JPH0292822A - Novel composition compound having hollandite type structure of general formula (kx-yhy)ti8o16 - Google Patents

Novel composition compound having hollandite type structure of general formula (kx-yhy)ti8o16

Info

Publication number
JPH0292822A
JPH0292822A JP24510088A JP24510088A JPH0292822A JP H0292822 A JPH0292822 A JP H0292822A JP 24510088 A JP24510088 A JP 24510088A JP 24510088 A JP24510088 A JP 24510088A JP H0292822 A JPH0292822 A JP H0292822A
Authority
JP
Japan
Prior art keywords
general formula
potassium
tio2
compound
yhy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24510088A
Other languages
Japanese (ja)
Other versions
JPH0524087B2 (en
Inventor
Jun Watanabe
遵 渡辺
Masaru Komatsu
優 小松
Yoshinori Fujiki
藤木 良規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP24510088A priority Critical patent/JPH0292822A/en
Publication of JPH0292822A publication Critical patent/JPH0292822A/en
Publication of JPH0524087B2 publication Critical patent/JPH0524087B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To provide the subject compound having ion exchangeability, electronic conductivity and a hollandite type primary tunnel structure by reacting a specific powdery potassium titanium bronze with an acidic aqueous solution. CONSTITUTION:(a) TiO2 or a compound producing the TiO2 on heating is reacted with (b) a potassium compound producing K2O on heating is a K2O/TiO2 mole ratio of 1/7.9-13 between the TiO2 in the component (a) and the K2O is the component (b) at 950-1200 deg.C in a reducing atmosphere at atmospheric pressure or increased pressure to provide a powdery potassium titanium bronze (A) of formula I (x is 1.0-2.0). The provided component A is reacted with (B) an acidic aqueous solution (e.g., >=2M hydrochloric acid) at <=100 deg.C to provide the subject compound of formula II (x=1.0-1.3; 0<y<=0.7x) wherein K is ion- exchanged with H to give a H content of 0<H<=0.7x.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はイオン交換性及び電子伝導性を持つホーランダ
イト型の一次元トンネル構造を有する新組成化合物及び
その製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a new composition compound having a hollandite type one-dimensional tunnel structure having ion exchange properties and electron conductivity, and a method for producing the same.

従来技術 従来、例えばに、(Alx Tts−++ )016.
 L(Mg++zzT11−X/□)016(ただし、
x=1.0〜2゜Oを表わす)で示されるホーランダイ
ト型のトンネル構造を有し、トンネル骨格構造をなすT
iの1部を他の金属イオンで置換した化合物は数多く知
られている。
Prior Art Conventionally, for example, (Alx Tts-++)016.
L(Mg++zzT11-X/□)016 (However,
It has a hollandite-type tunnel structure represented by
Many compounds are known in which a part of i is replaced with another metal ion.

これらの化合物はそのトンネル中にはアルカリ金属イオ
ンやアルカリ土類金属イオンが含存されているものであ
った。
These compounds contained alkali metal ions and alkaline earth metal ions in their tunnels.

これらの構造体の化合物を製造するには、いずれも約t
ooo’c以上の高温下で製造されていた。しかもこれ
らは耐熱、断熱性に優れていて、それらの材料として好
適なものであった。
To prepare compounds of these structures, approximately t
It was manufactured at high temperatures over ooo'c. Moreover, these materials have excellent heat resistance and heat insulation properties, and are suitable as materials for such materials.

発明の目的 本発明は従来のホーランダイト型のトンネル構造を存す
る化合物とは異なるトンネル中に水素イオンを含有させ
た新組成のホーランダイト型の一次元トンネル構造を持
つ化合物で、従来のこの種で化合物とは異なるイオン交
換性、電子伝導性の特性を持つ化合物を提供するにある
Purpose of the Invention The present invention is a compound having a hollandite-type one-dimensional tunnel structure of a new composition in which hydrogen ions are contained in the tunnel, which is different from conventional compounds having a hollandite-type tunnel structure. The object of the present invention is to provide a compound having ion exchange properties and electron conductivity properties different from other compounds.

