JPH029521B2 - - Google Patents

Info

Publication number
JPH029521B2
JPH029521B2 JP57033192A JP3319282A JPH029521B2 JP H029521 B2 JPH029521 B2 JP H029521B2 JP 57033192 A JP57033192 A JP 57033192A JP 3319282 A JP3319282 A JP 3319282A JP H029521 B2 JPH029521 B2 JP H029521B2
Authority
JP
Japan
Prior art keywords
rolling
power
value
time
mean square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57033192A
Other languages
Japanese (ja)
Other versions
JPS58151905A (en
Inventor
Morio Shoji
Akyoshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57033192A priority Critical patent/JPS58151905A/en
Priority to DE19833305995 priority patent/DE3305995A1/en
Priority to BR8300978A priority patent/BR8300978A/en
Priority to AU11914/83A priority patent/AU557739B2/en
Priority to US06/470,451 priority patent/US4485652A/en
Priority to GB08305664A priority patent/GB2116753B/en
Publication of JPS58151905A publication Critical patent/JPS58151905A/en
Publication of JPH029521B2 publication Critical patent/JPH029521B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/005Control of time interval or spacing between workpieces

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 この発明は効率の向上を図つた可逆圧延機の制
御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a reversing rolling mill with the aim of improving efficiency.

第1図は一般に用いられている可逆圧延機を示
す構成図であり、図において、1は圧延材料2を
所定の板厚まで圧延するための圧延ロール3を有
する可逆圧延機、4はこの可逆圧延機1の圧延ロ
ール3を駆動する駆動モータ、5はこれを制御す
る駆動モータ制御装置、6は圧延ロール3の圧下
位置を制御する圧下制御装置、7は圧延力計測
器、8は圧延材料2を移動するためのテーブルロ
ーラ、9はこのテーブルローラ8を駆動するテー
ブルローラ駆動制御装置である。
FIG. 1 is a block diagram showing a generally used reversible rolling mill. In the figure, 1 is a reversible rolling mill having rolling rolls 3 for rolling a rolled material 2 to a predetermined thickness; A drive motor that drives the rolling rolls 3 of the rolling mill 1, 5 a drive motor control device that controls this, 6 a rolling control device that controls the rolling position of the rolling rolls 3, 7 a rolling force measuring device, and 8 a rolling material. A table roller 9 is used to move the table roller 2, and a table roller drive control device 9 is used to drive the table roller 8.

このような構成の可逆圧延機において、圧延す
る場合には、圧延ロール3をまず最初の圧下位置
まで圧下制御装置6により設定しておく。次に駆
動モータ4を駆動しておき、テーブルローラ8を
テーブルローラ駆動制御装置9により駆動すれば
圧延材料2は一定の板厚まで圧延されて、可逆圧
延機1の反対側に抜ける。次に、圧延ロール3を
第2回目の圧下位置まで設定し駆動モータ4とテ
ーブルローラ8を逆方向に回転させることによつ
て同様の圧延を行う。これを繰り返して、圧延材
料2を所定の板厚に圧延するものである。
In the reversible rolling mill having such a configuration, when rolling is performed, the rolling rolls 3 are first set to the initial rolling position by the rolling reduction control device 6. Next, the drive motor 4 is driven, and the table roller 8 is driven by the table roller drive control device 9, so that the rolled material 2 is rolled to a constant thickness and exits to the opposite side of the reversible rolling mill 1. Next, similar rolling is performed by setting the rolling roll 3 to the second rolling position and rotating the drive motor 4 and table roller 8 in opposite directions. By repeating this process, the rolled material 2 is rolled to a predetermined thickness.

したがつて、従来最も効率よく圧延を行うに
は、可逆圧延機のパス回数(圧延回数)、各パス
における圧延ロールの圧下位置、各パスにおける
圧延速度を総合的に考えて、圧延材料がこの可逆
圧延機に到達してから、最短時間で所定板厚とな
る圧延スケジユール設定を人間が、あるいは演算
設定機によつて求めていた。
Therefore, in order to perform rolling most efficiently in the past, the number of passes (rolling number) of the reversible rolling mill, the rolling position of the rolling rolls in each pass, and the rolling speed in each pass should be comprehensively considered, and the rolling material should be After reaching the reversible rolling mill, the rolling schedule setting that would achieve a predetermined plate thickness in the shortest time was determined manually or by a calculation setting machine.

