JPH029484B2 - - Google Patents
Info
- Publication number
- JPH029484B2 JPH029484B2 JP5299882A JP5299882A JPH029484B2 JP H029484 B2 JPH029484 B2 JP H029484B2 JP 5299882 A JP5299882 A JP 5299882A JP 5299882 A JP5299882 A JP 5299882A JP H029484 B2 JPH029484 B2 JP H029484B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal resonator
- electrode
- frequency
- container
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013078 crystal Substances 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims 3
- 238000000034 method Methods 0.000 claims 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 17
- 239000007789 gas Substances 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 9
- 239000010931 gold Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 1
- 239000010956 nickel silver Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H3/04—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は衛星通信、海底中継器等に搭載され、
高い精度が要求される高安定水晶振動子に関す
る。[Detailed description of the invention] (a) Technical field of the invention The present invention is installed in satellite communications, submarine repeaters, etc.
This invention relates to highly stable crystal resonators that require high precision.
(b) 技術の背景
通常高安定水晶振動子に使用する水晶片は丸形
又は矩形板の片面を球面加工した厚みすべり振動
モードを用いる。(b) Background of the technology The crystal blank used in highly stable crystal resonators is usually a round or rectangular plate with one side spherically processed to use a thickness-shear vibration mode.
衛星通信、海底中継器等の過酷な環境条件下で
も、半永久的長時間の周波数安定度とともに短時
間の周波数安定度も必要で立上り特性の早い水晶
振動子が要求される。 Even under harsh environmental conditions in satellite communications, submarine repeaters, etc., not only semi-permanent long-term frequency stability but also short-term frequency stability is required, and a crystal oscillator with fast rise characteristics is required.
このような高安定度水晶振動子として水晶結晶
軸からの切出方位を光軸の回りに回転させて形成
するATカツト又はITカツト等の二回転Y板系の
水晶片が用いられる。また外界の温度変化にも対
応可能な恒温槽に収容されて用いられ、振動源と
して安定性高性能が要請される。 As such a high-stability crystal resonator, a two-rotation Y plate type crystal piece such as an AT cut or an IT cut, which is formed by rotating the cutting direction from the crystal crystal axis around the optical axis, is used. Furthermore, it is used housed in a thermostatic chamber that can cope with temperature changes in the outside world, and requires stability and high performance as a vibration source.
(c) 従来技術と問題点
電気的特性に優れた振動子を得るには大きな水
晶片が必要であり一方機器は多重化、小型化が進
み水晶振動子もより小型化が要求される。このた
め小型化に有利な厚みすべり振動子ではスプリア
ス共振を抑制するために、振動エネルギーを水晶
板の中央に閉じ込めるのに有効な片面もしくは両
面を球面状に水晶片を研磨形成して精製される。(c) Prior art and problems In order to obtain a resonator with excellent electrical characteristics, a large crystal piece is required.On the other hand, as equipment becomes more multiplexed and smaller, crystal resonators are also required to be smaller. For this reason, in thickness-shear resonators, which are advantageous for miniaturization, in order to suppress spurious resonance, a crystal piece is polished and formed into a spherical shape on one or both sides, which is effective for confining vibration energy in the center of the crystal plate. .
形成された水晶片の両面に電極膜を蒸着する。
通常電極膜は金又は銀が用いられる。振動子の周
波数を調整する最終段階では周波数を測定しなが
ら電極膜の厚さを変えることによつて行なわれ
る。 Electrode films are deposited on both sides of the formed crystal piece.
Usually, gold or silver is used for the electrode film. The final step of adjusting the frequency of the vibrator is performed by changing the thickness of the electrode film while measuring the frequency.
第1図のイ,ロは片面を球面とした厚みすべり
振動子を示す図でありイ図は上面図であり、ロ図
は側面図を示す。 Figures A and B in Fig. 1 show a thickness-shear resonator with one side spherical; Figure A is a top view, and Figure B is a side view.
第2図は従来の水晶振動子構成を示す図であ
る。図中1は水晶片、2は電極膜、3は金属キヤ
ツプ、4はベース、5は支持板、6はリード、7
はガラス融着部をそれぞれ示す。 FIG. 2 is a diagram showing the configuration of a conventional crystal resonator. In the figure, 1 is a crystal piece, 2 is an electrode film, 3 is a metal cap, 4 is a base, 5 is a support plate, 6 is a lead, 7
1 and 2 respectively indicate glass fused parts.
