JPH0291998A - Radiowave-absorbing body - Google Patents

Radiowave-absorbing body

Info

Publication number
JPH0291998A
JPH0291998A JP24523688A JP24523688A JPH0291998A JP H0291998 A JPH0291998 A JP H0291998A JP 24523688 A JP24523688 A JP 24523688A JP 24523688 A JP24523688 A JP 24523688A JP H0291998 A JPH0291998 A JP H0291998A
Authority
JP
Japan
Prior art keywords
radio wave
radiowave
fibers
conductivity
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24523688A
Other languages
Japanese (ja)
Inventor
Toshio Kudo
敏夫 工藤
Toshio Kita
利夫 北
Yuichi Hayashi
祐一 林
Yutaka Ouchi
裕 大内
Teruaki Kawanaka
川中 輝明
Yutaka Nakamura
豊 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP24523688A priority Critical patent/JPH0291998A/en
Publication of JPH0291998A publication Critical patent/JPH0291998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To obtain a radiowave-absorbing body having excellent characteristics by forming a plurality of tapered protruding ridges or projections on one surface of a mat shaped fiber assembly. CONSTITUTION:In a radiowave absorbing body, polar polymer of nylon and the like is coated with carbon. The carbon and polyvinyl chloride are dissolved and dispersed in toluene. The solution is splayed and applied, and the carbon coating is provided. Entangled fibers are bonded with a bonding agent. A mat shaped fiber assembly incorporates at least two fibers having at least two kinds of thicknesses, e.g., 0.1mm phiand 1mmphi. The kinds of the thicknesses are increased for radiowave absorption in a broad range. The thickness of the carbon coating is 10-30mum. Tapered protruding ridges or projections are provided on one surface of the met so that the tips are sharp. The projections are directed toward the radiowave input direction (a). At this time, it is considered that the conductivity is changed apparently in the thickness direction in the absorbing body. The conductivity is low at the incident surface. The conductivity becomes higher toward the inner part. Since the conductivity at the incident surface is low, the difference between said conductivity and that of air is small. The amount of the radiowave which is reflected from the incident surface is decreased, and the excellent radiowave absorbing characteristics can be achieved.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野1 本発明は、電波(特にマイクロ波、ミリ波、サブミリ波
帯)を吸収する電波吸収体に関するものである。 [従来技術] 従来、上記波長帯で使用される電波吸収体としては、馬
の尻尾の毛と椰子の繊維を絡ませて接着剤で固定し、こ
れにカーボンを被覆したマット状のものが知られている
。椰子の繊維を馬の尻尾の毛に混ぜるのは、馬の毛は供
給量が少なく入手困難でそれを補充するのに椰子の繊維
が最適であり、また電波吸収特性を向上きせるために、
空間部分を多くするのに都合が良いからである。 この種の繊維をランダムに集合きせた電波吸収体は、例
えば送信アンテナとしてパラボラアンテナの放物面反射
鏡の側面に取り付けて、隣接のパラボラアンテナとの干
渉を防止するために使用されている。この場合にはアン
テナによって一方向に放射される電波の他に、回折によ
って放物面反射器の後側に回り込む電波があるが、これ
は電波エネルギー損失や他の電波と干渉し合う原因にな
るので、これを防ぐためにマット状の電波吸収体によっ
て回折波を吸収する。 [発明が解決しようとする課題] ところで、馬の尻尾の毛及び椰子の繊維は天然のもので
あるから、品質の同じものを揃えるのが困難であり、そ
の供給量から入手困難である。 また、馬の尻尾の毛及び椰子の繊維は、毛や繊維の太ざ
には多少の違いはあるにせよ巨視的にhた場合はぼ一種
類しかなく、両者からなる電波吸収体を構成する繊維は
高々両者の2種類だけである。−船釣に、繊維の太ざの
種類に限定があると電波吸収帯域も狭くなる。従って、
広い電波吸収帯域幅を得ようとするなら多種類の太ざの
繊維からなることが望ましい。 ざらに、馬の尻尾の毛及び椰子の繊維からなる従来の電
波吸収体、とりわけ椰子の繊維は炭化水素よりなるもの
であるから、その表面にカーボンが付着し難いという特
性を有しており、それがためこれら毛及び繊維には均一
な厚ざのカーボン被覆を形成し難い。しかして、これら
毛及び繊維のカーボン被覆の厚ざにムラがあると、極超
短波などの所定の波長帯が全帯域にわたって−様なレベ
ルで吸収されないので電波吸収体としては好ましいもの
ではない。 上記のような実情から、本発明者らはマット状の電波吸
収体では、電波吸収特性の向上を計るには、種々の太ざ
の繊維からなること、繊維の表面に均一なカーボン被覆
が形成されていることなどが挙げられることに着目した
。、ざらにより良好な電波吸収特性を得るには、電波吸
収体を、電波の入射面において反射波を生じさせない構
成とする必要があることを見出した。 本発明の目的は、−本の繊維の太ざが均一であり、多種
の太ざの繊維を有し、該繊維に一定厚ざのカーボン薄膜
を形成すると共に、反射波を生じさせないように構成し
た電波吸収体を提供することにある。 [課題を解決するための手段] 前記目的を達成するために、本発明の電波吸収体は、カ
ーボンで被覆され、少なくとも2種類の太さの極性ポリ
マーからなる繊維を互いに絡ませたマット状繊維集合体
からなる電波吸収体てあ−)て、該マット状繊維集合体
の一面には先細りの凸条又は凸起が複数形成されている
ことを特徴とするものである。