ところが、可逆圧延機の駆動モータの特性を考
えると、この構成では、加速、減速を繰り返し、
負荷が変動するにもかかわらず最短時間で圧延す
るスケジユール設定となる為に、駆動モータの温
度上昇により圧延不可能となる問題点があつた。
また、各パスの圧延に要する動力の累積値を求め
れば、最短時間の圧延が最小必要動力とはならな
い為に、余分に動力を消費していると言う問題点
もあつた。
However, considering the characteristics of the drive motor of a reversible rolling mill, this configuration repeatedly accelerates and decelerates,
Because the schedule is set to roll in the shortest possible time despite fluctuations in load, there is a problem in that rolling becomes impossible due to a rise in the temperature of the drive motor.
Furthermore, if the cumulative amount of power required for rolling each pass is calculated, rolling for the shortest time does not result in the minimum required power, so there is a problem in that extra power is consumed.

この発明はこのような問題点を解決するために
なされたもので、許容圧延動力と許容圧延二乗平
均との両方を満足し、かつ圧延時間が最短となる
圧延スケジユールを無負荷アイドル時間(圧延ロ
ールが回転しているにもかかわらず、その前後に
配置されたテーブルローラがが停止している時
間)を変えて演算し、上記圧延スケジユールを用
いて圧延工程の制御を行なうことにより効率の向
上を図つた可逆圧延機の制御方法を提供するもの
である。
This invention was made in order to solve these problems, and it is possible to set a rolling schedule that satisfies both the allowable rolling power and the allowable rolling root mean square and also minimizes the rolling time by adjusting the no-load idle time (rolling roll idle time). Efficiency can be improved by controlling the rolling process using the above rolling schedule by calculating the time during which the table rollers placed before and after the table rollers are stopped even though the table rollers are rotating. The present invention provides a method for controlling a reversible rolling mill.

以下、この発明の一実施例について説明する。 An embodiment of the present invention will be described below.

先づ、この発明における圧延スケジユールの設
定方法について述べる。
First, a method of setting a rolling schedule in the present invention will be described.

被圧延材の硬度、圧延機入側の圧延材の温度と
板厚並びに圧延機出側の目標板厚等の圧延仕様
と、圧延機の最大許容圧延荷重、最大許容圧延ト
ルク、最大許容圧延動力、最大許容圧延速度、基
準圧延速度、咬込角制限等の圧延機仕様が決まれ
ば、圧延動力曲線と下記(1)式とから最小パス回数
が求まる。
Rolling specifications such as the hardness of the rolled material, the temperature and thickness of the rolled material at the entrance of the rolling mill, and the target thickness at the exit of the rolling mill, as well as the maximum permissible rolling load, maximum permissible rolling torque, and maximum permissible rolling power of the rolling mill. Once the rolling mill specifications such as the maximum allowable rolling speed, standard rolling speed, and bite angle limit are determined, the minimum number of passes can be determined from the rolling power curve and equation (1) below.

最小パス回数=所要総動力/最大許容圧延動力……(1
) ここで、所要総動力は、第2図に示すような圧
延動力曲線から求めることできる。すなわち、目
標板厚における曲線の動力値が総動力と近似され
る。
Minimum number of passes = total required power / maximum allowable rolling power...(1
) Here, the required total power can be determined from the rolling power curve as shown in FIG. That is, the power value of the curve at the target plate thickness is approximated to the total power.

このパス回数において、選択しえる最短圧延時
間となる圧延速度と逆転開始タイミングを算出す
る。この最短圧延時間において、圧延所要電力二
乗平均値は と表わされる。ここで、 KWRi:iパス目の圧延所要電力 KWIi:無負荷時すなわちiパス目圧延終了より
逆転して(i+1)パス目の圧延開始までの
所要電力 τRi:iパス目圧延所要時間 τIi:iパス目無負荷アイドル時間 P:パス回数 WRMS:圧延所要電力二乗平均値である。
In this number of passes, the rolling speed and reverse rotation start timing that provide the shortest selectable rolling time are calculated. At this shortest rolling time, the root mean square value of the rolling power is It is expressed as Here, KW Ri : Required power for rolling the i-th pass KW Ii : Required power at no-load, that is, from the end of the i-pass rolling to the start of rolling for the (i+1) pass τ Ri : Required time for rolling the i-th pass τ Ii : i-th pass no-load idle time P: number of passes W RMS : root mean square value of rolling power.

