JPH0294586A - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JPH0294586A
JPH0294586A JP24438988A JP24438988A JPH0294586A JP H0294586 A JPH0294586 A JP H0294586A JP 24438988 A JP24438988 A JP 24438988A JP 24438988 A JP24438988 A JP 24438988A JP H0294586 A JPH0294586 A JP H0294586A
Authority
JP
Japan
Prior art keywords
optical
optical amplifier
amplified
component
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24438988A
Other languages
Japanese (ja)
Other versions
JP2612912B2 (en
Inventor
Katsuaki Magari
克明 曲
Yuzo Yoshikuni
裕三 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24438988A priority Critical patent/JP2612912B2/en
Publication of JPH0294586A publication Critical patent/JPH0294586A/en
Application granted granted Critical
Publication of JP2612912B2 publication Critical patent/JP2612912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To solve the problem of a gain difference generated between longitudinal and lateral polarized waves and to obtain an optical amplifier having no polarized plane dependency by separately introducing the longitudinal and lateral polarized waves by a polarization beam splitter, and optically amplifying them independently. CONSTITUTION:When a light of an arbitrary polarized wave is injected from a boat X into a polarization beam splitter 1, the lateral polarized component of the light is transmitted through the splitter 1 to an optical amplifier 3 and amplified. The amplified lateral component is rotated at +45 deg. by a Faraday rotor 5, further reflected by a total-reflection mirror 7, the polarizing plane is again rotated further at +45 deg. by the rotor 5, and varied to the longitudinal polarized wave component. The longitudinal component is again amplified reversibly by the amplifier 3, reflected by the splitter 1, and advanced to a boat Y. On the other hand, the longitudinal component of the incident light from the boat X is reflected by the splitter 1, guided to an optical amplifier 2, and amplified. Thus, optical amplifying characteristic having high gain and no polarization plane dependency is obtained as compared with the optical amplification of a normal single optical amplifier.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光伝送用光増幅装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical amplifier for optical transmission.

[従来の技術] 光伝送のための光増幅装置として、双方向に光増幅特性
をもつ光増幅器、例えば半導体レーザの注入同期増幅器
あるいは共娠器型または進行波型の半導体レーザ増幅器
が考えられている。
[Prior Art] Optical amplifiers with bidirectional optical amplification characteristics, such as semiconductor laser injection-locked amplifiers, co-concentrator type or traveling wave type semiconductor laser amplifiers, have been considered as optical amplification devices for optical transmission. There is.

[発明が解決しようとする課題] ところが、このような光増幅器では、その光増幅器を構
成する半導体レーザの活性層厚は0.2μl以下に充分
制御することができるが、活性層幅に関しては現状のプ
ロセス技術で1μm以下に加工することは困難である。
[Problems to be Solved by the Invention] However, in such an optical amplifier, although the active layer thickness of the semiconductor laser constituting the optical amplifier can be sufficiently controlled to 0.2 μl or less, the active layer width is currently limited. It is difficult to process the thickness to 1 μm or less using the above process technology.

従って、導波路断面が長方形となり、活性層の厚み方向
と幅方向とでは電場のフィールド分布が異なる。その結
果、活性層厚方向に電場が生ずる縦偏波と活性層幅方向
に電場が生する横偏波とではフィールド分布に差が生じ
、信号利得が異なる。すルわち、光増幅器単体では、縦
偏波と横偏波とでは、閉じ込め係数に差があるため、信
号利得に差が生じ、増幅特性に偏波面依存性が生ずると
いう欠点がある。
Therefore, the cross section of the waveguide is rectangular, and the field distribution of the electric field is different in the thickness direction and the width direction of the active layer. As a result, a difference occurs in the field distribution between the vertically polarized wave in which the electric field is generated in the active layer thickness direction and the horizontally polarized wave in which the electric field is generated in the active layer width direction, resulting in a different signal gain. In other words, in a single optical amplifier, there is a difference in confinement coefficient between vertically polarized waves and horizontally polarized waves, resulting in a difference in signal gain and a drawback that polarization plane dependence occurs in amplification characteristics.

そこで、本発明の目的は、偏光ビームスプリッタを用い
て縦偏波と横偏波を別々の光路に切り分けて、それぞれ
、独立に光増幅を行なうことにより、縦偏波と横偏波と
の間に生ずる利得差の問題を解決して、偏波面依存性の
ない光増幅装置を提供することにある。
Therefore, an object of the present invention is to separate vertically polarized waves and horizontally polarized waves into separate optical paths using a polarizing beam splitter and perform optical amplification independently of each other. It is an object of the present invention to provide an optical amplifying device that is free from polarization plane dependence by solving the problem of gain differences that occur in the following.