[Industrial Application Field 1] The present invention relates to a radio wave absorber that absorbs radio waves (particularly microwave, millimeter wave, and submillimeter wave bands). [Prior Art] Conventionally, as a radio wave absorber used in the above wavelength range, a mat-like material in which horse tail hair and palm fibers are intertwined and fixed with adhesive, and then coated with carbon is known. ing. The reason why coconut fiber is mixed with the horse's tail hair is that horse hair is in short supply and difficult to obtain, so coconut fiber is the best way to replenish that supply, and to improve the radio wave absorption properties.
This is because it is convenient for increasing the space area. A radio wave absorber made of randomly assembled fibers of this type is used, for example, as a transmitting antenna by attaching it to the side surface of a parabolic reflector of a parabolic antenna to prevent interference with an adjacent parabolic antenna. In this case, in addition to the radio waves emitted by the antenna in one direction, there are also radio waves that wrap around behind the parabolic reflector due to diffraction, which causes radio energy loss and interference with other radio waves. Therefore, to prevent this, the diffracted waves are absorbed by a mat-like radio wave absorber. [Problems to be Solved by the Invention] By the way, since horse tail hair and palm fiber are natural, it is difficult to obtain them with the same quality, and it is difficult to obtain them due to the amount of supply. Furthermore, although there may be some differences in the thickness of the hair and fibers of the horse's tail, when viewed macroscopically, there is only one type of hair from a horse's tail and the fibers of a palm tree, and both constitute a radio wave absorber. There are at most only two types of fibers. - When fishing on a boat, if there are restrictions on the type of fiber thickness, the radio wave absorption band will also become narrower. Therefore,
In order to obtain a wide radio wave absorption bandwidth, it is desirable to use fibers of various thicknesses. In general, conventional radio wave absorbers made of horse tail hair and palm fibers, especially palm fibers, are made of hydrocarbons, so they have the property of being difficult for carbon to adhere to their surfaces. Therefore, it is difficult to form a carbon coating of uniform thickness on these hairs and fibers. However, if the thickness of the carbon coating on these hairs and fibers is uneven, it is not preferable as a radio wave absorber because a predetermined wavelength band such as extremely high frequency waves is not absorbed at a similar level over the entire band. Based on the above-mentioned circumstances, the present inventors believe that in order to improve the radio wave absorption characteristics of a mat-like radio wave absorber, it is necessary to make it composed of fibers of various thicknesses and to form a uniform carbon coating on the surface of the fibers. We focused on the following: It has been found that in order to obtain better radio wave absorption characteristics due to roughness, the radio wave absorber needs to have a structure that does not produce reflected waves on the radio wave incident surface. The object of the present invention is to - have fibers of uniform thickness, have fibers of various thicknesses, form a carbon thin film of a constant thickness on the fibers, and have a structure so as not to generate reflected waves. The purpose of the present invention is to provide a radio wave absorber with improved characteristics. [Means for Solving the Problems] In order to achieve the above object, the radio wave absorber of the present invention is a mat-like fiber assembly in which fibers made of polar polymers of at least two different thicknesses are entangled with each other and coated with carbon. The radio wave absorber is characterized in that a plurality of tapered protrusions or protrusions are formed on one surface of the mat-like fiber aggregate.

