represents an atom or an alkyl group having 1 to 3 carbon atoms, n represents 1 or 2, and M represents a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, ammonium or an amine. Explain. In the present invention, a sulfonated cyclopentadiene derivative represented by the above general formula is condensed to produce a condensate. In the present invention, the condensate refers to condensates obtained by condensing the same sulfonated cyclopentadiene derivatives represented by the general formula above, as well as different sulfonated cyclopentadiene derivatives represented by the general formula above. or a mixture of a sulfonated cyclopentadiene derivative represented by the above general formula and a condensation monomer other than the sulfonated cyclopentadiene derivative represented by the above general formula that can be condensed with the sulfonated cyclopentadiene derivative represented by the above general formula. It also represents the condensate obtained. In the general formula, n=1 when M is hydrogen, alkali metal, ammonium or amine, and n=2 when M is an alkaline earth metal. Examples of the alkali metals mentioned above include sodium and potassium; examples of amines include alkylamines such as methylamine, ethylamine, propylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, butylamine, dibutylamine, and tributylamine; ethylenediamine, diethylenetriamine; ,
Examples include polyamines such as triethylenetetramine; morpholine, piperidine, etc.; examples of alkaline earth metals include calcium, magnesium, zinc, etc. Further, these M can be mutually exchanged with other types of M by various ion exchange techniques or neutralization reactions. In the sulfonated cyclopentadiene derivative represented by the above general formula, preferred R 1 , R 2 and R 3 are hydrogen, methyl group, propyl group and butyl group, and preferred R 4 and R 5 are hydrogen. be. Various manufacturing methods can be considered to produce the sulfonated cyclopentadiene derivative represented by the general formula, but for example, the compound of the following structural formula () is sulfonated, and then, if necessary, the compound is converted into a sulfonate. A sulfonated cyclopentadiene derivative represented by the general formula can be produced. Structural formula() (R 1 , R 2 , R 3 , R 4 and R 5 are the same as in the above general formula) Here, the sulfonation method includes the book "Sulfonation and Related Reaction" by EEGilbert. ”),
It is described in detail in Interscience Publishers Inc. (1965), and the sulfonation method applied to unsaturated compounds, especially unsaturated aliphatic or unsaturated alicyclic compounds, is selected appropriately depending on the state of the reaction system. be able to. Also Charles G. Norton.
J. Norton et al., The Journal of Organic Chemistry
The sulfonated cyclopentadiene derivative represented by the above general formula can also be obtained by the addition reaction of sulfites to an unsaturated bond, as shown in the study in J. Organic Chemistry, p. 4158 (1968). As the sulfonating agent in this case, acidic sulfites, metasulfites, or sulfites of alkali metals are usually used alone or in mixtures. In this sulfonation reaction, the use of a catalyst is not necessarily required, but the reaction time can usually be shortened by using a catalyst such as an inorganic oxidizing agent. Examples of inorganic oxidizing agents include nitrates, nitrites,
Examples include chlorates, but nitrates are particularly preferred. Furthermore, it is desirable to use an appropriate solvent to allow the reaction to proceed uniformly and smoothly. Solvents that can be advantageously used include, for example, water, lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, and tertiary butyl alcohol, lower glycols, ketones, ethers, and esters. Examples include. Two or more of these solvents can be used in combination as appropriate.
Among these, mixed solvents of lower alcohols and water, especially mixed solvents of propyl alcohol and water, are recommended as excellent solvents. The reaction temperature is usually 50-200℃, preferably 70-150℃
C, more preferably 90 to 120 C, and can be carried out either at normal pressure or under increased pressure. In order to suppress the progress of side reactions and reduce the production of unnecessary inorganic salts, the pH of the reaction system is usually maintained at 2 to 9, preferably 5 to 7. The compound represented by the above structural formula () can be obtained, for example, by a Friedel-Crafts reaction between a compound represented by the following structural formula () and a compound represented by the following structural formula (). Structural formula() (R 1 , R 2 , and R 3 are the same as in the general formula above) Structural formula () (R 4 and R 5 are the same as in the above general formula) Examples of the compound represented by the above structural formula ( ), ethylbenzene,
n-propylbenzene, iso-propylbenzene,
Methyl ethylbenzene (o-, m-, p-), 1,
2,4-trimethylbenzene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, iso-propyltoluene (o-, m-, p
-), amylbenzene, hexylbenzene, amyltoluene (o-, m-, p-) and other mono-, di- or trialkyl-substituted benzenes. In this case, the alkyl group has 1 to 1 carbon atoms.
6, and tetralin, which is a compound in which two alkyl groups mutually form a ring, can also be used. Particularly preferred compounds represented by the structural formula () are those in which R 3 is hydrogen, such as benzene, toluene, xylene, propylbenzene,