水晶片1の両面に電極膜を蒸着により形成し所
定の周波数調整が完了すると水晶振動子として容
器に収容される。容器は金属キヤツプ3とベース
4からなりハーメチツクシールの密封構造とな
る。可撓性のある例えば洋白、りん青銅等の支持
板5により水晶振動子(水晶片1)をボンデング
又は接着剤等で接合支持させ、外部リード6に接
続し、低融点ガラスで融着封止する。内部を真空
排気する場合には排気パイプをベース4に設けて
排気後圧溶して封じ切る。 Electrode films are formed on both sides of the crystal blank 1 by vapor deposition, and when a predetermined frequency adjustment is completed, the crystal blank 1 is housed in a container as a crystal resonator. The container consists of a metal cap 3 and a base 4 and has a hermetically sealed structure. A crystal resonator (crystal piece 1) is bonded and supported by a flexible support plate 5 made of nickel silver, phosphor bronze, etc. using bonding or adhesive, connected to an external lead 6, and fused and sealed with low melting point glass. Stop. When the inside is to be evacuated, an exhaust pipe is provided on the base 4, and after the exhaust is evacuated, it is sealed off by pressure melting.
しかしこの構造では組立後の特性調整は不可能
である。また振動子が恒温槽内に収容された発振
回路系で使用されるため、その使用温度に対応す
る定量的な換算表を用いて、大気中において室温
で周波数特性試験及び周波数調整がなされるが、
製品の安定性と長期の信頼性に欠ける憾みがあつ
た。また、エージング特性に見られる電極膜の残
留応力に起因する周波数特性値の経時変化に対応
できない。 However, with this structure, it is impossible to adjust the characteristics after assembly. In addition, since the resonator is used in an oscillation circuit system housed in a thermostatic chamber, frequency characteristic tests and frequency adjustments are performed at room temperature in the atmosphere using a quantitative conversion table corresponding to the operating temperature. ,
There were concerns that the product lacked stability and long-term reliability. Furthermore, it cannot cope with changes in frequency characteristic values over time caused by residual stress in the electrode film, which is seen in aging characteristics.
(d) 発明の目的
本発明は上記の点に鑑み、水晶振動子を収容す
る容器内で微調整が可能な電極膜形成用のスパツ
タ機構を提供し、高安定水晶振動子を得ることを
目的とする。(d) Purpose of the Invention In view of the above points, the present invention aims to provide a sputtering mechanism for forming an electrode film that can be finely adjusted in a container housing a crystal resonator, and to obtain a highly stable crystal resonator. shall be.
(e) 発明の構成
上記目的は本発明によれば粗調整された水晶振
動子を密封構造の容器内に収容し、使用条件と同
等に設定された恒温槽内で精密調整すること及び
前記容器はアルゴンガス封入口を共有する真空排
気系を備え、前記水晶振動子を保持する陽極と電
極膜を形成させるターゲツト陰極の両極間に電圧
印加しスパツタリング電極膜を積層させることに
よつて達せられる。(e) Structure of the Invention According to the present invention, the above-mentioned object is to house a coarsely adjusted crystal resonator in a sealed container, and to precisely adjust it in a constant temperature bath set to the same conditions as the usage conditions. This can be achieved by providing a vacuum exhaust system that shares an argon gas filling port, and applying a voltage between the anode that holds the crystal resonator and the target cathode that forms the electrode film, thereby depositing the sputtering electrode film.
(f) 発明の実施例
第3図は本発明の一実施例である水晶振動子の
構成を示す図である。片面を球面加工した厚みす
べり振動子11の両面に金(Au)で成膜された
電極膜12を形成させ、可撓性豊かなりん青銅等
の支持板15及び外部リード16で支持固定させ
て容器に収容する。(f) Embodiment of the Invention FIG. 3 is a diagram showing the configuration of a crystal resonator which is an embodiment of the invention. Electrode films 12 made of gold (Au) are formed on both sides of a thick shear vibrator 11 whose one side is processed into a spherical surface, and is supported and fixed by a support plate 15 made of highly flexible phosphor bronze or the like and external leads 16. Store in a container.
容器は金属キヤツプ13及び絶縁性部材でなる
ベース14からなり周縁部を臘付等でシールし密
封構造とする。またリード端子16を低融点ガラ
ス17で図のように封止固定する。 The container consists of a metal cap 13 and a base 14 made of an insulating material, and the periphery is sealed with a clasp or the like to form a hermetically sealed structure. Further, the lead terminal 16 is sealed and fixed with a low melting point glass 17 as shown in the figure.