【発明の構成] 本発明の電波吸収体は、極性ポリマーからなり且つカー
ボン被覆を有する繊維を互いに絡ませたマット状のもの
で、従来のように馬の尻尾の毛や椰子の繊維等の天然繊
維ではなく人工繊維を使用しているので、各々の繊維は
それぞれ均一な太きを有し且つ種々の太ざの繊維が容易
に得られ、しかも同一の品質の繊維を使用することが可
能なためカーボン被覆の厚ざも均一にすることができる
。 本発明で使用される極性ポリマーとしては特に制限はな
く、ポリ塩化ビニリデン、ナイロン、ポリエステル、ア
クリルなどが例示される。またカーボン被覆は、カーボ
ン及びバインダーとしてのポリ塩化ビニル、ポリ酢酸ビ
ニルなどの接着剤を適当な溶媒、例えばトルエン、キシ
レンなどの炭化水素やメタノール、エタノールなどのア
ルコールに溶解又は分散させたものをスプレー塗布など
の手段にて塗布することによって行われる。 なお、絡ませた繊維はそのままの状態ではほぐれてしま
う可能性があるので、例えば接着剤等で解離しないよう
結合しておくことが望ましい。 また、マット状繊維集合体は少なくとも2種類の太ざの
繊維で構成きれていれば良く、例えば最小太ざが0.1
rnrRφの繊維の含有率が10〜90重量%、最大太
ざが】、O#φの繊維の含有率が90〜10重量%の2
種類の繊維及びその含有率で構成することができる。言
うまでもなく、広帯域の電波を吸収させようとする場合
には、繊維の太ざの種類を増加せしめてマット状繊維集
合体を構成すれば良い。なおり−ボン被覆の厚ざは通常
5〜50nmz好ましくは10〜30μmとすれば良い
。 一方、広帯域に優れた電波吸収特性を得るためには、電
波吸収体に入射する電波を、電波吸収体の入射面におい
て反射させないようにする必要がある・。ところが、電
波入射面で電波の反射を無くすることは事実上不可能で
あり、どうしても吸収体へ入射せんとする電波の一部は
入射面において反射される。これは、電波が空間を伝条
する場合、急激に導電度が変化する点に遭遇すると、電
波はその点で反射され易くなるという性質を有している
からである。而して吸収体の電波入射面が平坦であると
・、反射された一部の電波は吸収きれず電波吸収特性は
低下する。 そこで本発明においては、マット状繊維集合体の一面に
先細りの凸条十たは凸起を複数設け、該凸面を電波入射
方向に向けて配置せしめることにより電波吸収特性を向
上させるものである。すなわら、一つの凸条又は凸起の
勾配面で仮に入射すべと、電波の一部が反射されtこと
しても、勾配面であるがゆえ反対方向に反射はされず、
他の凸条又は凸起に再び電波は入射することになる。従
って最初に吸収されずに反射した一部の電波も、凸条又
は凸起の勾配面で反射を繰返すうちにやがて吸収される
ため、良好な電波吸収特性を得ることかでざる。なお吸
収体の電波入射面は平坦な部分が存在しないことが好ま
しいので、凸条又は凸起は先細りで且つ先端が鋭利に設
けられることが望ましい、。 本発明の電波吸収体の厚ざは任意であるが、通常厚みは
最下限吸収周波数の波長の1/2とされる。例えば、3
 GHz以上の電波を吸収させる場合は、その波長は1
00mIRであるので、凸条又は凸起の頂点部分の厚と
を50門とすれば良い。 また、凸条又は凸起を先端鋭利な先細り状とすると、見
掛は上吸収体はその厚ざ方向に導電度が変化していると
考えることができる。すなわち電波入射面の導電度が低
く、内部程導電度が高くなっていると言える。電波は前
述した通り導電度に急激な変化がある点において反射さ