この値を求めて、圧延機の許容範囲であるかど
うかチエツクし、許容範囲内であれば、求められ
た値を最適スケジユール値として設定する。ま
た、許容範囲外であつたときには(2)式でもわかる
ように無負荷アイドル時間を長くしてやれば、圧
延所要電力二乗平均値が下がるので、この時間を
変えて再計算する。このとき、iパスから(i+
1)パス開始までの時間が変わるので、被圧延材
の温度は放射熱の作用により温度が前回計算時と
は異なつたものとなる為、所要圧延動力が異な
り、圧延動力、圧延速度等を再計算により求め
て、圧延所要電力二乗平均置を算出する。
This value is determined and checked to see if it is within the tolerance range of the rolling mill. If it is within the tolerance range, the determined value is set as the optimum schedule value. Furthermore, if the value is outside the allowable range, as can be seen from equation (2), if the no-load idle time is increased, the root mean square value of the required rolling power will be lowered, so this time is changed and recalculated. At this time, from iPass (i+
1) Since the time until the start of the pass changes, the temperature of the material to be rolled will be different from the previous calculation due to the action of radiant heat, so the required rolling power will be different, and the rolling power, rolling speed, etc. will be changed again. Calculate and calculate the root mean square power required for rolling.

圧延動力、圧延速度等は、公知の方法により、
例えば次のようにすれば求まる。
The rolling power, rolling speed, etc. are determined by known methods.
For example, you can find it like this:

前述のように、圧延動力曲線より最小パス回数
を求め、このパス回数に対して、各パスの負荷配
分比つまり動力配分比が圧延仕様により与えられ
るので、所要総動力を下記(3)式により iパスの所要動力=(iパスの配分比) ×(所要総動力) ……(3) 配分比に従つて割りつければ、第2図に示すよ
うに、各パスの出側板厚が求まる。
As mentioned above, the minimum number of passes is determined from the rolling power curve, and the load distribution ratio of each pass, that is, the power distribution ratio, is given by the rolling specifications for this number of passes, so the total required power can be calculated using the following formula (3). Required power for i-pass = (distribution ratio of i-pass) × (total required power) ... (3) If the power is allocated according to the distribution ratio, the exit plate thickness of each pass can be determined as shown in Figure 2.

この各パスの出側板厚が求まれば、入側板厚は
期板厚である。
If the exit side plate thickness of each pass is determined, the inlet side plate thickness is the initial plate thickness.

これが求まると各パスの圧延力F(i)は F(i)=f1(H5(i),h(i),V(i)) ……(4) ここで、H(i):iパス入側板厚 h(i):iパス出側板厚 V(i):iパス速度 なる関係があるので、iパス速度V(i)を仮定すれ
ば各パスの圧延力F(i)がが求まる。このF(i)が求
まれば、動力PW(i)は PW(i)=f2(F(i),V(i)) ……(5) なる関係より求まる。iパス速度V(i)は圧延機
によりVMIN≦V(i)≦VMAXが決められるのでV(i)M
AXよりはじめて、PW(i)が許容最大動力以下とな
る時のV(i)を求めればよい。
Once this is determined, the rolling force F(i) for each pass is F(i)=f 1 (H 5 (i), h(i), V(i))...(4) Here, H(i): There is a relationship: i-pass entrance plate thickness h(i): i-pass exit plate thickness V(i): i-pass speed, so if i-pass speed V(i) is assumed, the rolling force F(i) of each pass is is found. Once this F(i) is found, the power PW(i) is found from the relationship PW(i)=f 2 (F(i), V(i))...(5). The i-pass speed V(i) is determined by the rolling mill as V MIN ≦V(i)≦V MAX , so V(i) M
Starting from AX , it is sufficient to find V(i) when PW(i) becomes less than the maximum allowable power.

出側板厚h(i)、圧延力F(i)が決まれば、圧延機
の設定位置S(i)が下記(6)式より求まる。
Once the outlet plate thickness h(i) and rolling force F(i) are determined, the setting position S(i) of the rolling mill can be determined from the following equation (6).