[課題を解決するための手段] このような目的を達成するために、本発明は、第1端に
おいて入力光を受けて、2つの互いに直交した第2およ
び第3端から縦偏波成分の光および横偏波成分の光を分
離して取り出す偏光ビームスプリッタと、双方向に光増
幅特性をもち、および第2端に結合されて、入力される
光を光増幅する第1光増幅器と、第1光増幅器の出力端
に結合された第1ファラデー回転子と、第1ファラデー
回転子に結合された第1反射ミラーと、双方向に光増幅
特性をもち、および第3端に結合されて、入力される光
を光増幅する第2光増幅器と、第2光増幅器の出力端に
結合された第2ファラデー回転子と、第2ファラデー回
転子に結合された第2反射ミラーとを具え、偏光ビーム
スプリッタの第4端より、第1および第2光増幅器の各
々からの光増幅出力が合成された光増幅出力を取り出す
ようにしたことを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention receives input light at a first end and extracts a longitudinally polarized component from two mutually orthogonal second and third ends. a polarizing beam splitter that separates and extracts light and horizontally polarized component light; a first optical amplifier that has optical amplification characteristics in both directions and is coupled to a second end to optically amplify input light; A first Faraday rotator coupled to the output end of the first optical amplifier; a first reflection mirror coupled to the first Faraday rotator; , a second optical amplifier that optically amplifies input light, a second Faraday rotator coupled to the output end of the second optical amplifier, and a second reflection mirror coupled to the second Faraday rotator, The present invention is characterized in that an optically amplified output in which the optically amplified outputs from each of the first and second optical amplifiers are combined is taken out from the fourth end of the polarizing beam splitter.

[作 用] 本発明では、偏光ビームスプリッタを用いて、入力光の
うちの縦偏波と横偏波を別々の光路に切り分け、それら
切り分けられた光は、各々の光路において、縦偏波とし
て1度、および横偏波として1度ずつ、それぞれ、双方
向に光増幅特性をもつ光増幅器を双方向に通過すること
により、高利得でかつ偏波面依存性のない光増幅を行う
ことができるようにする。従来の技術とは偏波面依存性
のない高利得な光増幅という点で異なる。
[Function] In the present invention, the vertically polarized wave and the horizontally polarized wave of the input light are separated into separate optical paths using a polarizing beam splitter, and the separated light is used as the vertically polarized wave in each optical path. By passing through optical amplifiers that have optical amplification characteristics in both directions, both once and once as horizontally polarized waves, it is possible to perform optical amplification with high gain and without polarization dependence. Do it like this. This method differs from conventional technology in that high-gain optical amplification is achieved without polarization dependence.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の構成を示す構成図である。FIG. 1 is a block diagram showing the structure of an embodiment of the present invention.

ここで、lはボートXおよびYに結合された偏光ビーム
スプリッタ、2および3は偏光ビームスプリッタ1に結
合され、および双方向に光増幅特性をもつ進行波型光増
幅器、4および5は、それぞわ、光増幅器2および3に
結合されたファラデー回転子、6および7は、それぞれ
、ファラデー回転子4および5に結合された全反射ミラ
ーである。
Here, l is a polarizing beam splitter coupled to boats X and Y, 2 and 3 are traveling wave optical amplifiers coupled to polarizing beam splitter 1 and having optical amplification characteristics in both directions, and 4 and 5 are Faraday rotators 6 and 7 coupled to optical amplifiers 2 and 3 are total reflection mirrors coupled to Faraday rotators 4 and 5, respectively.

偏光ビームスプリッタ1は横偏波のみを透過し、縦偏波
は反射するように構成されているとする。光増幅器2お
よび3は同一の増幅特性を有しているものとする。
It is assumed that the polarizing beam splitter 1 is configured to transmit only horizontally polarized waves and reflect vertically polarized waves. It is assumed that optical amplifiers 2 and 3 have the same amplification characteristics.

今、ボートXから任意の偏波の光が偏光ビームスプリッ
タ1に注入されたとすると、この光のうち、横偏波成分
は偏光ビームスプリッタ1によって透過されて光増幅器
3に至り、ここで増幅される。このようにして増幅され
た横偏波成分は、ファラデー回転子5で+45°回転さ
れ、さらに全反射ミラー7で反射された後に、その偏波
面が再びファラデー回転子5によりさらに+45°回転
されるため、縦偏波成分に変化する。この縦偏波成分は
再び光増幅器3で逆方向から増幅され、偏光ビームスプ
リッタ1により反射され、ボートYへ進んでいく。すな
わち、横偏波成分の入力光は、光増幅器3において、横
偏波と縦偏波で各々1回ずつ増幅され、偏波面が90°
回転して出力される。
Now, suppose that light of arbitrary polarization is injected from boat Ru. The horizontally polarized wave component amplified in this way is rotated +45° by the Faraday rotator 5, further reflected by the total reflection mirror 7, and then its polarization plane is further rotated +45° by the Faraday rotator 5 again. Therefore, it changes to a vertically polarized component. This longitudinally polarized wave component is again amplified in the opposite direction by the optical amplifier 3, reflected by the polarizing beam splitter 1, and proceeds to the boat Y. That is, the horizontally polarized input light is amplified once each by the horizontally polarized wave and the vertically polarized wave in the optical amplifier 3, so that the plane of polarization is 90°.
It is rotated and output.