れるが、かかる構成とすれば、入射面の導電度が低いた
め空気との導電度の差も小きく、従って電波が吸収体の
電波入射面において反射される量が少なくなり、良好な
電波吸収特性が達成されるものである。 [実施例] 以下、本発明の電波吸収体を実施例に基づいて具体的に
説明する。 汰」r例」− 第1図は本発明の電波吸収体の1ブロツクの外観を示す
。電波吸収体は各種火きの繊維Fかランダムに絡みあっ
たマット状繊維集合体からなり、繊維Fはほぐれないよ
うに接着剤による結合部1にて互に結合きれ、且つカー
ボンで被覆されている。本実施例では、繊維Fは0.L
mmφ、0.15mmφ、0 、2 mmφ、0 、2
5 mmφ、0 、3 mmφ、0 、4 nrmφ、
0 、7 mmφ、1 、0 mrnφの8種類のもノ
ヲ用い、樅×横= 300 rrrm X 300 a
m d)試料ヲ作成しtこ。なお繊維Fの密度、ずなわ
りマット状繊維集合体の比重は0.05g/ciの一定
値とし、電波入射側に50mm毎に高さ30 mmの先
端鋭利な略楔形凸条11を複数設け、凸条11頂部から
底面までの厚ざを50mmとした。 ?!r繊維Fは平均25朋厚のカーボン被覆を有し、従
って電波吸収体としては一定の抵抗値を有する導電性に
なっている。例えば本実施例で作成した電波吸収体は、
中央部において50 mm間の抵抗をテスターで測定し
た時0.2〜0.4k(2に設定されている。 かかる電波吸収体は人工繊維で構成されているため繊維
の一本一本がそれぞれ均一な太さで、繊維が極性を有す
るポリマーであるためカーボンも付着し易く、カーボン
の被覆厚ざも一様である。 従って、電波吸収も目的の波長帯域(特に極超短波)に
わたって一定のレベルで行なわれる。 次に、第1図に示した電波吸収体の製造方法を述べる。 基材となる極性ポリマーよりなる繊維として各太さが、
■0.1繭φ、■0.15mrIIφ、■0.2tnm
φ、■0 、25 mmφ、■0 、3 nmφ、■0
 、4 mmφ、■0 、7 mtnφ、■1.0囚φ
の繊維を用意する。これら各種繊維を、05重量%、0
10重量%、015重量%、015重量%、015重量
%、015重量%、010重量%、015重量%になる
ように絡ませ、電波吸収体の比重を0.05g/Cri
として、樅×横×厚ざ= 300 mtnX 300 
men X 50 amのマット状繊維集合体を作製し
た後、公知の手段で、このマット状繊維集合体の一面に
50m毎に深き3051I11の略楔形溝を設ける。し
かる後、該マット状体に塩化ビニリデン系バインダーか
らなる接着剤をスプレーで塗布して各繊維を接着・固定
し、しかる後希釈i々とじてのトルエンとポリ塩化ビニ
ルのバインダー人り力一ボン塗料を重量比で1:2に溶
解して製造したカーボン塗料をスプレー塗布して乾燥す
ることにより、第1図の電波吸収体を製造した。 かくして製造した電波吸収体を、第3図に示すような測
定系にて電波吸収特性を評価した。図において、供試電
波吸収体5の裏面(繊維密度が密の面)には金属板4が
敷設され、供試電波吸収体5の表面(繊維密度が租の面
)に向けてホーンアンテナ2.2°が配置きれている。 ここでホーンアンテナ2は送信T側、ホーンアンテナ2
゛は受信R側とされている。なお3はホーンアンテナ2
゛が受信した電波を検出する検波器である。かかる構成
で、ホーンアンテナ2から供試電波吸収体5に向けて発
した電波が、金属板4に反射してホーンアンテナ2゛へ
戻ってくる度合、すなわち反射)減衰量を2.8〜4.
