JPH0295256A - Method of deciding liquefaction - Google Patents

Method of deciding liquefaction

Info

Publication number
JPH0295256A
JPH0295256A JP63248710A JP24871088A JPH0295256A JP H0295256 A JPH0295256 A JP H0295256A JP 63248710 A JP63248710 A JP 63248710A JP 24871088 A JP24871088 A JP 24871088A JP H0295256 A JPH0295256 A JP H0295256A
Authority
JP
Japan
Prior art keywords
liquefaction
object layer
waves
measured
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63248710A
Other languages
Japanese (ja)
Other versions
JP2742798B2 (en
Inventor
Yoshihisa Denjiyou
殿上 義久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63248710A priority Critical patent/JP2742798B2/en
Publication of JPH0295256A publication Critical patent/JPH0295256A/en
Application granted granted Critical
Publication of JP2742798B2 publication Critical patent/JP2742798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PURPOSE:To allow the direct measurement of the liquefaction rate of an object layer for decision of liquefaction by applying the P waves obtd. by a longitudinal wave (P wave) oscillator to the measuring object layer. CONSTITUTION:The ground 5 which has the possibility of causing liquefaction is bored to expose the measuring object layer 6 and thereafter, a rod 8 mounted with a P wave oscillator 9 and measuring instrument at the front end is put into a hole 7 and the various characteristics of the measuring object layer 6 are measured. The P waves of the prescribed intensity are thereafter applied to the object layer 6 for a prescribed period of time by the oscillator 9 to liquefy the object layer 6. The various characteristics of the object layer 6 before the P waves are applied thereto are measured by the measuring instrument while this state is maintained. The various characteristics of the object layer 6 before the P waves are applied by the oscillator 9 and the various characteristics of the object layer 6 after the P waves are applied are compared, by which the liquefaction rate of the object layer 6 is determined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は測定対象層の液化率を判定する液状化判定方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a liquefaction determination method for determining the liquefaction rate of a layer to be measured.

(従来の技術) 砂地盤上に建築物などを作るときには1通常、地盤が液
状化するかどうかを判定し、この判定結果に基づいて地
盤の改良などの処置を行なっている。
(Prior Art) When constructing a building on sandy ground, it is usually determined whether the ground will liquefy or not, and measures such as ground improvement are taken based on the result of this determination.

この場合、地盤の液状化判定方法としては、次に述べる
ような方法がとられている。
In this case, the following method is used to determine liquefaction of the ground.

まず、第6図に示すように液状化判定対象となる地盤を
所定深度までポーリングして、サンドサンプラなどによ
って液状化判定対象となる層をサンプリングし、このサ
ンプリングによって得られた土を試験場まで搬送してこ
れを第7図(a)に示すような実験用水槽101に入れ
て加震器によって前震してサンプリングされた土を液化
させたり第7図(b)に示すような三軸圧縮試験器10
2に加圧したりしてそのときの液化率を測定し、液状化
判定対象となる層の液化率(液状化の程度)を求めてい
た。
First, as shown in Figure 6, the ground that is subject to liquefaction assessment is polled to a predetermined depth, the layer that is subject to liquefaction assessment is sampled using a sand sampler, and the soil obtained through this sampling is transported to the test site. Then, the sampled soil is placed in an experimental water tank 101 as shown in Figure 7(a) and foreshocked by a seismic device to liquefy the sampled soil, and a triaxial compression test as shown in Figure 7(b) is carried out. vessel 10
2, the liquefaction rate at that time was measured, and the liquefaction rate (degree of liquefaction) of the layer targeted for liquefaction determination was determined.

そして、この層の液化率が高いときには地盤の地質改良
などの処置をとっていた。
When the liquefaction rate of this layer was high, measures such as geological improvement of the ground were taken.

しかしながらこのような従来の液状化判定方法において
は1次に述べるような問題があった。
However, such conventional liquefaction determination methods have the following problems.