一方金(Au)をターゲツトとするターゲツト
電極18を設け、また容器内を真空に減圧する排
気口20にアルゴンガスを封入するガス流入制御
及び排気減圧制御を行うバルブ制御系21を備え
る。 On the other hand, a target electrode 18 targeting gold (Au) is provided, and a valve control system 21 is provided to perform gas inflow control for filling argon gas into an exhaust port 20 for reducing the pressure inside the container to vacuum, and for controlling exhaust pressure reduction.
このように組立られた水晶振動子を使用温度条
件と同一温度に設定された恒温槽内で精密調整を
行うものである。精密調整は所定の周波数特性が
得られるように片面の電極膜に更に金(Au)被
膜を積層させるスパツタリングによつて行なう。 The thus assembled crystal resonator is precisely adjusted in a constant temperature bath set at the same temperature as the operating temperature condition. Precise adjustment is performed by sputtering, in which a gold (Au) film is further laminated on one side of the electrode film so as to obtain a predetermined frequency characteristic.
水晶振動子11をリード端子16、支持板15
を介して陽極とし、陰極をなすターゲツト電極1
8の二極間に直流高圧を印加する。容器内は真空
に減圧されアルゴンガスによつて置換され、水晶
振動子11の電極膜12に対面したターゲツト電
極18の容器内部の先端部に載置されたターゲツ
ト19に生ずる負の直流バイアス電圧により加速
された陽極からのアルゴンイオン(Ar+)が陰極
に衝突してターゲツト原子をたゝき出し、周波数
カウンタ30で周波数を測定しながら振動子11
の電極膜12にスパツタ膜(Au)を積層させる
ことによつて精密調整を行うものである。 Lead terminal 16 and support plate 15 for crystal resonator 11
A target electrode 1 which serves as an anode and a cathode through
DC high voltage is applied between the two poles of 8. The pressure inside the container is reduced to vacuum and replaced with argon gas, and a negative DC bias voltage is generated on the target 19 placed on the tip of the target electrode 18 inside the container facing the electrode film 12 of the crystal resonator 11. Accelerated argon ions (Ar + ) from the anode collide with the cathode to eject target atoms, and the frequency is measured by the frequency counter 30 while the oscillator 11
Precise adjustment is performed by laminating a sputtered film (Au) on the electrode film 12.
なお、この場合、ターゲツト19は小さく、か
つ、電極膜12と比較的近接して配置されている
ので積層付加されるスパツタ膜は本来の電極膜1
2よりも外にはみ出すことはなく、マスクを設け
る必要は全くない。 In this case, since the target 19 is small and placed relatively close to the electrode film 12, the sputtered film that is laminated and added is different from the original electrode film 1.
It does not protrude beyond 2, and there is no need to provide a mask.
このように外部条件に影響されることなく気密
室でしかも微調整を可能とするスパツタリングを
繰返すことにより高精度の周波数特性を有する高
安定水晶振動子を得ることができる。 By repeating sputtering in an airtight chamber and allowing fine adjustment without being affected by external conditions, a highly stable crystal resonator with highly accurate frequency characteristics can be obtained.
第4図は本発明の一実施例であるバルブ制御系
を示すブロツク図である。 FIG. 4 is a block diagram showing a valve control system according to an embodiment of the present invention.
アルゴンガス(Ar)封入パイプ22に設けた
バルブV6を閉じ、水晶振動子取付用チヤンバ2
3を真空排気する。すなわち、バルブV1を開き
ロータリポンプ25で粗引き後、V2、V3バルブ
を開きバルブV1を閉じて拡散ポンプ24を動作
させ高真空に排気する。この際バルブ4は開であ
る。一定圧に排気後バルブV3を適当に絞り、ア
ルゴンガス流量調整バルブV6を開放してアルゴ
ンガスを導入する。 Close the valve V 6 provided in the argon gas (Ar) filled pipe 22, and close the chamber 2 for mounting the crystal resonator.
Evacuate 3. That is, after opening the valve V 1 and rough evacuation with the rotary pump 25, the valves V 2 and V 3 are opened, the valve V 1 is closed, and the diffusion pump 24 is operated to evacuate to a high vacuum. At this time, valve 4 is open. After evacuation to a constant pressure, valve V3 is appropriately throttled, and argon gas flow rate adjustment valve V6 is opened to introduce argon gas.