4GIIzの周波数帯において調査した。 裏見五Z 前記実施例と同様に8種類の繊維を同様の重量比で絡ま
せ、樅×横×厚ざ=300朧X300纏×50#、比重
が0.05g/cfflのマット状繊維集合体を作製し
た後、公知の手段で、このマット状繊維集合体の一面に
50 mm毎に深き30 mmの略楔形溝を、樅・接方
向に設け、同様の手段でカーボンをスプレー塗布し、第
2図に示すようなピラミッド型の凸起12を有する電波
吸収体を製造した。かくして製造した電波吸収体を第3
図に示す測定系で、前記実施例1と同様にして電波の反
射減衰量を2.8〜4 、4 GHzの周波数帯におい
て調査した。 止笠勇 上記実施例と同種の各種繊維を同比率で絡ませ、比重が
O−05g / ciの一定繊維密度として、厚き50
m++、tu X n = 300 mm X 300
 mmの試料を作成した。なお繊維には前記実施例と同
様にしてカーボン被覆が施され、試料の中央部において
50間間の抵抗をテスターで測定した時2〜4にΩに設
定した。 かくして製造した供試電波吸収体を、上記と同様に第3
図に示す測定系で2.8〜4 、4 G)1zの周波数
帯において反射減衰量を調査した。 第4図及び第5図は上記実施例1.2及び比較例にて製
作した試料の電波吸収特性をそれぞれ示している。この
図からも明らかなように、いずれの周波数の電波も反射
減衰量は20dB以上であり、極めて良好な電波吸収体
であることが確認された。また比較例と対比して明らか
なように、先細りの凸条又は凸起を設けた本発明品は、
電波入射面が平坦な比較例品に比べても優れた電波吸収
特性を有することが確認された。。 なお、図示はしていないが、4.4GIIz以上の周波
数帯においては、本実施測量1,2及び比較例品共優れ
た電波吸収特性を有していた(比較例品の方が劣るが双
方共20dB以上の反射減衰量であった)。従って本発
明品は、最下限吸収周波数(吸収体の厚ざが50m+で
あるので3 GHz)付近の低周波帯においても良好な
電波吸収特性を示し、比較例品に比べ広帯域に優れた電
波吸収特性を有する電波吸収体であることが明らかとな
った。 [効果] 以上説明しt:本発明の電波吸収体によれば、極性ポリ
マーからなる人工繊維から構成されているので、各繊維
自体の太ざが一定で、各種火きの繊維も容易に得られ、
均一な品質の繊維を使用することができると共にカーボ
ンも付着し易く、厚さの−様なカーボン被膜を形成する
ことか容易であるので、優れた電波吸収性を有する電波
吸収体か実現される。 また本発明の電波吸収体は、その−面に凸条又は凸起を
形成しており、該凸面を電波入射方向に向けて使用すれ
ば、見掛は上吸収体の電波入射面の導電度が低くなって
いるため電波が入射面で反射される量が元々少なく、ま
た一つの凸条又は凸起で反射された電波も他の凸条又は
凸起によりやがて吸収されるため、極めて良好な電波吸
収特性を達成することが可能となる。
Structure of the Invention The radio wave absorber of the present invention is a mat-like material made of polar polymer and carbon-coated fibers intertwined with each other. Because we use artificial fibers instead of artificial fibers, each fiber has a uniform thickness, and fibers of various thicknesses can be easily obtained, and fibers of the same quality can be used. The thickness of the carbon coating can also be made uniform. The polar polymer used in the present invention is not particularly limited, and examples include polyvinylidene chloride, nylon, polyester, and acrylic. In addition, carbon coating is done by spraying carbon and an adhesive such as polyvinyl chloride or polyvinyl acetate as a binder dissolved or dispersed in an appropriate solvent, such as a hydrocarbon such as toluene or xylene, or an alcohol such as methanol or ethanol. This is done by applying by means such as coating. Note that the entangled fibers may unravel if left as they are, so it is desirable to bond them with an adhesive or the like so that they do not come apart. Further, the mat-like fiber aggregate only needs to be composed of fibers with at least two types of thickness, for example, the minimum thickness is 0.1.
rnrRφ fiber content is 10 to 90% by weight, maximum width], O#φ fiber content is 90 to 10% by weight2
It can be composed of different types of fibers and their content. Needless to say, if broadband radio waves are to be absorbed, the mat-like fiber aggregate may be constructed by increasing the types of fiber thicknesses. The thickness of the Naori-Bon coating is usually 5 to 50 nm, preferably 10 to 30 μm. On the other hand, in order to obtain excellent radio wave absorption characteristics over a wide band, it is necessary to prevent the radio waves incident on the radio wave absorber from being reflected at the incident surface of the radio wave absorber. However, it is virtually impossible to eliminate the reflection of radio waves at the radio wave incidence surface, and a portion of the radio waves that are destined to be incident on the absorber are reflected at the incidence surface. This is because when radio waves propagate through space, if they encounter a point where the conductivity suddenly changes, they tend to be reflected at that point. If the radio wave incident surface of the absorber is flat, some of the reflected radio waves cannot be completely absorbed and the radio wave absorption characteristics deteriorate. Therefore, in the present invention, a plurality of tapered protrusions or protrusions are provided on one surface of the mat-like fiber aggregate, and the radio wave absorption characteristics are improved by arranging the protrusions toward the radio wave incident direction. In other words, even if a part of the radio wave were to be reflected by a sloped surface of one protrusion or protrusion, it would not be reflected in the opposite direction because it is a sloped surface.