一方、ボートXからの入力光における縦偏波成分は偏光
ビームスプリッタ1で反射されて光増幅器2に導かれ、
ここで増幅される。このように増幅された縦偏波成分は
ファラデー回転子4に導かれ、ここでその縦偏波成分の
偏波面が+45°回転され、さらに全反射ミラー6で反
射された後に、その偏波面がファラデー回転子4により
さらに+45°の回転を受ける。従って、再び光増幅器
2を逆方向から通過する時には横偏波成分となっており
、偏光ビームスプリッタ1を透過して、ボートYへ進む
。すなわち、縦偏波成分の入力光も、光増幅器2におい
て、縦横両偏波で1度ずつ増幅され、偏波面が90°回
転しぞ出力される。
On the other hand, the vertically polarized wave component of the input light from boat X is reflected by polarization beam splitter 1 and guided to optical amplifier 2.
It is amplified here. The vertically polarized wave component amplified in this way is guided to the Faraday rotator 4, where the plane of polarization of the vertically polarized wave component is rotated by +45°, and further reflected by the total reflection mirror 6, after which the plane of polarization is It is further rotated by +45° by Faraday rotator 4. Therefore, when the light passes through the optical amplifier 2 from the opposite direction again, it becomes a horizontally polarized wave component, passes through the polarization beam splitter 1, and proceeds to the boat Y. That is, the input light of the vertically polarized component is also amplified once in both the vertical and horizontal polarizations in the optical amplifier 2, and is output with the plane of polarization rotated by 90 degrees.

このように、本実施例では、横偏波と1ijX、偏波は
独立の径路を双方向の形態で通るが、いずれも同じ強さ
の増幅を受けるので、光増幅装置全体としては、偏波面
依存性のない増幅特性を有する。また、いずれの偏波成
分に対しても、縦偏波としての増幅と横偏波としての増
幅との計2回の光増幅がなされるので、通常のように、
光増幅器を単体で用いる場合と比べると、大きな利得を
得ることができる。
In this way, in this embodiment, the horizontal polarization, 1ij Has independent amplification properties. Also, for any polarized wave component, optical amplification is performed twice: amplification as a vertically polarized wave and amplification as a horizontally polarized wave, so as usual,
Compared to using a single optical amplifier, a large gain can be obtained.

第2図は本発明の他の実施例の構成を示し、ここでは、
第1図の配置において、偏光ビームスプリッタ1とボー
トYとの間に172波長板8を付加して配置したもので
ある。ここで、第1図と同扛の箇所には同一符号を付す
。I72波長板8を用いることにより、入力光の偏波面
を保持しながら偏波面依存性のない光増幅特性を持たせ
ることかできる。この実施例においても、偏光ビームス
プリッタ1からの2つの出力光は、いずれも、412(
m波として1回、および横偏波として1回の計2回にわ
たって光増幅器2および3を通過して光増幅されるので
、通常のように、光増幅器を単体で用いる場合に比べて
大ぎな利得か得られる。
FIG. 2 shows the configuration of another embodiment of the present invention, in which:
In the arrangement shown in FIG. 1, a 172 wavelength plate 8 is additionally arranged between the polarizing beam splitter 1 and the boat Y. Here, the same parts as in FIG. 1 are given the same reference numerals. By using the I72 wavelength plate 8, it is possible to maintain the polarization plane of input light while providing optical amplification characteristics that are independent of the polarization plane. In this embodiment as well, both of the two output lights from the polarizing beam splitter 1 are 412 (
Since the light is amplified by passing through optical amplifiers 2 and 3 twice, once as an m-wave and once as a horizontally polarized wave, it is much larger than when using a single optical amplifier as usual. Gain is obtained.