Butylbenzene is mentioned. Further, the compound represented by the above structural formula () is a dimer consisting of one or two types of cyclopentadiene, and examples of the cyclopentadiene include cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, propylcyclopentadiene, etc. Examples include alkylcyclopentadiene. Among these, dicyclopentadiene is preferred from the standpoint of availability and economy. Catalysts for synthesizing the compound represented by the structural formula () by Friedel-Crafts reaction between the compound represented by the structural formula () and the compound represented by the structural formula () include acidic compounds;
Examples include Lewis acids or organic protonates such as sulfuric acid, phosphoric acid, hydrogen fluoride, boron trifluoride and complexes thereof, aluminum chloride, aluminum bromide, tin tetrachloride, zinc chloride, and titanium trichloride. The reaction can be carried out using known methods, such as JP-A-52-
133968, for example, in the presence of the above-mentioned catalyst, the compound represented by the structural formula () and the compound represented by the structural formula () are heated preferably at 0 to 100°C, particularly preferably at 20 to 70°C. It can be obtained by reacting for about 1 to 5 hours. Further, the compound represented by the above structural formula () can also be synthesized by a Friedel-Crafts reaction between a compound represented by the structural formula () and a compound represented by the following structural formula (). Structural formula() (R 4 and R 5 are X as in the general formula above
is a hydroxyl group or a halogen. ) Examples of the compound represented by the above structural formula () include hydroxy-dihydro-dicyclopentadiene, chloro-dihydro-dicyclopentadiene, and bromo-dihydro-dicyclopentadiene. The Friedel-Crafts reaction between the compound represented by the structural formula () and the compound represented by the structural formula () is similar to the Friedel-Crafts reaction between the compound represented by the structural formula () and the compound represented by the structural formula (). It can be carried out using a catalyst, a similar reaction temperature, and a similar reaction time. Since the compound represented by the above structural formula () has a halogen atom that is active in Friedel-Crafts reaction,
By performing a Friedel-Crafts reaction using this, a compound represented by the structural formula () can be obtained with high selectivity. The cyclopentadiene derivative sulfonated product represented by the above general formula is generally a white to slightly yellow solid, but the starting material structural formula ()
It can vary depending on the type of the compound represented by the formula (), the compound represented by the structural formula (), and the compound represented by the structural formula (), as well as the combination thereof. A sulfonated cyclopentadiene derivative represented by the above general formula obtained by the method described above, or a cyclopentadiene derivative represented by the above general formula that can be condensed with the sulfonated cyclopentadiene derivative represented by the above general formula. Mixtures with condensation monomers other than sulfonated products (hereinafter referred to as "condensation compositions")
The invention is carried out by condensing, for example with an aldehyde, in the presence of an acid catalyst. The sulfonated cyclopentadiene derivatives represented by the above general formula may be the same, or several different sulfonated products may be used in combination as long as they fall within the range represented by the above general formula. Examples of the aldehyde include formaldehyde, acetaldehyde, propionaldehyde, and the like, and among these, formaldehyde is preferred in terms of reactivity. The amount used can be selected within a fairly wide range, but in order to achieve a high degree of condensation and avoid unnecessary side reactions,
The number of moles is preferably 0.5 to 2 times the total number of moles of the condensation composition, and more preferably 0.8
~1.5 times the number of moles. A typical example of the acid catalyst is sulfuric acid. The amount used is 0.0001 to 10 times the total number of moles of the condensation composition, preferably 0.01 to 5 times the number of moles, and more preferably 0.05 to 3 times the number of moles. This is 0.0001
If it is less than twice the number of moles, the reaction rate will be low and the degree of condensation will be low, while if it exceeds ten times the number of moles, carbonization reaction will easily occur. In addition, when the condensation composition contains a sulfonated cyclopentadiene derivative in which M is a hydrogen atom in the general formula, the sulfonated cyclopentadiene derivative itself becomes an acid, which also acts as an acid catalyst. Therefore, this number of moles can be calculated as the number of moles of the acid catalyst. In order to carry out a uniform condensation reaction, it is preferable to use water, lower alcohol, formic acid, acetic acid, etc. as a solvent for the condensation reaction. The amount used may be appropriately selected in consideration of reaction rate, solubility, etc. For example, when carrying out the present invention using a condensation composition consisting only of the sulfonated cyclopentadiene derivative represented by the above general formula, and when water is used as the solvent, the amount used is The number of moles is 2 to 100 times the total number of moles,
Preferably it is 5 to 20 times the molar number. Further, the condensation reaction temperature is 30 to 150°C, preferably 70 to 120°C. Condensation monomers other than the sulfonated cyclopentadiene derivative represented by the above general formula include:
Examples include benzene derivatives such as benzene, toluene, xylene, and phenol; sulfonic acids or salts thereof of benzene derivatives; naphthalene derivatives; sulfonic acids or salts thereof of naphthalene derivatives such as sodium β-naphthalenesulfonate; It is not limited to these. Moreover, you may use these in combination of 2 or more types. By appropriately selecting these, it is possible to freely control the HLB (surfactant properties) of the resulting condensate. The amount of these used is preferably within a range that does not impair the properties of the condensate, and taking into consideration the solubility in water, for example, the sulfonated cyclopentadiene derivative represented by the above general formula in the condensation composition. The content ratio is preferably 20 mol% or more, more preferably 50 mol%
This is within the above range. Further, the degree of condensation of the resulting condensate can be appropriately selected by changing reaction conditions such as the amount of acid catalyst, the condensation reaction temperature, and the condensation reaction time. It is also necessary to select the degree of condensation depending on the application. For example, when used as a dispersant for cement, a condensate in which 2 to 100 units of a sulfonated cyclopentadiene derivative represented by the above general formula is condensed is used. is preferred. The condensate obtained by the method of the present invention has an excellent surfactant effect, as will be understood from the explanation of the examples below, and is therefore extremely useful as a surfactant for organic or inorganic materials. It is useful and can be widely used, for example, as an emulsifier, a dispersant, a wetting agent, a cleaning agent, and a leveling agent. In particular, when used as a dispersant for cement, it can significantly improve the dispersibility of cement in water. Therefore, it is possible to obtain the water reduction effect in the cement construction method. Examples of the present invention will be specifically described below, but the present invention is not limited to these Examples. Example 1 Capacity 3 comprising reflux condenser and stirring device
Put 1270 g of toluene and 12 g of boron trifluoride/phenol complex into a three-necked flask, raise the temperature to 50°C, and add dicyclopentadiene while stirring.
A mixed solution of 417 g and 320 g of toluene was added dropwise over about 1 hour, and the reaction was further continued at this temperature for 2 hours. After the reaction is complete, the catalyst is decomposed with an aqueous sodium carbonate solution and washed with water, and the oil layer is distilled under reduced pressure to obtain the toluene adduct of dicyclopentadiene.
Obtained 423g. Next, capacity 3 is equipped with a stirring device and a thermometer.
200 g of the toluene adduct of dicyclopentadiene mentioned above, 97.8 g of sodium bisulfite, 8.0 g of potassium nitrate, 1360 ml of isopropyl alcohol, and 200 ml of distilled water were placed in a stainless steel autoclave, and the internal pressure in the autoclave was adjusted to 1.0 kg/kg at room temperature.
After supplying air until the pressure reaches cm 2 (gauge pressure), close the valve and adjust the temperature while mixing under vigorous stirring.
The reaction was carried out at 110°C for 5 hours. Then, after cooling to room temperature, the reaction mixture was taken out, 50 ml of distilled water and 1,500 ml of petroleum ether were added, and mixed thoroughly. After removing the separated petroleum ether layer and precipitate, the remainder was concentrated and evaporated to dryness to give 139 g of pale yellow powder. was gotten.
This powder was extracted with petroleum ether for 1 hour using a Soxhlet extractor to remove unreacted substances, and the remaining liquid was dried and dissolved in 300 ml of glacial acetic acid to separate the acetic acid-insoluble components consisting of inorganic salts. By concentrating the obtained acetic acid soluble portion, 129 g of a white-yellow solid was obtained. This solid was purified by ethanol extraction to obtain the sodium salt of the sulfonated toluene adduct of dicyclopentadiene. Capacity 0.2, then equipped with a stirring device and a thermometer
30 mmol of the above sodium salt, 30 mmol of formaldehyde, 30 mmol of sulfuric acid, and 270 mmol of distilled water were placed in a three-necked flask, and the temperature was 80°C.
The condensation reaction was carried out for 24 hours. After adding 100 g of distilled water to the obtained reaction product, calcium carbonate was added with stirring until the pH reached 7, and then the obtained mixture was filtered to obtain a liquid. Sodium carbonate was added to this solution with stirring until the pH reached 9, and then filtered to obtain a solution. Dry this liquid
11.2 g of brown powder was obtained. The infrared absorption spectrum of this brown powder is shown in FIG. This shows that the scissor vibration absorption (1450 cm -1 ) of the condensed methylene group is extremely strong. Further, when the molecular weight was measured by aqueous GPC (gel permeation chromatography), the number average molecular weight was 4,900. Note that the number average molecular weight in this specification is calculated from a calibration curve prepared using several types of sodium polystyrene sulfonate, sodium anthracene sulfonate, and sodium benzene sulfonate having different molecular weights as standard substances. Furthermore, quantitative analysis of the elements was conducted to examine its composition, and the composition was found to be 61.5% carbon atoms, 6.8% hydrogen atoms, and 10.1% sulfur atoms. From these results, it was confirmed that the brown powder described above was a condensate represented by the following structural formula. (In the formula, m represents an integer of 1 or more.) The composition of this structural formula is, when m = 14, carbon atoms account for 61.0%, hydrogen atoms account for 7.1%, and sulfur atoms account for 9.9%.