S(i)=f3(F(i),h(i)) ……(6) 以上のように計算すれば圧延スケジユールが求
められる。ところで、徐述の(4),(5)及び(6)の各式
の実際の関数式は公知のものが種々あるが、ここ
では特に本発明の新規構成要件とは関係ないので
省略する。
S(i)=f 3 (F(i), h(i)) ...(6) By calculating as above, the rolling schedule can be obtained. By the way, there are various known functional formulas for the formulas (4), (5), and (6) described above, but they are omitted here because they are not particularly related to the new constituent features of the present invention.

なお、この時にパス回数を前回より多くしなけ
ればならない場合には、再び無負荷アイドル時間
を最短時間として計算する。
Note that if the number of passes must be increased at this time than the previous time, the no-load idle time is again calculated as the shortest time.

第3図はこの発明の方法を実施した可逆圧延機
の圧延速度及び圧延機回転速度の時間変化を表わ
したものである。矢印31で第1パスの咬込圧延
開始、矢印32が加速開始、矢印33は最高速
度、つまり圧延速度、矢印34は減速開始、矢印
35が噛離し、圧延終了、矢印36が逆転開始、
矢印37が第2パスの咬込、圧延開始となる。本
実施例ではこの噛離し圧延終了時点35と逆転開
始時点36までの時間を例えば3段階に可変出来
るものになつていて、この時間はパス毎には同じ
で変えられない。なお、ここで無負荷アイドル時
間と逆転開始タイミング(逆転開始時点)との関
係について説明しておく。
FIG. 3 shows changes over time in the rolling speed and rolling mill rotation speed of a reversible rolling mill in which the method of the present invention was implemented. The arrow 31 indicates the start of the first pass of biting rolling, the arrow 32 indicates the start of acceleration, the arrow 33 indicates the maximum speed, that is, the rolling speed, the arrow 34 indicates the start of deceleration, the arrow 35 indicates disengagement and the end of rolling, and the arrow 36 indicates the start of reverse rotation.
The arrow 37 indicates the start of the second pass of biting and rolling. In this embodiment, the time from the end point 35 of the separation rolling to the start point 36 of the reverse rotation can be varied in, for example, three steps, and this time is the same for each pass and cannot be changed. Note that the relationship between the no-load idle time and the reverse rotation start timing (reverse rotation start point) will be explained here.

通常、可逆圧延機の圧延速度は、圧延ロールと
その前後に配置されたテーブルローラとの共同動
作により決定される。例えば、圧延ロールが回転
していても、その前後に配置されたテーブルロー
ラが停止している状態では圧延速度は零となる。
Typically, the rolling speed of a reversible rolling mill is determined by the joint operation of a rolling roll and table rollers placed before and after the rolling roll. For example, even if the rolling roll is rotating, the rolling speed will be zero if the table rollers placed before and after it are stopped.

この例のような圧延速度零の状態が無負荷アイ
ドル時間となるが、この無負荷アイドル時間は、
圧延ロールとその前後に配置されたテーブルロー
ラとの共同動作による逆転開始タイミングとは理
論上は特別な相関はない。
The state of zero rolling speed as in this example is the no-load idle time, and this no-load idle time is
Theoretically, there is no special correlation between the timing of the start of reverse rotation due to the cooperative operation of the rolling roll and the table rollers placed before and after the rolling roll.

しかしながら、可逆圧延機の現実の操業では、
被圧延材のパス毎の停止位置がほぼ一定であるた
め、逆転開始タイミングの遅れ時間がほぼ無負荷
アイドル時間の増加時間となる。例えば第3図に
示される例では、第1パスの噛離し35〜第2パ
スの咬込37間の時間が無負荷アイドル時間とな
る。
However, in the actual operation of a reversible rolling mill,
Since the stopping position of the rolled material for each pass is substantially constant, the delay time of the reverse rotation start timing becomes approximately the increase time of the no-load idle time. For example, in the example shown in FIG. 3, the time between the first pass's disengagement 35 and the second pass's engagement 37 is the no-load idle time.