発明の構成 本発明者はさきに、一般式(KイTi++(1+a (
ただし、x =1.0〜2.0を表わす)で示される粉
末状のホーランダイト型カリウムチタンブロンズを合成
する方法を開発した(特願昭60−246509号)。
Structure of the Invention The present inventor first described the general formula (KiTi++(1+a (
However, we have developed a method for synthesizing a powdered hollandite-type potassium titanium bronze represented by x = 1.0 to 2.0 (Japanese Patent Application No. 246509/1983).

更に研究を重ねた結果、前記粉末状カリウムチタンブロ
ンズを塩酸等の酸性水溶液と反応させ、KをHでイオン
交換させ、H含有量を0<H≦0.7xとすると、トン
ネル中に水素イオンを含有する一般式(に++−yHy
)TIJz+ (ただし、x =1.0〜1.3.0<
y≦0.7xを表わす〕で示されるホーランダイト型構
造を有する新規化合物が100°C以下の低温で容易に
得られることを究明し得た。また、この化合物は従来の
ホーランダイト型構造を有する化合物とは異なるイオン
交換性、電子伝導性等の特性を有するものであることを
究明し得た。これらの知見に基づいて本発明を完成した
ものである。
As a result of further research, it was found that when the powdered potassium titanium bronze is reacted with an acidic aqueous solution such as hydrochloric acid, K is ion-exchanged with H, and when the H content is 0<H≦0.7x, hydrogen ions are created in the tunnel. The general formula containing (to++-yHy
) TIJz+ (where x = 1.0 to 1.3.0<
It has been found that a new compound having a hollandite structure represented by y≦0.7x can be easily obtained at a low temperature of 100°C or less. Furthermore, it was found that this compound has properties such as ion exchangeability and electronic conductivity that are different from conventional compounds having a hollandite structure. The present invention was completed based on these findings.

本発明は一般式(KX−?1Iy)Tifi016(X
、  yは前記と同し)で示されるホーランダイト型構
造を有する新規組成化合物にあり、その構造は第1図に
示すようなものである。一般式に示されるXの値は出発
物質のカリウムチタンブロンズに含有されるカリウム量
により決まる。結晶学的にはx=O〜2の範囲が許され
るが、出発物質の製造時に一部のカリウムが未反応で残
るため、通常得られるものはx=1.0〜1.3の値を
示す、yはHoとイオン交換したに゛の量を示しており
、O<y≦0.7xの範囲である。格子定数はx、  
yの変化により多少変わるが、a =10.16〜10
.19人、c =2.950〜2.970人の範囲に含
まれる。
The present invention has the general formula (KX-?1Iy)Tifi016(X
, y is the same as above), and the structure is as shown in FIG. The value of X shown in the general formula is determined by the amount of potassium contained in the potassium titanium bronze starting material. Crystallographically, a range of x = O ~ 2 is allowed, but since some potassium remains unreacted during the production of the starting material, the value of x = 1.0 ~ 1.3 is usually obtained. In the figure, y indicates the amount of Ni ion-exchanged with Ho, and is in the range of O<y≦0.7x. The lattice constant is x,
Although it changes somewhat depending on the change in y, a = 10.16 to 10
.. 19 people, included in the range of c = 2.950 to 2.970 people.

一般式中の8個のTiは(8−x)個とX個の割合で+
4価と+3価の状態にあり、これらは混合原子価の状態
を取る。カリウムは構造中の大口径のトンネル内に存在
するが、Hoは大口径及びルチル型の両トンネル中に存
在する。
The 8 Ti in the general formula are (8-x) and X in the ratio of +
It exists in the 4-valent and +3-valent states, and these have a mixed valence state. Potassium is present in the large diameter tunnels in the structure, while Ho is present in both the large diameter and rutile type tunnels.