%, which agrees extremely well with the above-mentioned measured value. Example 2 In Example 1, xylene was used instead of toluene.
Using 1060g, this and 350g of dicyclopentadiene
g was reacted in the same manner as in Example 1 to obtain 340 g of a xylene adduct of dicyclopentadiene. 124 g of the sodium salt of the sulfonated xylene adduct of dicyclopentadiene was obtained in the same manner as in Example 1, except that 200 g of this xylene adduct was used. Next, using this sodium salt, a condensation reaction was carried out in the same manner as in Example 1 to obtain 10.3 g of brown powder.
In addition, when the molecular weight was measured by aqueous GPC,
The number average molecular weight was 5,400. Further quantitative analysis of the elements revealed that 63.0% were carbon atoms, 7.5% hydrogen atoms, and 9.4% sulfur atoms.
It was hot. From these results, it was confirmed that the above-mentioned brown powder was a condensate having a structure in which xylene was substituted for toluene in the structural formula shown in Example 1. The composition of this structural formula is, when m = 15, carbon atoms account for 62.1%, hydrogen atoms account for 7.4%, and sulfur atoms account for 9.5%.
%, which agrees extremely well with the above-mentioned measured value. Example 3 Benzene instead of toluene in Example 1
Using 1950g, this and dicyclopentadiene 630
g was reacted in the same manner as in Example 1 to obtain 203 g of a benzene adduct of dicyclopentadiene. 122 g of the sodium salt of the sulfonated benzene adduct of dicyclopentadiene was obtained in the same manner as in Example 1, except that 200 g of this benzene adduct was used. Next, using this sodium salt, a condensation reaction was carried out in the same manner as in Example 1 to obtain 10.1 g of brown powder.
In addition, when the molecular weight was measured by aqueous GPC,
The number average molecular weight was 3100. Furthermore, quantitative analysis of the elements was conducted to find out its composition, and it was found that 59.8% of carbon atoms, 6.8% of hydrogen atoms, and 10.6% of sulfur atoms.
It was hot. From these results, it was confirmed that the above-mentioned brown powder was a condensate having a structure in which benzene was substituted for toluene in the structural formula shown in Example 1. The composition of this structural formula is, when m = 9, carbon atoms account for 59.9%, hydrogen atoms account for 6.7%, and sulfur atoms account for 10.4%.
%, which agrees extremely well with the above-mentioned measured value. Example 4 A condensate according to the present invention was obtained in the same manner as in Example 1, except that 60 mmol of sulfuric acid was used. When the molecular weight of this condensate was measured by aqueous GPC,
The number average molecular weight is 18600, and its distribution is from 650 to
It ranged from 100,000. Example 5 1 g of the condensate obtained in Example 1 was added to distilled water.
The solution was dissolved in 30 g and brought into contact with 30 g of a strong acid type cationic ion exchange resin to obtain an acid type condensate in which 98% of the calculated amount was replaced with hydrogen atoms instead of sodium atoms. Example 6 An aqueous calcium hydroxide solution was added to the acid-type condensate obtained in Example 5 with stirring until the pH reached 7 to obtain a calcium salt-type condensate in which calcium atoms were substituted for hydrogen atoms. Obtained. Example 7 28.5 mmol of the sodium salt of the sulfonated toluene adduct of dicyclopentadiene obtained in Example 1, 1.5 mmol of phenol, 30 mmol of formaldehyde, 30 mmol of sulfuric acid, and 270 mmol of distilled water were prepared in the same manner as in Example 1. A condensation reaction was carried out to obtain 9.6 g of brown powder. Also water system
When the molecular weight was measured by GPC, the number average molecular weight was 5,800. Furthermore, quantitative analysis of the elements was conducted to examine the composition, and the results matched the calculated values within a 2% error range. Example 8 7.5 mmol of the sodium salt of the sulfonated toluene adduct of dicyclopentadiene obtained in Example 1, 22.5 mmol of toluene, 30 mmol of formaldehyde, 30 mmol of sulfuric acid, and 270 mmol of distilled water were prepared in the same manner as in Example 1. A condensation reaction was carried out to obtain 4.5 g of yellowish white powder. Also water-based GPC
When the molecular weight was measured, the number average molecular weight was
It was 4200. Furthermore, quantitative analysis of the elements was conducted to examine the composition, and the results matched the calculated values within a 4% error range. Example 9 20 mmol of sodium salt of the sulfonated toluene adduct of dicyclopentadiene obtained in Example 1, 10 mmol of sodium β-naphthalene sulfonate, 30 mmol of formaldehyde,
30 mmol of sulfuric acid and 270 mmol of distilled water were subjected to a condensation reaction in the same manner as in Example 1 to obtain 12.8 g of brown powder. Further, when the molecular weight was measured by aqueous GPC, the number average molecular weight was 4,300. Furthermore, quantitative analysis of the elements was conducted to examine the composition, and the results matched the calculated values within a 4% error range. Example 10 4% aqueous solutions of the condensates obtained in each of Examples 1 to 9 above were prepared and their surface tensions were measured at a temperature of 25°C. The results are shown in Table 1.