上述の3段階別に累積動力曲線が第4図のよう
に近似的に表わされる。曲線41がアイドル時間
最短時、曲線42,43はそれを△t,2△tだ
け長くした場合である。板厚44は初期板厚で、
板厚45が目標板厚で、板厚45の線と各曲線と
の交点の動力値が所要総動力と近似される。これ
によりパス回数と各パスの目標板厚を決めて必要
な圧延スケジユールを計算する。
The cumulative power curves for each of the three stages described above are approximately expressed as shown in FIG. Curve 41 is the case when the idle time is the shortest, and curves 42 and 43 are when it is lengthened by Δt and 2Δt. Plate thickness 44 is the initial plate thickness,
The plate thickness 45 is the target plate thickness, and the power value at the intersection of the line of the plate thickness 45 and each curve is approximated to the required total power. This determines the number of passes and the target thickness for each pass, and calculates the necessary rolling schedule.

ここで、上述の圧延スケジユールの求め方をま
とめる。まず、被圧延材の硬度、圧延機入側の被
圧延材の温度及び板厚、板幅、板長、圧延機出側
の目標板厚及び目標温度、ロール冷却水温度、並
びにロール径でなる圧延仕様から、初期板厚から
目標板厚となるまで圧延を行うのに要する総動力
の値を求める。なお、総動力値の値は、上記の圧
延仕様全てによらずとも、被圧延材の硬度、圧延
機入側の被圧延材の温度、板幅、及び板厚、並び
に圧延機出側の目標板厚により略求まる。これ
は、第4図において、目標板厚が45の場合に、
無負荷アイドル時間最短時の圧延動力曲線41か
ら、総動力が46として求まる。
Here, the method for determining the above-mentioned rolling schedule will be summarized. First, the hardness of the material to be rolled, the temperature and plate thickness of the material to be rolled on the inlet side of the rolling machine, the plate width, the plate length, the target plate thickness and target temperature on the outlet side of the rolling machine, the temperature of the roll cooling water, and the roll diameter. From the rolling specifications, the value of the total power required to roll from the initial plate thickness to the target plate thickness is determined. Note that the value of the total power value does not depend on all of the above rolling specifications, but also depends on the hardness of the material to be rolled, the temperature of the material to be rolled on the entry side of the rolling mill, the width and thickness of the material, and the target on the exit side of the rolling mill. Approximately determined by the plate thickness. This means that in Fig. 4, when the target plate thickness is 45,
The total power is determined as 46 from the rolling power curve 41 at the shortest no-load idle time.

この総動力の値と、圧延機の仕様により定まる
最大許容圧延動力の値から、仮の最小パス回数が
求まる。この最小パス回数における最短圧延時間
となる圧延速度及び逆転開始タイミングを算出す
る。
The provisional minimum number of passes is determined from this total power value and the maximum allowable rolling power value determined by the specifications of the rolling mill. The rolling speed and reverse rotation start timing that result in the shortest rolling time for this minimum number of passes are calculated.

次に、各パスにおける圧延所要電力,圧延時以
外の時(無負荷時)における所要電力,圧延所要
時間、無負荷アイドル時間から、前記最短圧延時
間における圧延所要電力二乗平均値を算出する。
この圧延所要電力二乗平均値が圧延機の許容範囲
内であるかどうかをチエツクし、許容範囲内であ
る場合はその値を最適スケジユールの値として設
定する。
Next, the root mean square value of the required rolling power in the shortest rolling time is calculated from the required rolling power in each pass, the required power at times other than rolling (no load), the required rolling time, and the no-load idle time.
It is checked whether this root mean square value of power required for rolling is within the tolerance range of the rolling mill, and if it is within the tolerance range, that value is set as the value of the optimum schedule.

なお、この場合、無負荷アイドル時間の初期値
は、圧延ロール回転開始時から圧延開始時までの
時間とする。但し、この時間が通常圧延操業時の
無負荷アイドル時間より極端に大きい場合には、
初期値として通常圧延操業時の平均的な無負荷ア
イドル時間を定数で与えることも考えられる。
In this case, the initial value of the no-load idle time is the time from the start of rotation of the rolling rolls to the start of rolling. However, if this time is extremely longer than the no-load idle time during normal rolling operation,
It is also conceivable to give the average no-load idle time during normal rolling operation as a constant as an initial value.