(1)−サンプリングを行なった深度のものについてし
か液化率の判定を行なうことができないため、点として
の情報しか得ることができない。
(1) - Since the liquefaction rate can only be determined for the depth at which sampling was performed, only point information can be obtained.

(2)土の状態を乱さないようにサンプリングしなけれ
ばならないため、サンプリング時に高度な技術が必要で
ある。
(2) Sampling must be done without disturbing the soil condition, so advanced techniques are required during sampling.

(3)サンプリングした場所から試験場まで土を運ばな
ければならないので、この間において土が乱される虞が
強い。
(3) Since the soil must be transported from the sampling location to the test site, there is a strong possibility that the soil will be disturbed during this time.

(4)原位置で試験を実施していないので、振動三軸試
験の封圧には推定の要素が入る。
(4) Since the test was not conducted in situ, there is an element of estimation in the confining pressure of the vibratory triaxial test.

(5)地震動は多くの周波数成分の合成波であるが、試
験時には特定の周波数成分のみで試験を行なうので、試
験結果から地震時における液化率を推定する必要がある
(5) Earthquake motion is a composite wave of many frequency components, but since tests are conducted using only specific frequency components, it is necessary to estimate the liquefaction rate during an earthquake from the test results.

(6)ポーリング実施時から液化率の判定結果が得られ
るまで時間がかかりすぎる。
(6) It takes too much time from the time polling is performed until the liquefaction rate determination result is obtained.

(発明の目的) 本発明は上記の事情に鑑みてなされたものであって、液
状化判定対象となる層の液化率を直接測定することがで
き、これによって上述した問題が発生しないようにする
ことができる液状化判定方法を提供することを目的とし
ている。
(Objective of the Invention) The present invention has been made in view of the above circumstances, and is capable of directly measuring the liquefaction rate of a layer subject to liquefaction determination, thereby preventing the above-mentioned problems from occurring. The purpose is to provide a liquefaction determination method that can

(発明の概要) 上記の問題点を解決するために本発明による液状化判定
方法においては、地中に貫入させたP波発振器、または
地上に設置したP波発振器によって得られたP波を測定
対象層に与えて前記測定対象層の液化率を測定すること
を特徴としている。
(Summary of the invention) In order to solve the above problems, in the liquefaction determination method according to the present invention, P waves obtained by a P wave oscillator penetrated into the ground or a P wave oscillator installed on the ground are measured. It is characterized in that the liquefaction rate of the layer to be measured is measured by applying it to the layer to be measured.

(実施例) まず、第1図を参照しながら本発明の基本原理を説明す
る。
(Example) First, the basic principle of the present invention will be explained with reference to FIG.

従来、砂地盤の液状化は、主に横波(S波)によって発
生すると考えられていたが、種々の実験を繰り返したと
ころ実際には主に縦波(P波)によって引き起こされる
という結論に至った。
Previously, it was thought that liquefaction of sandy ground was mainly caused by transverse waves (S waves), but after repeated various experiments, it was concluded that liquefaction of sandy ground is actually caused mainly by longitudinal waves (P waves). Ta.

つまり、第1図(a)に示す如く容器1内に砂2と、水
3とを入れ、第1図(b)に示す如くこの容器1にP波
を与えると、砂2を構成する各土粒子4に対して衝撃が
与えられて重心位置の移動と回転運動とが同時に生じ、
これによって各土粒子4が水中で泳動するような挙動を
起こして砂2と、水3とが混ざりあい液状化する。
In other words, if sand 2 and water 3 are placed in a container 1 as shown in FIG. 1(a), and a P wave is applied to this container 1 as shown in FIG. An impact is applied to the soil particles 4, causing movement of the center of gravity and rotational movement at the same time.
As a result, each soil particle 4 behaves as if it were migrating in water, and the sand 2 and water 3 are mixed and liquefied.

これに対して、同様の条件でP波を伴わないS波を使用
したところ、液状化現象はほとんど生じなかった。
On the other hand, when S waves without P waves were used under similar conditions, almost no liquefaction phenomenon occurred.