【表】 この結果から理解されるように本発明によつて
得られる縮合物は、泡立ちがよく、且つ優れた界
面活性作用を有するものであつた。 また、市販のセメント「ポルトランドセメン
ト」(秩父セメント(株)製)200gに実施例1で得ら
れた縮合物2gと蒸留水50gを加えて3分間手練
りした後、フロー値(内容積98.9c.c.のフローコー
ンを用い、JIS R5201に準じて測定した値)を求
めたところ、150mmのフローが得られた。一方当
該縮合物を加えない他は同様にして手練りした後
フロー値を測定したところ、わずか87mmのフロー
しか得られなかつた。この結果より当該縮合物は
セメントの水への分散作用が極めて大きく優れて
いることが判る。
[Table] As can be seen from the results, the condensate obtained according to the present invention foamed well and had excellent surfactant action. In addition, 2 g of the condensate obtained in Example 1 and 50 g of distilled water were added to 200 g of the commercially available cement "Portland Cement" (manufactured by Chichibu Cement Co., Ltd.), mixed by hand for 3 minutes, and the flow value (inner volume: 98.9 cc) was mixed by hand for 3 minutes. A flow of 150 mm was obtained when the flow cone was measured according to JIS R5201. On the other hand, when the flow value was measured after kneading by hand in the same manner except that the condensate was not added, a flow of only 87 mm was obtained. This result shows that the condensate has a very large and excellent dispersion effect of cement in water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1において得られた縮合物にお
ける赤外吸収スペクトルを表わす図である。
FIG. 1 is a diagram showing an infrared absorption spectrum of the condensate obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 下記一般式で表わされるシクロペンタジエン
誘導体スルホン化物を縮合することを特徴とする
縮合物の製造方法。 一般式 (式中、R1,R2及びR3は同一又は異なる基であ
り、水素原子若しくは炭素原子数1〜6のアルキ
ル基を表わし、 R4及びR5は同一又は異なる基であり、水素原
子若しくは炭素原子数1〜3のアルキル基を表わ
し、 nは1若しくは2を表わし、 Mは水素原子、アルカリ金属原子、アルカリ土
類金属原子、アンモニウム若しくはアミンを表わ
す。)
[Scope of Claims] 1. A method for producing a condensate, which comprises condensing a sulfonated cyclopentadiene derivative represented by the following general formula. general formula (In the formula, R 1 , R 2 and R 3 are the same or different groups and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 4 and R 5 are the same or different groups and represent a hydrogen atom. or represents an alkyl group having 1 to 3 carbon atoms, n represents 1 or 2, and M represents a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, ammonium or an amine.)
JP3514782A 1982-03-08 1982-03-08 Condensation product obtained by condensing sulfonated cyclopentadiene derivative Granted JPS58152860A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3514782A JPS58152860A (en) 1982-03-08 1982-03-08 Condensation product obtained by condensing sulfonated cyclopentadiene derivative
US06/471,671 US4511683A (en) 1982-03-08 1983-03-03 Sulfonic acid compound having cyclopentadiene skeleton and composition comprising same and cement
CA000422859A CA1210023A (en) 1982-03-08 1983-03-04 Sulfonic acid compound having cyclopentadiene skeleton and composition comprising same and cement
DE19833307998 DE3307998A1 (en) 1982-03-08 1983-03-07 SULPHONIC ACID COMPOUNDS WITH CYCLOPENTADIENEBAU, THEIR PRODUCTION AND THEIR USE AS DISPERSING AGENTS
GB08306301A GB2119369B (en) 1982-03-08 1983-03-08 Cyclopentadiene-derived sulphonic acids dispersants for cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3514782A JPS58152860A (en) 1982-03-08 1982-03-08 Condensation product obtained by condensing sulfonated cyclopentadiene derivative