上記圧延所要電力二乗平均が圧延機の許容範囲
外である場合は、無負荷アイドル時間の値を例え
ば△tだけ大きくして総動力を再計算する。この
場合の圧延動力曲線42から、総動力が47とし
て求まる。このときの最小パス回数を再計算し、
前回得られた仮の最小パス回数と同じであれば、
この無負荷アイドル時間の値に基づいて圧延所要
電力二乗平均値を算出し、該圧延所要電力二乗平
均値が圧延機の許容範囲内となるまで上記演算を
繰返す。そして、許容範囲内となつたものを設定
する。
If the root mean square power required for rolling is outside the tolerance range of the rolling mill, the value of the no-load idle time is increased, for example, by Δt, and the total power is recalculated. From the rolling power curve 42 in this case, the total power is determined as 47. Recalculate the minimum number of passes at this time,
If it is the same as the provisional minimum number of passes obtained last time,
The root mean square value of the required rolling power is calculated based on the value of this no-load idle time, and the above calculation is repeated until the root mean square value of the required rolling power falls within the tolerance range of the rolling mill. Then, set the value that falls within the allowable range.

前記再計算により得られた最小パス回数が、前
回得られた仮の最小パス回数よりも大きくなつた
場合には、再計算した最小パス回数における最短
圧延時間となる圧延速度及び逆転開始タイミング
を再計算し;最短圧延時間となる圧延速度及び逆
転開始タイミングに基づいた無負荷アイドル時間
の値を用いて前記圧延所要電力二乗平均値が許容
範囲となるまで前記演算を繰返す。
If the minimum number of passes obtained by the recalculation becomes larger than the provisional minimum number of passes obtained last time, the rolling speed and reverse start timing that will result in the shortest rolling time for the recalculated minimum number of passes are recalculated. Calculate; repeat the calculation using the value of the no-load idle time based on the rolling speed that results in the shortest rolling time and the reverse rotation start timing until the root mean square value of the required rolling power falls within the allowable range.

上記の演算により、許容圧延動力及び許容圧延
電力二乗平均値をともに満足する圧延スケジユー
ルが求められる。
Through the above calculation, a rolling schedule that satisfies both the allowable rolling power and the root mean square value of the allowable rolling power is determined.

第5図はこの発明を実施する装置の一例を示
し、第1図と同一符号を付した部分は第1図のも
のと同一部分である。10は各パス毎に求められ
る設定値を圧下制御装置6と駆動モータ制御装置
5およびローラテーブル駆動制御装置9に設定、
かつ起動制御を行なう設定制御機、11は演算装
置で、最適な圧延スケジユールが、パス回数や負
荷配分、さらに圧延機の各種許容値により決定さ
れるので、これらを演算して各パスの設定値を求
めるものである。この演算は各演算値が、すなわ
ち、圧延電力二乗平均や圧延動力等が許容値以下
となるように、演算を繰返すことにより求める。
FIG. 5 shows an example of an apparatus for carrying out the present invention, and parts given the same reference numerals as in FIG. 1 are the same parts as in FIG. 10 sets set values determined for each pass in the rolling down control device 6, the drive motor control device 5, and the roller table drive control device 9;
and a setting control machine that performs start-up control; 11 is a calculation device; the optimum rolling schedule is determined by the number of passes, load distribution, and various tolerance values of the rolling mill; these are calculated to determine the setting values for each pass; This is what we seek. This calculation is obtained by repeating the calculation so that each calculation value, that is, the root mean square of the rolling power, the rolling power, etc., is equal to or less than the allowable value.