この化合物はイオン交換性特にLi”に対する選択性が
優れた特性を有している。また電子伝導性(室温で約1
00Ω)を存する。
This compound has excellent ion exchange properties, particularly selectivity for Li''. It also has electronic conductivity (approximately 1
00Ω).

その製法は、例えば二酸化チタンまたは加熱により二酸
化チタンを生成する化合物と、加熱により酸化カリウム
を生成するカリウム化合物を、K、o/Tiotモル比
で1/7.9〜1/13の割合で混合し、これを常圧あ
るいは加圧の還元性雰囲気中で950イト型カリウムチ
タンブロンズを出発原料として用いる。
The manufacturing method involves mixing, for example, titanium dioxide or a compound that produces titanium dioxide when heated, and a potassium compound that produces potassium oxide when heated, at a K, o/Tiot molar ratio of 1/7.9 to 1/13. Then, 950-ite type potassium titanium bronze is used as a starting material in a reducing atmosphere at normal pressure or pressurized.

これを塩酸等の酸性水溶液と反応させ、KをHでイオン
交換し、Hの含有量をO<H≦0.7xの範囲とするこ
とによって製造し得られる。このイオと ン交換反応は出発物質酸性水溶液に浸し放置するか、あ
るいは出発物質をカラム中に入れ、酸性水ン容ン夜を通
すことにより行うことができる。これらの反応は室温〜
100°C未満で行うことができる。
It can be produced by reacting this with an acidic aqueous solution such as hydrochloric acid, ion-exchanging K with H, and adjusting the H content to a range of O<H≦0.7x. This ion exchange reaction can be carried out by immersing the starting material in an acidic aqueous solution and leaving it to stand, or by placing the starting material in a column and leaving it in acidic water overnight. These reactions occur at room temperature ~
It can be carried out below 100°C.

反応温度及び酸濃度は処理速度に影響する。酸濃度が高
く、また反応温度が高い程、処理速度を早めることがで
きるが、高濃度過ぎたり、高温過ぎると出発物質あるい
は目的生成物の溶解を起こすので、塩酸では2M以下1
反応温度は100″C以下であることが望ましい。
Reaction temperature and acid concentration affect processing speed. The higher the acid concentration and the higher the reaction temperature, the faster the processing speed, but if the concentration is too high or the temperature is too high, the starting material or target product will dissolve.
The reaction temperature is preferably 100''C or less.

実施例1゜ 炭酸カリウムと二酸化チタンを原料とし、K、0とTi
O□に換算してモル比が1対8で合成した平均粒径約5
ミクロンの粉末状カリウムチタンブロンズ(x’=11
.3)を出発物質とし、その約0.1グラムを濃度LM
の塩酸100 ミリリットルと共に樹脂性容器に入れ、
80°Cに保った湯浴上で加熱しに゛とHoのイオン交
換を行った。10日間反応させた後、溶液の一部を採り
原子吸光法により溶出したカリウムの量を定量した。沈
殿物については粉末X線回折法により相の同定を行った
。この結果、暗紫色の粉末状1[1)、 J6. tT
iJl &を得た。粉末状シリコンを内部標準にして粉
末X線回折法により得た格子定数は、a =10.17
6(2)人、c =2.961 (1)入であった。こ
の生成物のX線粉末回折図を第2図に示す。ガラス容器
の代わりに樹脂性容器を用いたのは、反応後の溶液中の
カリウムの定量を行うためガラス容器からのカリウムの
溶出を避けるためである。このような目的が無いならば
ガラス容器を用いて十分である。
Example 1゜ Using potassium carbonate and titanium dioxide as raw materials, K, 0 and Ti
The average particle size synthesized at a molar ratio of 1:8 in terms of O□ is approximately 5.
Micron powdered potassium titanium bronze (x'=11
.. 3) as a starting material and about 0.1 g of it at a concentration LM
into a resin container with 100 ml of hydrochloric acid,
The sample was heated on a hot water bath kept at 80°C to perform ion exchange between ゛ and Ho. After reacting for 10 days, a portion of the solution was taken and the amount of potassium eluted was determined by atomic absorption spectrometry. The phase of the precipitate was identified by powder X-ray diffraction. As a result, dark purple powder 1[1], J6. tT
Got iJl&. The lattice constant obtained by powder X-ray diffraction using powdered silicon as an internal standard is a = 10.17
There were 6 (2) people, c = 2.961 (1). The X-ray powder diffraction pattern of this product is shown in FIG. The reason why a resin container was used instead of a glass container was to avoid elution of potassium from the glass container in order to quantify potassium in the solution after the reaction. If there is no such purpose, it is sufficient to use a glass container.