これらの結果から、次に述べるような方法によって砂地
盤の液化率を測定し得ることが分かった。
From these results, it was found that the liquefaction rate of sandy soil can be measured by the method described below.

まず、第2図(a)に示すように液状化する恐れのある
地盤5を削孔して測定対象層6を露出させ、この後削孔
によって形成された穴7内に先端にP波発振器9と測定
器が取り付けられた棒8を入れて、測定対象層6の諸特
性、例えばP波速度、粘着力、内部摩擦角、ベーン回転
抵抗力、貫入抵抗力、間隙水圧などを測定する。
First, as shown in Fig. 2(a), a hole is drilled in the ground 5 that is likely to liquefy to expose the measurement target layer 6, and a P-wave oscillator is placed at the tip in the hole 7 formed by this post-drilling. 9 and a rod 8 to which a measuring device is attached are inserted to measure various characteristics of the layer 6 to be measured, such as P-wave velocity, adhesive force, internal friction angle, vane rotational resistance force, penetration resistance force, and pore water pressure.

この後、P波発振器9によって測定対象層6に所定時間
、所定強度のP波を与えて測定対象N6を液状化させる
Thereafter, the P wave oscillator 9 applies P waves of a predetermined intensity to the measurement target layer 6 for a predetermined period of time to liquefy the measurement target N6.

次いで、この状態を維持しながら前記測定器によって測
定対@層6の諸特性を測定する。
Next, while maintaining this state, various characteristics of the layer 6 are measured using the measuring device.

そして、P波発振器9によってP波を与える前における
測定対象層6の諸特性と、P波を与えた後における測定
対象N6の諸特性とを比較することにより、前記測定対
象M6の液化率を求めることができる。
The liquefaction rate of the measurement target M6 is determined by comparing the characteristics of the measurement target layer 6 before applying the P wave with the P wave oscillator 9 and the characteristics of the measurement target N6 after applying the P wave. You can ask for it.

また上述した方法は、−例であって、例えば第2図(b
)に示す如く棒8の上端にP波発振器9と、貫入測定器
などの測定器とを取り付けたものを使用し、P波発振器
9によって得られたP波を棒8を伝達系として先端側に
伝達して測定対象層6にP波を与えるようにしても良い
Furthermore, the above-mentioned method is an example, for example, as shown in FIG.
), a P-wave oscillator 9 and a measuring device such as a penetration measuring device are attached to the upper end of a rod 8, and the P-waves obtained by the P-wave oscillator 9 are transmitted to the tip side using the rod 8 as a transmission system. Alternatively, the P wave may be transmitted to the layer 6 to be measured.

次に上述した液状化測定原理に基づいた液化率測定装置
の一例を説明する。
Next, an example of a liquefaction rate measuring device based on the above-mentioned liquefaction measurement principle will be explained.

第3図は上述した液化率測定方法を電気的に実現するた
めの装置例を示すブロック図である。
FIG. 3 is a block diagram showing an example of a device for electrically implementing the above-described liquefaction rate measuring method.

この図に示す液化率測定装置は、地表側に設置される測
定器本体部10と、ポーリングによって形成された穴内
に貫入されるゾンデ部11とを備えている。
The liquefaction rate measuring device shown in this figure includes a measuring device main body 10 installed on the ground side and a sonde 11 inserted into a hole formed by poling.

測定器本体部10は、外部の電源から所定電圧の電源電
圧を生成する1!源回路12と、この電源回路12によ
って生成された電源電圧によって動作してホワイトノイ
ズ信号を発生する発振回路13と、前記電源回路12に
よって生成された電源電圧によって動作して前記発振回
路13から出力されるホワイトノイズ信号を増幅する増
幅回路14とを備えており、この増幅回路14によって
増幅されたホワイトノイズ信号をキャブタイヤケーブル
15を介してゾンデ部11に供給する。
The measuring instrument main body 10 generates a power supply voltage of a predetermined voltage from an external power supply. a source circuit 12; an oscillation circuit 13 that operates with the power supply voltage generated by the power supply circuit 12 to generate a white noise signal; and an oscillation circuit 13 that operates with the power supply voltage generated by the power supply circuit 12 and outputs from the oscillation circuit 13. The white noise signal amplified by the amplifier circuit 14 is supplied to the sonde section 11 via the cabtire cable 15.