[発明の効果] 以上説明したように、本発明によれば、入力光を、偏光
ビームスプリッタにより縦偏波と横偏波に分離して別々
の光路へ導入し、それら分離された光は、各々の光路に
おいて、縦偏波および横偏波として各1度ずつ光増幅器
を通って双方向に光増幅されるので、通常の光増幅器単
体での光増幅に比べると、高利得でかつ偏波面依存性の
ない光増幅特性が得られるとい利点がある。
[Effects of the Invention] As explained above, according to the present invention, input light is separated into vertically polarized waves and horizontally polarized waves by a polarizing beam splitter and introduced into separate optical paths, and the separated lights are In each optical path, the vertically polarized wave and the horizontally polarized wave pass through the optical amplifier once each and are bidirectionally amplified, so compared to normal optical amplification using a single optical amplifier, the gain is higher and the polarization plane is higher. The advantage is that optical amplification characteristics without dependence can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光増幅装置の一実施例を示す構成
図、 第2図は、本発明の別の実施例を示す構成図である。 1・・・偏光ビームスプリッタ、 2.3・・・光増幅器、 4.5・・・ファラデー回転子、 6.7・・・全反射ミラー
FIG. 1 is a block diagram showing one embodiment of an optical amplification device according to the present invention, and FIG. 2 is a block diagram showing another embodiment of the present invention. 1... Polarizing beam splitter, 2.3... Optical amplifier, 4.5... Faraday rotator, 6.7... Total reflection mirror

Claims (1)

【特許請求の範囲】 1)第1端において入力光を受けて、2つの互いに直交
した第2および第3端から縦偏波成分の光および横偏波
成分の光を分離して取り出す偏光ビームスプリッタと、 双方向に光増幅特性をもち、および前記第2端に結合さ
れて、入力される光を光増幅する第1光増幅器と、 前記第1光増幅器の出力端に結合された第1ファラデー
回転子と、 前記第1ファラデー回転子に結合された第1反射ミラー
と、 双方向に光増幅特性をもち、および前記第3端に結合さ
れて、入力される光を光増幅する第2光増幅器と、 前記第2光増幅器の出力端に結合された第2ファラデー
回転子と、 前記第2ファラデー回転子に結合された第2反射ミラー
と を具え、前記偏光ビームスプリッタの第4端より、前記
第1および第2光増幅器の各々からの光増幅出力が合成
された光増幅出力を取り出すようにしたことを特徴とす
る光増幅装置。
[Claims] 1) A polarized beam that receives input light at a first end and separates and extracts vertically polarized light and horizontally polarized light from two mutually orthogonal second and third ends. a splitter; a first optical amplifier having bidirectional optical amplification characteristics and coupled to the second end to optically amplify input light; a first optical amplifier coupled to the output end of the first optical amplifier; a Faraday rotator; a first reflecting mirror coupled to the first Faraday rotator; and a second reflecting mirror coupled to the third end and having optical amplification characteristics in both directions, and coupled to the third end to optically amplify input light. an optical amplifier; a second Faraday rotator coupled to an output end of the second optical amplifier; and a second reflective mirror coupled to the second Faraday rotator, the polarizing beam splitter having a second polarizing beam splitter. , an optical amplification device characterized in that an optical amplification output obtained by combining optical amplification outputs from each of the first and second optical amplifiers is extracted.
JP24438988A 1988-09-30 1988-09-30 Optical amplifier Expired - Lifetime JP2612912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24438988A JP2612912B2 (en) 1988-09-30 1988-09-30 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24438988A JP2612912B2 (en) 1988-09-30 1988-09-30 Optical amplifier

Publications (2)

Publication Number Publication Date
JPH0294586A true JPH0294586A (en) 1990-04-05
JP2612912B2 JP2612912B2 (en) 1997-05-21

Family

ID=17117945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24438988A Expired - Lifetime JP2612912B2 (en) 1988-09-30 1988-09-30 Optical amplifier

Country Status (1)

Country Link
JP (1) JP2612912B2 (en)

Also Published As

Publication number Publication date
JP2612912B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US5295016A (en) Polarization insensitive amplification device
JPH09189885A (en) Optical device
JPH10232417A (en) Loop phase conjugate mirror for unpolarized beam
JP2943436B2 (en) Semiconductor laser module
Zhu et al. A polarization insensitive semiconductor optical amplifier
JP2612904B2 (en) Optical amplifier
JPH0294586A (en) Optical amplifier
EP0634025A1 (en) Improvements to optical phase shifting
JP3317999B2 (en) Optical isolator
JP2612913B2 (en) Optical amplifier
US20020191290A1 (en) Integrated micro-optic architecture for combining and depolarizing plural polarized laser beams
JP2953189B2 (en) Optical coupler
JPH03241323A (en) Semiconductor laser amplifier
JP2989983B2 (en) Optical isolator
AU675424B2 (en) Improvements to optical phase shifting
JPH0425190A (en) Semiconductor laser amplifier provided with spare
JPS63157133A (en) Multiplexing circuit and separating circuit for optical pulse
JPH05241104A (en) Polarized light rotating mirror
JPH02278232A (en) Optical amplifier
JPS61112123A (en) Depolarizer
JP2001007450A (en) Optical amplifier module
JPH022532A (en) Optical amplifying module
JP5791094B2 (en) Optical amplifier
JPH02933A (en) Optical amplifier
JPH0293623A (en) Reflection type optical amplifier

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12