実施例2゜ 実施例1と同し原料を用いに、0とTi(hのモル比に
換算して1対9で合成した平均粒径1ミクロンの粉末状
カリウムチタンブロンズ(xL:、1.2)を出発物質
に用い、その約0.1グラムを4度IMの塩酸100 
ミリリットルと共に樹脂性容器に入れ、80°Cの湯浴
上で加熱し、K゛とH゛のイオン交換を行った。7日間
反応させた後、溶液中のカリウムの定量と沈殿物の相の
同定を(実施例1)と同様に行った。この結果、暗紫色
の粉末状KO,suo、 7TieO+bを得た。
Example 2 Powdered potassium titanium bronze with an average particle size of 1 micron (xL:, 1. 2) was used as a starting material, and about 0.1 g of it was diluted with 100% IM of 4°C hydrochloric acid.
It was placed in a resin container along with milliliter and heated on a water bath at 80°C to perform ion exchange of K' and H'. After reacting for 7 days, the amount of potassium in the solution was determined and the phase of the precipitate was identified in the same manner as in Example 1. As a result, dark purple powdered KO, suo, 7TieO+b was obtained.

実施例3゜ 実施例1と同じ原料を用い、K、OとTi0zのモル比
にして1対10で合成した平均粒径1ミクロンのカリウ
ムチタンブロンズ(x!=i1.1)を出発物質とし、
その約0.1グラムをIM濃度の塩酸100 ミリリン
ドルと樹脂性容器に入れ、80’Cの湯浴上に7日間保
った。溶液中のカリウムと沈殿物の同定を上記の実施例
1と同様に行った。沈殿物は暗紫色粉末状のKo、 J
o、 tTiao+ hであった。格子定数はa = 
10.178(1)人、c =2.962 (2)人で
あった。
Example 3 Using the same raw materials as in Example 1, potassium titanium bronze (x!=i1.1) with an average particle size of 1 micron was synthesized with a molar ratio of K, O and Ti0z of 1:10 as a starting material. ,
Approximately 0.1 grams of it was placed in a resin container with 100 milliliters of IM hydrochloric acid and kept on a water bath at 80'C for 7 days. Identification of potassium in the solution and precipitate was performed in the same manner as in Example 1 above. The precipitate is a dark purple powder of Ko, J
o, tTiao+h. The lattice constant is a =
There were 10.178 (1) people, c = 2.962 (2) people.

実施例4 実施例1と同様な原料を用い、K、0とTi1tのモル
比に換算して1対9で合成した平均粒径1ミクロンのカ
リウムチタンブロンズ約1グラムをカラム状につめ、5
0°Cの湯浴上に保ち、2M1度の塩酸5リツトルを1
日約1リツトルの速度で流した。
Example 4 Using the same raw materials as in Example 1, about 1 gram of potassium titanium bronze with an average particle size of 1 micron synthesized at a molar ratio of K, 0 and Ti1t of 1:9 was packed in a column shape, and 5
Keep it on a water bath at 0°C and add 5 liters of 2M 1 degree hydrochloric acid to 1
It was poured at a rate of about 1 liter per day.