このように構成されるバルブ制御系を用いスパ
ツタ膜を生成させ調整完了後はアルゴンガスを排
気し一定圧に減圧し排気口(第3図20参照)を
圧溶して封じ切ることにより気密封止水晶振動子
を得る。 Using the valve control system configured as described above, a spatter film is generated, and after the adjustment is completed, the argon gas is exhausted, the pressure is reduced to a constant pressure, and the exhaust port (see Fig. 3, 20) is sealed by pressure melt to create an airtight seal. Obtain a quartz crystal.
印加電圧はDC500V、5mA数秒間スパツタを
繰返し、目的の周波数に調整する。調整範囲は略
15〜20ppmであり、大気に露出することなく容器
内を高真空に排気、ベーキングするので設定発振
周波数に対して、高精度、たとえば、1ppm以下
の調整ができターゲツト電極(第3図18参照)
を内蔵したまゝで封止されるが特性上影響はなく
安定度は5×10-9ppm/decadeが得られた。 The applied voltage is 500 VDC, 5 mA, and sputtering is repeated for several seconds to adjust to the desired frequency. Adjustment range is omitted.
Since the container is evacuated to a high vacuum and baked without being exposed to the atmosphere, it is possible to adjust the set oscillation frequency with high accuracy, for example, to within 1 ppm (see Figure 3, 18).
Although it was sealed with the internal components inside, it had no effect on the characteristics and a stability of 5×10 -9 ppm/decade was obtained.
(g) 発明の効果
以上詳細に説明したように本発明の水晶振動子
により従来に比し高安定特性が得られ、しかも使
用条件と略同一に設定された恒温槽で微調整が行
われるからより信頼性を向上させる効果がある。(g) Effects of the Invention As explained in detail above, the crystal resonator of the present invention provides highly stable characteristics compared to conventional ones, and furthermore, fine adjustment is performed in a constant temperature bath set to substantially the same conditions as the operating conditions. This has the effect of further improving reliability.
第1図のイ,ロ図は片面を球面とする厚みすべ
り振動子を示す図、イ図は上面図、ロ図は側面を
示す図、第2図は従来の水晶振動子構成を示す
図、第3図は本発明の一実施例である水晶振動子
構成を示す図、第4図は本発明の一実施例である
バルブ制御系を示すブロツク図である。図におい
て11は水晶振動子、12は電極膜、13は金属
キヤツプ、14はベース、15は支持板、16は
リード端子、17は低融点ガラス、18はターゲ
ツト電極、19はターゲツト、20は排気口、2
1はバルブ制御系、22はアルゴンガス封入パイ
プ、23はチヤンバ、24は拡散ポンプ、25は
ロータリポンプ、30は周波数カウンタ、V1〜
V3バルブを示す。
Figures A and B in Figure 1 are diagrams showing a thickness-shear resonator with one side spherical, Figure A is a top view, Figure B is a side view, and Figure 2 is a diagram showing a conventional crystal oscillator configuration. FIG. 3 is a diagram showing the configuration of a crystal oscillator as an embodiment of the present invention, and FIG. 4 is a block diagram showing a valve control system as an embodiment of the present invention. In the figure, 11 is a crystal resonator, 12 is an electrode film, 13 is a metal cap, 14 is a base, 15 is a support plate, 16 is a lead terminal, 17 is a low melting point glass, 18 is a target electrode, 19 is a target, and 20 is an exhaust gas. mouth, 2
1 is a valve control system, 22 is an argon gas filled pipe, 23 is a chamber, 24 is a diffusion pump, 25 is a rotary pump, 30 is a frequency counter, V 1 ~
V 3 valve shown.