ゾンデ部11は、P波発振器16を備えており、前記キ
ャブタイヤケーブル15を介してホワイトノイズ信号が
供給されたときP波を発生してこのゾンデ部11が当接
している測定対象#18にP波を与える。
The sonde section 11 is equipped with a P-wave oscillator 16, and when a white noise signal is supplied through the cabtyre cable 15, it generates a P-wave and sends it to the measurement object #18 that the sonde section 11 is in contact with. Gives P waves.

そしてこの液化率測定装置によって測定対@層18にP
波を与える前の諸特性と、P波を与えた後の諸特性と種
々の測定器用いて測定して比較すれば、前記測定対象層
の液化率が分かる。
Then, using this liquefaction rate measuring device, P is measured at layer 18.
The liquefaction rate of the layer to be measured can be determined by measuring and comparing the characteristics before applying the wave with the characteristics after applying the P wave using various measuring instruments.

第4図は他の液化率測定装置の一例を示すブロック図で
ある。なおこの図において、第3図の各部と同じ部分に
は同じ符号が付しである。
FIG. 4 is a block diagram showing an example of another liquefaction rate measuring device. In this figure, the same parts as those in FIG. 3 are given the same reference numerals.

この図に示す液化率測定装置が第3図に示すものと異な
る点は、ゾンデ部11に地盤特性測定器17を設けると
ともに、測定器本体部10に地盤特性表示器1qを設け
、前記P波発振器16によって測定対象N118にP波
を与えながら地盤特性測定器17によって前記測定対象
層18の諸特性をリアルタイムに測定し、この測定結果
を地盤特性表示器18に表示させるようにしたことであ
る。
The liquefaction rate measuring device shown in this figure is different from the one shown in FIG. While the oscillator 16 applies P waves to the measurement target N118, the ground property measuring device 17 measures various properties of the measurement target layer 18 in real time, and the measurement results are displayed on the ground property display 18. .

これによって、測定対象層18にP波を与えながら前記
測定対象#18の諸特性を直接測定することができると
ともに、この測定結果に基づいて測定対象層18の液化
率を知ることができる。
This makes it possible to directly measure various characteristics of the measurement object #18 while applying P waves to the measurement object layer 18, and to know the liquefaction rate of the measurement object layer 18 based on the measurement results.

第4図は他の液化率測定装置の一例を示すブロック図で
ある。なおこの図において、第3図の各部と同じ部分に
は同じ符号が付しである。
FIG. 4 is a block diagram showing an example of another liquefaction rate measuring device. In this figure, the same parts as those in FIG. 3 are given the same reference numerals.

この図に示す液化率洞定装置が第3図に示すものと異な
る点は、地上側に測定器本体部10と、2発振器16と
、地盤特性表示装置1qとを配置するとともに、地中内
に棒などのP波伝達装置20と、地盤特性測定器17と
を配置し、2発振器16によって得られたP波をP波伝
達装置20を介して測定対象層18に伝達しながら、地
盤特性測定器17によって得られた測定対象層18の諸
特性を地盤特性表示装置1qに表示させるようにしたこ
とである。
The liquefaction rate detection device shown in this figure is different from the one shown in FIG. A P-wave transmission device 20 such as a rod and a ground property measuring device 17 are placed in the ground, and the P-waves obtained by the two oscillators 16 are transmitted to the measurement target layer 18 via the P-wave transmission device 20 while measuring the ground properties. The various characteristics of the measurement target layer 18 obtained by the measuring device 17 are displayed on the ground characteristics display device 1q.

このように構成しても、測定対象層18の液化率を知る
ことができる。
Even with this configuration, the liquefaction rate of the measurement target layer 18 can be known.