その後2リットルの藩留水を1日1りントルの速度で流
し試料を洗浄した。回収した試料の1部を溶解して原子
吸光法によりカリウムの定量を行った。またX線粉末回
折法により塩酸洗浄後の試料相の同定を行った。この結
果Ko、 Alto、 5TI8016の暗紫色粉末を
得た。
Thereafter, the sample was washed with 2 liters of feudal distilled water at a rate of 1 liter per day. A portion of the collected sample was dissolved and potassium was determined by atomic absorption spectrometry. In addition, the phase of the sample after washing with hydrochloric acid was identified using X-ray powder diffraction. As a result, dark purple powder of Ko, Alto, 5TI8016 was obtained.

実施例5゜ 実施例1と同じ原料を用い、K、0とTiO2のモル比
にして1対9で合成した粉末状カリウムチタンブロンズ
の約1グラムをカラム状に詰め、IMi11度の塩酸5
0リツトルを室温で流し、その後5りンた。得られた化
合物の組成はKo、7Ho、 4Tillo+ 6、格
子定数はa = 10.179(1)人、c =2.9
62 (])入であった。
Example 5 Using the same raw materials as in Example 1, about 1 gram of powdered potassium titanium bronze synthesized with a molar ratio of K, 0 and TiO2 of 1:9 was packed in a column, and hydrochloric acid with an IMi of 11 degrees was added.
0 liter was poured at room temperature, then 5 liters were poured. The composition of the obtained compound is Ko, 7Ho, 4Tillo+6, lattice constant is a = 10.179 (1) person, c = 2.9
It was 62 (]).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(Kx−yHy)TieO+aのホーランダイ
ト型−次元トンネル構造図 斜線部はチタンと酸素により形成される八面体のつなが
りを示しており、トンネル構造の骨格に相当する。 第2図はKO,、lI。、tTiJ+bの粉末X線回折
回生な回折線に添えた数字は反射の指数である。 矢印を添えた回折線は内部標準に使用したシリコンから
のものである。 手 続 補 正 書(方式) 事件の表示 昭和63年特許願第245100号 補正をする者 事件との関係
FIG. 1 is a hollandite-type-dimensional tunnel structure diagram of (Kx-yHy)TieO+a. The shaded area shows the connection of octahedrons formed by titanium and oxygen, and corresponds to the skeleton of the tunnel structure. Figure 2 shows KO,,lI. , tTiJ+b The number attached to the powder X-ray diffraction diffraction line is the index of reflection. Diffraction lines with arrows are from silicon used as an internal standard. Procedural amendment (formality) Display of the case Relationship with the case of the person making the amendment to Patent Application No. 245100 of 1988

Claims (1)

【特許請求の範囲】 1)一般式(K_x_−_yH_y)Ti_8O_1_
6(ただし、x=1.0〜1.3、0<y≦0.7xを
表わす)で示されるホーランダイト型構造を有する新組
成化合物。2)一般式(K_xTi_■O_1_6) (ただし、x=1.0〜2.0を表わす)で示される粉
末状カリウムチタンブロンズを酸性水溶液と反応させて
KをHでイオン交換し、H含有量を0<H≦0.7xと
することを特徴とする一般式(K_x_−_yH_y)
Ti_8O_1_6(ただし、x=1.0〜1.3、0
<y≦0.7xを表わす)で示されるホーランダイト型
構造を有する新組成化合物の製造法。
[Claims] 1) General formula (K_x_-_yH_y)Ti_8O_1_
6 (however, x=1.0 to 1.3, 0<y≦0.7x) having a hollandite structure. 2) Powdered potassium titanium bronze represented by the general formula (K_xTi_■O_1_6) (where x represents 1.0 to 2.0) is reacted with an acidic aqueous solution to ion-exchange K with H to reduce the H content. A general formula (K_x_-_yH_y) characterized in that 0<H≦0.7x
Ti_8O_1_6 (where x=1.0 to 1.3, 0
<y≦0.7x) A method for producing a new compound having a hollandite structure.
JP24510088A 1988-09-29 1988-09-29 Novel composition compound having hollandite type structure of general formula (kx-yhy)ti8o16 Granted JPH0292822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24510088A JPH0292822A (en) 1988-09-29 1988-09-29 Novel composition compound having hollandite type structure of general formula (kx-yhy)ti8o16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24510088A JPH0292822A (en) 1988-09-29 1988-09-29 Novel composition compound having hollandite type structure of general formula (kx-yhy)ti8o16