以上述べたように、この発明は許容圧延動力と
許容圧延電力二乗平均との両方を共に満足し、か
つ、圧延時間が最短となる圧延スケジユールを無
負荷アイドル時間を変えて演算し、この圧延スケ
ジユールを用いて圧延工程を制御するようにした
ので、前述の従来の方法の問題点を除去して、す
なわち、駆動モータの温度上昇により圧延不能と
なつたり、余分の動力を消費したりすることな
く、最も効率よく圧延を行なうことができる。
As described above, the present invention calculates a rolling schedule that satisfies both the allowable rolling power and the root mean square of the allowable rolling power and minimizes the rolling time by varying the no-load idle time. Since the rolling process is controlled using , rolling can be performed most efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の可逆圧延機を示す構成図、第2
図は圧延スケジユールの設定方法を説明するため
の圧延動力曲線図、第3図はこの発明の一実施例
における速度経時曲線図、第4図はこの発明の一
実施例における無負荷アイドル時間を変化させて
画いた圧延動力曲線図、第5図はこの発明を実施
する装置の一例を示す構成図である。 図中、1は可逆圧延機、2は被圧延材料、3は
圧延ロール、4は駆動モータ、5は駆動モータ制
御装置、6は圧延ロールの圧下制御装置、7は圧
延力計測器、8はテーブルローラ、9はテーブル
ローラ駆動制御装置、10は設定制御機、11は
演算装置である。なお、図中同一符号は夫々同
一、又は相当部分を示す。
Figure 1 is a configuration diagram showing a conventional reversible rolling mill;
The figure is a rolling power curve diagram for explaining the method of setting the rolling schedule, Figure 3 is a speed time curve diagram in an embodiment of the present invention, and Figure 4 is a change in no-load idle time in an embodiment of the present invention. FIG. 5 is a diagram showing an example of a rolling power curve and a configuration diagram showing an example of an apparatus for carrying out the present invention. In the figure, 1 is a reversible rolling mill, 2 is a material to be rolled, 3 is a rolling roll, 4 is a drive motor, 5 is a drive motor control device, 6 is a rolling roll reduction control device, 7 is a rolling force measuring device, and 8 is a rolling force measuring device. 9 is a table roller drive control device, 10 is a setting controller, and 11 is a calculation device. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 被圧延材の硬度、圧延機入側の被圧延材の温
度、板幅及び板厚並びに圧延機出側の目標板厚の
圧延仕様から、初期板厚から目標板厚となるまで
圧延を行うのに要する総動力の値を求め;該総動
力の値と、圧延機の仕様により定まる最大許容圧
延動力の値から、仮の最小パス回数を求め、該最
小パス回数における最短圧延時間となる圧延速度
及び逆転開始タイミングを算出し;各パスにおけ
る圧延所要電力,圧延時以外の時(無負荷時)に
おける所要電力,圧延所要時間、無負荷アイドル
時間から、前記最短圧延時間における圧延所要電
力二乗平均値を算出し;該圧延所要電力二乗平均
値が圧延機の許容範囲内であるかどうかをチエツ
クし;許容範囲内である場合はその値を最適スケ
ジユールの値として設定し; 上記圧延所要電力二乗平均が圧延機の許容範囲
外である場合は、無負荷アイドル時間の値を大き
くしてその値に基づく総動力の値を算出し;前記
算出方法により最小パス回数を再計算により算出
し;前回得られた仮の最小パス回数と同じであれ
ば当該無負荷アイドル時間の値に基づいて圧延所
要電力二乗平均値を算出し;該圧延所要電力二乗
平均値が圧延機の許容範囲内となるまで上記演算
を繰返し; 前記再計算により得られた最小パス回数が前回
得られた仮の最小パス回数よりも大きくなつた場
合には、再計算した最小パス回数における最短圧
延時間となる圧延速度及び逆転開始タイミングを
再計算し;最短圧延時間となる圧延速度及び逆転
開始タイミングに基づいた無負荷アイドル時間の
値を用いて前記圧延所要電力二乗平均値が許容範
囲となるまで前記演算を繰返し; 上記の結果得られる、許容圧延動力及び許容圧
延電力二乗平均値をともに満足する圧延スケジユ
ールを用いて、圧延工程の制御を行うことを特徴
とする可逆圧延機の制御方法。
[Claims] 1. From the rolling specifications of the hardness of the material to be rolled, the temperature of the material to be rolled on the inlet side of the rolling machine, the width and thickness of the material, and the target thickness on the exit side of the rolling machine, the target thickness can be calculated from the initial thickness. Find the value of the total power required to perform rolling until Calculate the rolling speed and reversal start timing that result in the shortest rolling time; calculate the shortest rolling time from the required rolling power in each pass, the required power at times other than rolling (no load), the required rolling time, and the no-load idle time. Calculate the root mean square value of the required power for rolling; Check whether the root mean square value of the required power for rolling is within the tolerance range of the rolling mill; If it is within the tolerance range, set that value as the value of the optimal schedule. ; If the above-mentioned root mean square power required for rolling is outside the tolerance range of the rolling mill, increase the value of the no-load idle time and calculate the total power value based on that value; recalculate the minimum number of passes using the above calculation method. If it is the same as the provisional minimum number of passes obtained last time, calculate the root mean square value of the rolling power required based on the value of the no-load idle time; Repeat the above calculation until the number of passes is within the allowable range; If the minimum number of passes obtained by the recalculation is larger than the provisional minimum number of passes obtained last time, the shortest rolling time at the recalculated minimum number of passes Recalculate the rolling speed and reversal start timing that result in the shortest rolling time; Using the value of the no-load idle time based on the rolling speed that results in the shortest rolling time and the reversal start timing, repeat the above steps until the root mean square value of the required rolling power falls within the allowable range. A method for controlling a reversible rolling mill, comprising: repeating the calculation; and controlling a rolling process using a rolling schedule that satisfies both the allowable rolling power and the root mean square value of the allowable rolling power obtained as the above results.
JP57033192A 1982-03-01 1982-03-01 Method for controlling reversible rolling mill Granted JPS58151905A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57033192A JPS58151905A (en) 1982-03-01 1982-03-01 Method for controlling reversible rolling mill
DE19833305995 DE3305995A1 (en) 1982-03-01 1983-02-22 METHOD FOR CONTROLLING A ROLLING MILL
BR8300978A BR8300978A (en) 1982-03-01 1983-02-28 PROCESS TO CONTROL THE EXTRACTOR AND ROLLER DEVICE OF A LAMINATION APPLIANCE
AU11914/83A AU557739B2 (en) 1982-03-01 1983-02-28 Controlling rolling apparatus
US06/470,451 US4485652A (en) 1982-03-01 1983-02-28 Method of controlling rolling apparatus
GB08305664A GB2116753B (en) 1982-03-01 1983-03-01 Controlling rolling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57033192A JPS58151905A (en) 1982-03-01 1982-03-01 Method for controlling reversible rolling mill