また上述した各実施例においては、P波発振器16を用
いてP波を発生させているが、油圧装置やモータなどを
使用した振動装置等を用いてP波を発生させるようにし
ても良い。
Further, in each of the embodiments described above, the P waves are generated using the P wave oscillator 16, but the P waves may be generated using a vibration device using a hydraulic device, a motor, or the like.

(発明の効果) 以上説明したように本発明によれば、液状化判定対象と
なる層の液化率を直接測定することができるので、次に
述べる効果を得ることができる。
(Effects of the Invention) As described above, according to the present invention, the liquefaction rate of the layer to be determined for liquefaction can be directly measured, so that the following effects can be obtained.

(1)ポーリングを行ないながらP波を与えて測定対象
層の諸特性を測定することができるので、ポーリングし
た部分の地盤特性を線として求めることができる。
(1) Since various characteristics of the layer to be measured can be measured by applying P waves while performing polling, the ground characteristics of the polled area can be determined as a line.

(2)土をサンプリングする必要がないので、高度な技
術を必要としない。
(2) Since there is no need to sample soil, advanced technology is not required.

(3)ポーリングした場所で液化率の測定を行なうので
、測定時に測定対象となる土が乱される虞がない。
(3) Since the liquefaction rate is measured at the polled location, there is no risk that the soil to be measured will be disturbed during the measurement.

(4)原位置で試験を実施しているので、振動三輪試験
などのように、封圧に推定の要素が入ることがない。
(4) Since the test is conducted in-situ, there are no estimated factors involved in the confining pressure, as is the case with vibrating three-wheel tests.

(5)ホワイトノイズを使用することができるので、地
震時における液化率に近い測定結果を得ることができる
(5) Since white noise can be used, measurement results close to the liquefaction rate at the time of an earthquake can be obtained.

(6)ポーリングを行ないながら測定対象層の液化率を
測定できるので、リアルタイムで液化率の判定結果を得
ることができる。
(6) Since the liquefaction rate of the layer to be measured can be measured while performing polling, the liquefaction rate determination result can be obtained in real time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は各々本発明による液状化判定方
法の基本原理を説明するための模式図、第2図(a)、
(b)は各々本発明による液状化判定方法の具体例を説
明するための模式図、第3図は本発明による液状化判定
方法を実施するときに使用される液化率測定装置の一例
を示すブロック図、第4図は本発明による液状化判定方
法を実施するときに使用される液化率測定装置の他の一
例を示すブロック図、第5図は本発明による液状化判定
方法を実施するときに使用される液化率測定装置の他の
一例を示すブロック図、第6図は従来の液状化判定方法
の一例を説明するためのフロ−チャート、第7図(a)
、(b)は各々従来の液状化判定方法の判定試験例を説
明するための模式図である。 5・・・地中(地盤)、6・・・測定対象層、7・・・
穴、9・・・P波発振器。
FIGS. 1(a) and 1(b) are schematic diagrams for explaining the basic principle of the liquefaction determination method according to the present invention, and FIG. 2(a),
(b) is a schematic diagram for explaining a specific example of the liquefaction determination method according to the present invention, and FIG. 3 shows an example of a liquefaction rate measuring device used when carrying out the liquefaction determination method according to the present invention. A block diagram, FIG. 4 is a block diagram showing another example of a liquefaction rate measuring device used when implementing the liquefaction determination method according to the present invention, and FIG. 5 is a block diagram when implementing the liquefaction determination method according to the present invention. FIG. 6 is a block diagram showing another example of a liquefaction rate measuring device used for the conventional liquefaction determination method. FIG. 7(a) is a flowchart for explaining an example of a conventional liquefaction determination method.
, (b) are schematic diagrams for explaining determination test examples of conventional liquefaction determination methods. 5...Underground (ground), 6...Measurement target layer, 7...
Hole, 9...P wave oscillator.