The radio waves will be incident on other protrusions or protrusions again. Therefore, some of the radio waves that are initially reflected without being absorbed are eventually absorbed as they are repeatedly reflected on the sloped surfaces of the protrusions or protrusions, so that it is possible to obtain good radio wave absorption characteristics. Note that since it is preferable that the radio wave incident surface of the absorber does not have a flat portion, it is desirable that the protrusions or protrusions are tapered and provided with sharp tips. Although the thickness of the radio wave absorber of the present invention is arbitrary, the thickness is usually set to 1/2 of the wavelength of the lowest absorption frequency. For example, 3
When absorbing radio waves of GHz or higher, the wavelength is 1
Since the IR is 00 mIR, the thickness of the apex portion of the protrusion or protrusion may be set to 50 mm. Further, if the protrusions or protrusions are tapered with sharp tips, it can be considered that the conductivity of the upper absorbent body changes in the thickness direction. In other words, it can be said that the conductivity of the radio wave incident surface is low, and the conductivity increases toward the inside. As mentioned above, radio waves are reflected at points where there is a sudden change in conductivity, but with such a configuration, the conductivity of the incident surface is low, so the difference in conductivity with the air is small, and therefore the radio waves are reflected at points where there is a sudden change in conductivity. The amount reflected at the radio wave incident surface is reduced, and good radio wave absorption characteristics are achieved. [Example] Hereinafter, the radio wave absorber of the present invention will be specifically described based on Examples. Figure 1 shows the appearance of one block of the radio wave absorber of the present invention. The radio wave absorber is made of various types of fibers F or mat-like fiber aggregates intertwined randomly, and the fibers F are bonded to each other at bonding parts 1 with adhesive so that they do not come undone, and are coated with carbon. There is. In this example, the fiber F is 0. L
mmφ, 0.15mmφ, 0, 2 mmφ, 0, 2
5 mmφ, 0, 3 mmφ, 0, 4 nrmφ,
Using 8 types of wood of 0, 7 mmφ, 1,0 mrnφ, fir x width = 300 rrrm x 300 a
m d) Create a sample. Note that the density of the fibers F and the specific gravity of the zigzag mat-like fiber aggregate were set to a constant value of 0.05 g/ci, and a plurality of approximately wedge-shaped protrusions 11 with sharp tips of 30 mm in height were provided every 50 mm on the radio wave incident side. The thickness from the top of the ridge 11 to the bottom was 50 mm. ? ! The r-fiber F has a carbon coating with an average thickness of 25 mm, and therefore is conductive with a constant resistance value as a radio wave absorber. For example, the radio wave absorber created in this example is
When the resistance across 50 mm at the center is measured using a tester, it is set at 0.2 to 0.4 k (2). Since such radio wave absorbers are made of artificial fibers, each fiber The thickness of the fibers is uniform, and since the fibers are polar polymers, carbon easily adheres to them, and the thickness of the carbon coating is also uniform.Therefore, radio wave absorption remains at a constant level over the target wavelength range (especially ultrashort waves). Next, a method for manufacturing the radio wave absorber shown in Fig. 1 will be described.The thickness of each fiber made of a polar polymer as a base material is
■0.1 cocoonφ, ■0.15mrIIφ, ■0.2tnm
φ, ■0, 25 mmφ, ■0, 3 nmφ, ■0
, 4 mmφ, ■0, 7 mtnφ, ■1.0 prisonφ
Prepare fibers. These various fibers were added at 0.5% by weight, 0.
10% by weight, 015% by weight, 015% by weight, 015% by weight, 015% by weight, 010% by weight, 015% by weight.
As, fir x width x thickness = 300 mtnX 300
After producing a mat-like fiber aggregate of men x 50 am, substantially wedge-shaped grooves with a depth of 3051I11 are provided on one side of the mat-like fiber aggregate every 50 m by a known method. After that, an adhesive made of a vinylidene chloride binder is sprayed onto the mat to bond and fix each fiber, and then diluted with a binder of toluene and polyvinyl chloride. The radio wave absorber shown in FIG. 1 was manufactured by spraying and drying a carbon paint prepared by dissolving the paint at a weight ratio of 1:2. The radio wave absorption characteristics of the radio wave absorber thus manufactured were evaluated using a measurement system as shown in FIG. In the figure, a metal plate 4 is laid on the back surface (the surface with a dense fiber density) of the radio wave absorber 5 under test, and a horn antenna 2 is placed toward the front surface (the surface with a low fiber density) of the radio wave absorber 5 under test. .2° is placed perfectly. Here, the horn antenna 2 is on the transmitting T side,
゛ is considered to be the receiving R side. Note that 3 is horn antenna 2
゛ is a detector that detects the received radio waves. With this configuration, the degree to which the radio waves emitted from the horn antenna 2 toward the test radio wave absorber 5 are reflected by the metal plate 4 and returned to the horn antenna 2', that is, the amount of attenuation (reflection), is 2.8 to 4. ..