Publications (2)

Publication Number Publication Date
JPS58151905A JPS58151905A (en) 1983-09-09
JPH029521B2 true JPH029521B2 (en) 1990-03-02

Family

ID=12379616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57033192A Granted JPS58151905A (en) 1982-03-01 1982-03-01 Method for controlling reversible rolling mill

Country Status (1)

Country Link
JP (1) JPS58151905A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259605A (en) * 1986-05-01 1987-11-12 Kawasaki Steel Corp Method for determining pass schedule of reversible type rolling mill
JP2001071009A (en) * 1999-09-03 2001-03-21 Hitachi Ltd Reversible rolling method and reversible rolling equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918910A (en) * 1972-06-15 1974-02-19
JPS5691916A (en) * 1979-12-27 1981-07-25 Mitsubishi Electric Corp Main controller for reversible rolling mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918910A (en) * 1972-06-15 1974-02-19
JPS5691916A (en) * 1979-12-27 1981-07-25 Mitsubishi Electric Corp Main controller for reversible rolling mill

Also Published As

Publication number Publication date
JPS58151905A (en) 1983-09-09

Similar Documents

Publication Publication Date Title
EP0130551B2 (en) Control method and apparatus for rolling mill
JPH029521B2 (en)
JP2007069234A (en) Method and device for monitoring passage of sheet on thick steel plate straightening line
US4485652A (en) Method of controlling rolling apparatus
JP2000197905A (en) Extrusion rolling device and method thereof
JP3743253B2 (en) Elongation rate control method of temper rolling mill
JP3389841B2 (en) Reverse rolling method
JP2003001315A (en) Cold rolling method for steel strip
JP2749754B2 (en) Rolling schedule setting method for reversible rolling mill
JPH0228402B2 (en)
JPH091219A (en) Method for controlling speed of roller table of rolling mill
JPH0899104A (en) Method for determining pass schedule of continuous rolling mill
JP3444267B2 (en) Rolling method of steel sheet
JPH10127077A (en) Method for controlling electric motor
JP2001105016A (en) Device for controlling temperature of rolled stock
KR100839448B1 (en) Method for controlling tension in continuous process line
JPH09136107A (en) Method for controlling velocity of carrying table roller in hot rolling mill
JPS6336911A (en) Control method for reversible rolling mill
JP2003112213A (en) Controller, controlling method, computer program and computer readable recording medium for rolling mill
JP4019035B2 (en) Thick plate rolling method
JPH0919706A (en) Method for deciding rolling schedule in cold tandem mill
EP0032766A1 (en) Method of rolling a length of metal bar or wire and apparatus for carrying out the method
JP2002282922A (en) Extension ratio control method for continuous temper rolling mill
JP3573232B2 (en) How to change the crossing angle / bend force set value between runs
JPS6330091B2 (en)