Claims (1)

【特許請求の範囲】[Claims] (1)P波発振器によつて測定対象層にP波の振動を与
えて前記測定対象層の液化率を測定することを特徴とす
る液状化判定方法。
(1) A method for determining liquefaction, characterized in that the liquefaction rate of the layer to be measured is measured by applying P-wave vibrations to the layer to be measured using a P-wave oscillator.
JP63248710A 1988-10-01 1988-10-01 Liquefaction determination method and determination device Expired - Lifetime JP2742798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248710A JP2742798B2 (en) 1988-10-01 1988-10-01 Liquefaction determination method and determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248710A JP2742798B2 (en) 1988-10-01 1988-10-01 Liquefaction determination method and determination device

Publications (2)

Publication Number Publication Date
JPH0295256A true JPH0295256A (en) 1990-04-06
JP2742798B2 JP2742798B2 (en) 1998-04-22

Family

ID=17182186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248710A Expired - Lifetime JP2742798B2 (en) 1988-10-01 1988-10-01 Liquefaction determination method and determination device

Country Status (1)

Country Link
JP (1) JP2742798B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844307A (en) * 1995-07-31 1998-12-01 Nec Corporation Plastic molded IC package with leads having small flatness fluctuation
JP2004347490A (en) * 2003-05-23 2004-12-09 National Institute Of Advanced Industrial & Technology Intrusion probe
JP5526290B1 (en) * 2013-04-02 2014-06-18 報国エンジニアリング株式会社 Sampling apparatus and method for liquefaction determination

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844307A (en) * 1995-07-31 1998-12-01 Nec Corporation Plastic molded IC package with leads having small flatness fluctuation
JP2004347490A (en) * 2003-05-23 2004-12-09 National Institute Of Advanced Industrial & Technology Intrusion probe
JP5526290B1 (en) * 2013-04-02 2014-06-18 報国エンジニアリング株式会社 Sampling apparatus and method for liquefaction determination
WO2014162353A1 (en) * 2013-04-02 2014-10-09 報国エンジニアリング株式会社 Material sampling device and method for assessing liquefaction

Also Published As

Publication number Publication date
JP2742798B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
NO302785B1 (en) Method for Geophysical Investigations
JPH07280947A (en) Method and device for evaluating and/or measuring permeability of rock bed structure
US6415648B1 (en) Method for measuring reservoir permeability using slow compressional waves
NO812051L (en) PROCEDURE AND APPARATUS FOR EXAMINING PERMEABILITY OF BASIC FORMATION
Nes et al. Rig site and laboratory use of CWT acoustic velocity measurements on cuttings
Alramahi et al. A suction-control apparatus for the measurement of P and S-wave velocity in soils
RU2161809C2 (en) Technique of search for hydrocarbons ( variants ), operational control over hydrocarbon field
Satoh et al. Soil profiling by spectral analysis of surface waves
Moayerian Effect of loading frequency on dynamic properties of soils using resonant column
JPH0295256A (en) Method of deciding liquefaction
Halleck et al. Reduction of jet perforator penetration in rock under stress
US20040100264A1 (en) Process and device for assessing the permeabillity of a rock medium
Holmsgaard et al. Interpretation of seismic cone penetration testing in silty soil
Duke Techniques for field measurement of shear wave velocity in soils
Campanella et al. Downhole seismic cone analysis using digital signal processing
JP6841704B2 (en) Ground improvement method
Kawamura et al. Ultrasonic measurement system for detecting penetration of boulders by autocorrelation analysis
Zhang Improvements to field liquefaction testing with large mobile shakes
Knutsen On determination of Gmax by bender element and cross-hole testing
Vitali et al. Developing a system for down-hole seismic testing together with the CPTU
US7150188B2 (en) Non-invasive measurement of fluid-pressure diffusivity using electro-osmosis
KR102438086B1 (en) Apparatus for evaluating property of target ground with metal component
JPS61183515A (en) In-situ testing method for investigation of influence exerted on ground by earthquake
Ashlock et al. Experimental multi-modal foundation vibrations and comparison with benchmark half-space solutions
JP2001342619A (en) Determination method for geological and stratum change in excavating and boring

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11