Claims (1)
膜を形成してなるATカツト厚みすべり水晶振動
子の製造方法において、 周波数の粒調整がなされた該水晶振動子を密封
構造の容器内に支持固定し、 使用温度条件と同等の条件に設定された恒温槽
内において、前記容器内に支持固定された水晶振
動子の電極膜に電極形成金属を積層付加して、周
波数の精密調整を行なうことを特徴とした水晶振
動子の製造方法。 2 上記密封構造の容器の一部にガス封入口を兼
ねた排気口を設け、 前記水晶振動子を保持する支持板に連なる外部
リードを陽極とし、外部リードと独立して絶縁気
密植設されたターゲツト電極を陰極として電圧を
印加し、前記水晶振動子の電極膜に対面した前記
ターゲツト電極の容器内先端部に載置されたター
ゲツトの電極形成金属を、周波数を測定しながら
スパツタリングによつて前記水晶振動子の電極膜
に積層付加し、所要の周波数に達したのち減圧排
気し前記排気口を封止切断してなることを特徴と
する特許請求の範囲第1項記載の水晶振動子の製
造方法。[Scope of Claims] 1. A method for manufacturing an AT-cut thickness-slide crystal resonator having one or both surfaces spherical and having electrode films formed on both sides, wherein the crystal resonator with frequency grain adjustment is sealed. The crystal oscillator is supported and fixed in a container, and in a constant temperature bath set at the same temperature as the operating temperature, an electrode forming metal is laminated and added to the electrode film of the crystal resonator supported and fixed in the container, and the frequency is adjusted. A method of manufacturing a crystal resonator characterized by precision adjustment. 2. An exhaust port that also serves as a gas filling inlet is provided in a part of the container with the above-mentioned sealed structure, and the external lead connected to the support plate holding the crystal resonator is used as an anode, and is insulated and hermetically planted independently of the external lead. A voltage is applied using the target electrode as a cathode, and the metal forming the target electrode placed on the tip of the target electrode in the container facing the electrode film of the crystal resonator is sputtered while measuring the frequency. Manufacture of a crystal resonator according to claim 1, characterized in that the crystal resonator is laminated and added to the electrode film of the crystal resonator, and after reaching a required frequency, the air is evacuated under reduced pressure and the exhaust port is sealed and cut. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5299882A JPS58170210A (en) | 1982-03-31 | 1982-03-31 | Manufacture of crystal oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5299882A JPS58170210A (en) | 1982-03-31 | 1982-03-31 | Manufacture of crystal oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58170210A JPS58170210A (en) | 1983-10-06 |
JPH029484B2 true JPH029484B2 (en) | 1990-03-02 |
Family
ID=12930592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5299882A Granted JPS58170210A (en) | 1982-03-31 | 1982-03-31 | Manufacture of crystal oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58170210A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005204287A (en) * | 2003-12-19 | 2005-07-28 | Showa Shinku:Kk | Frequency adjusting apparatus and method for piezoelectric device, and the piezoelectric device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2199985B (en) * | 1986-12-22 | 1991-09-11 | Raytheon Co | Surface acoustic wave device |
US5235135A (en) * | 1992-02-14 | 1993-08-10 | Motorola, Inc. | Sealed electronic package providing in-situ metallization |
-
1982
- 1982-03-31 JP JP5299882A patent/JPS58170210A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005204287A (en) * | 2003-12-19 | 2005-07-28 | Showa Shinku:Kk | Frequency adjusting apparatus and method for piezoelectric device, and the piezoelectric device |
Also Published As
Publication number | Publication date |
---|---|
JPS58170210A (en) | 1983-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5235135A (en) | Sealed electronic package providing in-situ metallization | |
JP2007243681A (en) | Surface-mounting type piezoelectric vibration device | |
US4454639A (en) | Method for tuning piezoelectric resonators | |
JPH029484B2 (en) | ||
JPH09326668A (en) | Piezoelectric element and production of the same | |
WO2004100364A1 (en) | Tuning-fork piezoelectric device manufacturing method and tuning-fork piezoelectric device | |
JP2013080990A (en) | Manufacturing method of piezoelectric vibration piece, manufacturing apparatus of piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic apparatus, and atomic clock | |
US4263702A (en) | Method of making a quartz resonator | |
JP2001024468A (en) | Electrode film structure of piezoelectric oscillator | |
JP3843716B2 (en) | AT cut piezoelectric vibrator package structure and frequency adjusting method thereof | |
US4741076A (en) | Method of making a high stability quartz crystal oscillator | |
JPH05243885A (en) | Crystal oscillator and frequency adjusting method for the crystal oscillator | |
JPH01209810A (en) | Piezoelectric vibrator and fine adjustment method of its frequency | |
US20230268905A1 (en) | Resonator device and method of manufacturing resonator device | |
JPS6121860Y2 (en) | ||
JPS60117801A (en) | Mic oscillator | |
CN118554913A (en) | Crystal oscillator and manufacturing method | |
JPH02179013A (en) | Crystal resonator and its manufacture | |
JPH0722895A (en) | Crystal resonator | |
JP2024032324A (en) | monolithic crystal filter | |
JPS6119138B2 (en) | ||
JP2024032325A (en) | monolithic crystal filter | |
JP3420357B2 (en) | Manufacturing method of surface acoustic wave device | |
JP2000307367A (en) | Manufacture of crystal vibration | |
JP2001177372A (en) | Piezoelectric vibrator, frequency adjustment method for the same and processing unit for frequency adjustment |