Publications (2)

Publication Number Publication Date
JPS58152860A JPS58152860A (en) 1983-09-10
JPH029582B2 true JPH029582B2 (en) 1990-03-02

Family

ID=12433784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3514782A Granted JPS58152860A (en) 1982-03-08 1982-03-08 Condensation product obtained by condensing sulfonated cyclopentadiene derivative

Country Status (1)

Country Link
JP (1) JPS58152860A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096689A (en) * 1983-10-31 1985-05-30 Japan Synthetic Rubber Co Ltd Coal slurry composition
US4524023A (en) * 1983-11-03 1985-06-18 Texaco Inc. Bicyclodecyl ether sulfonates and compositions containing the same

Also Published As

Publication number Publication date
JPS58152860A (en) 1983-09-10

Similar Documents

Publication Publication Date Title
US4125410A (en) Water-reducing admixture
JPH029582B2 (en)
Skell et al. Configuration of Free-Radicals. Non-stereospecificity of cis-and trans-2-Butene-Sulfur Dioxide Copolymerizations
JPH029583B2 (en)
US4511683A (en) Sulfonic acid compound having cyclopentadiene skeleton and composition comprising same and cement
JPS59184152A (en) Production of sulfonated substance
KR860001899B1 (en) Slurry composition of solid fuel
Priddy Alkylation of biphenyl under mild friedel-crafts conditions
JPH0214344B2 (en)
JPH0578157A (en) Method for producing cement dispersant
JPH0218327B2 (en)
KR870001513B1 (en) Preparation of copolymer of sulfonated compound having cyclopentadiene skeleton
JPH0214345B2 (en)
JPH03344B2 (en)
JPH09302057A (en) Production of aqueous solution of water-reducing agent
JP3451573B2 (en) Asphalt emulsion composition
JP2833135B2 (en) Manufacturing method of high performance water reducing agent
JPH0240091B2 (en)
JPS59227755A (en) Hydraulic cement composition
Shalati et al. Grafting of living poly (ethylene oxide) onto polystyrene via aromatic nucleophilic displacement of activated nitro groups
JPS6119608A (en) Production of polymer of sulfonated norbornene derivative
JPH06293710A (en) Production of bromonitro-alcohol compound
JPS59137455A (en) Sulfonated hydroxydicyclopentadiene
JPH04352751A (en) New bisphenol-based condensate and production thereof
JPH08183641A (en) Cement admixture