The investigation was conducted in the 4GIIz frequency band. Uramigo Z As in the previous example, 8 types of fibers are entwined in the same weight ratio to create a mat-like fiber aggregate with fir x width x thickness = 300 oboro x 300 tai x 50 #, and a specific gravity of 0.05 g/cffl. After producing the mat fiber aggregate, approximately wedge-shaped grooves with a depth of 30 mm were formed at intervals of 50 mm on one side of the mat fiber aggregate in the tangential direction of the fir tree, using known means, and carbon was spray-coated using the same method. A radio wave absorber having pyramid-shaped protrusions 12 as shown in FIG. 2 was manufactured. The radio wave absorber produced in this way was
Using the measurement system shown in the figure, the return loss of radio waves was investigated in the frequency band of 2.8 to 4.4 GHz in the same manner as in Example 1. Isamu Shikasa Various fibers of the same type as in the above example were intertwined in the same ratio, and the specific gravity was set to a constant fiber density of O-05g/ci, and a thickness of 50% was obtained.
m++, tu X n = 300 mm X 300
A sample of mm was prepared. The fibers were coated with carbon in the same manner as in the previous example, and the resistance was set at 2 to 4 Ω when measured with a tester for 50 minutes at the center of the sample. The test radio wave absorber manufactured in this way was subjected to the third test in the same manner as above.
The return loss was investigated in the frequency band of 2.8 to 4.4G)1z using the measurement system shown in the figure. FIGS. 4 and 5 show the radio wave absorption characteristics of the samples produced in Example 1.2 and Comparative Example, respectively. As is clear from this figure, the return loss of radio waves at any frequency was 20 dB or more, confirming that it is an extremely good radio wave absorber. Furthermore, as is clear from comparison with the comparative example, the product of the present invention provided with tapered protrusions or protrusions,
It was confirmed that the product had superior radio wave absorption characteristics compared to the comparative example product with a flat radio wave incident surface. . Although not shown in the figure, in the frequency band of 4.4 GIIz or higher, both the actual survey 1 and 2 and the comparative example product had excellent radio wave absorption characteristics (although the comparative example product was inferior, both Both had a return loss of 20 dB or more). Therefore, the product of the present invention exhibits good radio wave absorption characteristics even in the low frequency band near the lowest absorption frequency (3 GHz because the thickness of the absorber is 50 m+), and has excellent radio wave absorption over a wide band compared to the comparative example product. It has been revealed that this material is a radio wave absorber with special characteristics. [Effects] As explained above: According to the radio wave absorber of the present invention, since it is composed of artificial fibers made of polar polymer, each fiber itself has a constant diameter, and various types of fibers can be easily obtained. is,
Since fibers of uniform quality can be used, carbon can easily adhere to it, and it is easy to form a carbon film with a uniform thickness, a radio wave absorber with excellent radio wave absorption properties can be realized. . In addition, the radio wave absorber of the present invention has a convex strip or protrusion formed on its lower surface, and when used with the convex surface facing the radio wave incident direction, the apparent conductivity of the radio wave incident surface of the upper absorber Because the amount of radio waves is low, the amount of radio waves reflected on the incident surface is originally small, and the radio waves reflected by one protrusion or protrusion are eventually absorbed by other protrusions or protrusions, so it is extremely good. It becomes possible to achieve radio wave absorption characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の電波吸収体の一実施例の外
観を示す斜視図、第3図は電波吸収特性をJ11定する
ための測定系を示す模式図、第4図及び第5図は@3図
の測定系によりタリ定した第11及び第2図に示す電波
吸収体の電波吸収特性をそれぞれ表す特性図である。 F・・・繊維、1・・・結合部、11・・・凸条、12
・・・凸起、2.21・・ポーンアンテナ、3・・・検
波器、4・・・金属板、5・・・供試電波吸収体、T・
・・送信、R・・・受樋 特  許  出  願  人 三菱電線工業株式会社 代表者代表取締役 結城醸造 第3図 第4rIj 盾 波。 数 [GH!] 第1 第5図 (eHxl
1 and 2 are perspective views showing the external appearance of one embodiment of the radio wave absorber of the present invention, FIG. 3 is a schematic diagram showing a measurement system for determining radio wave absorption characteristics, and FIGS. FIG. 5 is a characteristic diagram showing the radio wave absorption characteristics of the radio wave absorbers shown in FIGS. 11 and 2, respectively, determined by the measurement system shown in FIG. F...Fiber, 1...Joining portion, 11...Convex strip, 12
... Convexity, 2.21 ... Pone antenna, 3 ... Detector, 4 ... Metal plate, 5 ... Test radio wave absorber, T.