Publications (2)

Publication Number Publication Date
JPH0292822A true JPH0292822A (en) 1990-04-03
JPH0524087B2 JPH0524087B2 (en) 1993-04-06

Family

ID=17128612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24510088A Granted JPH0292822A (en) 1988-09-29 1988-09-29 Novel composition compound having hollandite type structure of general formula (kx-yhy)ti8o16

Country Status (1)

Country Link
JP (1) JPH0292822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140863A (en) * 2008-12-15 2010-06-24 Titan Kogyo Kk Titanium oxide compound for electrode, and lithium secondary battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140863A (en) * 2008-12-15 2010-06-24 Titan Kogyo Kk Titanium oxide compound for electrode, and lithium secondary battery using the same

Also Published As

Publication number Publication date
JPH0524087B2 (en) 1993-04-06

Similar Documents

Publication Publication Date Title
Sasaki et al. Layered hydrous titanium dioxide: potassium ion exchange and structural characterization
Smith Chemistry of tin
Feist et al. The soft chemical synthesis of TiO2 (B) from layered titanates
Morss et al. Preparation of cubic chloro complex compounds of trivalent metals: Cs2NaMCl6
Li et al. Reactivity of Polyoxoniobates in Acidic Solution: Controllable Assembly and Disassembly Based on Niobium‐Substituted Germanotungstates
Sasaki et al. Rubidium (1+) and cesium (1+) incorporation mechanism and hydrate structures of layered hydrous titanium dioxide
Rivenet et al. One-dimensional inorganic arrangement in the bismuth oxalate hydroxide Bi (C2O4) OH
Payne et al. Heterometallic condensed cluster compounds: Pr4I5Z (Z= Co, Ru, Os) and lanthanum ruthenium iodide (La4I5Ru). Synthesis, structure, and bonding
JPH0292822A (en) Novel composition compound having hollandite type structure of general formula (kx-yhy)ti8o16
Tsuji et al. Predictive evaluation of ion-exchange selectivity on a titanium antimonate cation exchanger
Jantsky et al. Tuning of Water and Hydroxide Content of Intercalated Ruddlesden–Popper-type Oxides in the PrSr3Co1. 5Fe1. 5O10− δ System
Kim et al. The crystal structure of a bromine sorption complex of dehydrated fully silver (1+) ion-exchanged zeolite A
JP2000016814A (en) Hydrous bismuth compound having excellent inorganic anion-exchanging property and its production
Myasoedov et al. Protactinium
Mori On Some Dark-colored Chlorocuprates (I, II) and Related Compounds. III. X-Ray Study and Reflectance Measurements
Donaldson et al. 321. Basic tin (II) chloride
Clearfield The crystal structure of ammonium di-μ-hydroxo-di [triscarbonato-zirconate (IV)] tetrahydrate
Crespi et al. Preparation and thermal decomposition of copper (II), zinc (II) and cadmium (II) chelates with 8-hydroxyquinoline
JPH03150214A (en) Production of crystalline layer phosphate compound
Benard-Rocherulle et al. Structure Determination of Uranium Halogenide Phosphates UXPO4· 2H2O (X= Cl, Br) from Powder Diffraction Data
JPH0327390A (en) Manufacture of high purity copper alkoxido
Zhang et al. Two novel titanium halide phases: KTi4Cl11 and CsTi4. 3I11
JP2590431B2 (en) Method for producing Bi5O7 (NO3)
Rabideau et al. Alpha-particle oxidation and reduction in aqueous plutonium solutions
Narita et al. The formation and thermal decomposition of hydrous lead (II) oxide prepared by the alkoxide method.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term