...Transmission, R...Receiving gutter patent application Person: Representative Director, Mitsubishi Cable Industries, Ltd. Yuki Jozo Figure 3, 4rIj Shield Wave. Number [GH! ] Fig. 1 Fig. 5 (eHxl

Claims (1)

【特許請求の範囲】[Claims] カーボンで被覆され、少なくとも2種類の太さの極性ポ
リマーからなる繊維を互いに絡ませたマット状繊維集合
体からなる電波吸収体であって、該マット状繊維集合体
の一面には先細りの凸条又は凸起が複数形成されている
ことを特徴とする電波吸収体。
A radio wave absorber made of a mat-like fiber aggregate coated with carbon and made of polar polymer fibers of at least two different thicknesses intertwined with each other, and one surface of the mat-like fiber aggregate is provided with a tapered convex strip or A radio wave absorber characterized by having a plurality of protrusions formed.
JP24523688A 1988-09-29 1988-09-29 Radiowave-absorbing body Pending JPH0291998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24523688A JPH0291998A (en) 1988-09-29 1988-09-29 Radiowave-absorbing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24523688A JPH0291998A (en) 1988-09-29 1988-09-29 Radiowave-absorbing body

Publications (1)

Publication Number Publication Date
JPH0291998A true JPH0291998A (en) 1990-03-30

Family

ID=17130683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24523688A Pending JPH0291998A (en) 1988-09-29 1988-09-29 Radiowave-absorbing body

Country Status (1)

Country Link
JP (1) JPH0291998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314016A (en) * 2005-05-09 2006-11-16 Mitsubishi Cable Ind Ltd Radio wave absorbing structural body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314016A (en) * 2005-05-09 2006-11-16 Mitsubishi Cable Ind Ltd Radio wave absorbing structural body
WO2006121029A1 (en) * 2005-05-09 2006-11-16 Mitsubishi Cable Industries, Ltd. Electromagnetic wave absorption structure body and antenna cover

Similar Documents

Publication Publication Date Title
US3733606A (en) Camouflaging means for preventing or obstructing detection by radar reconnaissance
AU612426B2 (en) Electromagnetic radiation suppression cover
US6538596B1 (en) Thin, broadband salisbury screen absorber
US3836967A (en) Broadband microwave energy absorptive structure
JP4122364B2 (en) Radio wave absorber and manufacturing method thereof
FI74349C (en) KAMOUFLAGEMATERIAL SOM AER AVSEDD ATT ANVAENDAS SOM PROTEKTION MOT RADEROBSERVATION.
US5661484A (en) Multi-fiber species artificial dielectric radar absorbing material and method for producing same
US5453745A (en) Wideband wave absorber
JPH0291997A (en) Radiowave absorbing body
JPH0291998A (en) Radiowave-absorbing body
US4480256A (en) Microwave absorber
EP0672206B1 (en) Radar attenuating textiles
JP4303388B2 (en) Electromagnetic wave absorber and method for producing the same
JPS58210696A (en) Radio wave absorber
JPH01276795A (en) Radio wave absorber
JP2000151179A (en) Radio wave absorption material
JP6438687B2 (en) Radio wave absorber and manufacturing method thereof
RU2243899C2 (en) Radio-absorbing cover
JP2855402B2 (en) Broadband radio wave absorber
US5721551A (en) Apparatus for attenuating traveling wave reflections from surfaces
JPH01187896A (en) Material for radio wave absorber
JP2001223492A (en) Radio wave absorbing body
JPS61292998A (en) Radio wave absorbing material
WO1985005692A1 (en) Anechoid chambers
JPH0711345Y2 (en) Camouflage sheet