JPH0291565A - Data processor for gas chromatograph - Google Patents

Data processor for gas chromatograph

Info

Publication number
JPH0291565A
JPH0291565A JP24512788A JP24512788A JPH0291565A JP H0291565 A JPH0291565 A JP H0291565A JP 24512788 A JP24512788 A JP 24512788A JP 24512788 A JP24512788 A JP 24512788A JP H0291565 A JPH0291565 A JP H0291565A
Authority
JP
Japan
Prior art keywords
retention time
component
measured
library
gas chromatograph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24512788A
Other languages
Japanese (ja)
Inventor
Naoki Wada
直樹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24512788A priority Critical patent/JPH0291565A/en
Publication of JPH0291565A publication Critical patent/JPH0291565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To facilitate measurement by providing a retention time converting means which converts the retention time of the component to be measured at two different temps. detected by a retention time detecting means to the retention time of the component to be measured at a prescribed temp. CONSTITUTION:A CPU 2 has a function to make waveform processing, a function to retrieve a library, a function to convert the relative retention time, and a function to control input and output, etc. The signal from gas chromatograph 10 is converted to a digital signal by an analog/digital (A/D) converter 3 and is taken at a prescribed sampling period into the CPU 2, by which the retention time of the reference component, the component to be measured, etc., are respectively detected. A floppy disk drive 9 make access to the library stored in a floppy disk and stores the results of the analyses, etc., into the floppy disk. The library is constituted of the actually measured relative retention time of the various components under the prescribed analysis conditions. The identification of the component to be measure is executed by using this library in this way even if the analyses are executed at the temp. different from the temp. at which the library is formed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、ガスクロマトグラフのデータ処理装置に関
し、詳しく言えばライブラリ作成時の分析温度と異なる
温度で測定が行われた場合でも、このライブラリを使用
して測定対象成分を同定することのできるものに関する (口)従来の技術 近年、ケミカルボンド型のキャピラリカラムが一般に供
給されるようになったが、この型のキャピラリカラムは
、製造上均質なものが供給され、また長期間の使用に際
してもそΦ性質が安定している゛という特長を有してい
る。このため、キャピラリカラムの種類と分析条件さえ
合わせておけば、カラムから溶出した成分の相対保持時
間(相対リテンションタイム)は常に一定のものとする
ことができる。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a data processing device for a gas chromatograph. Conventional technology for identifying target components using chemical bonding methods In recent years, chemical bond type capillary columns have become commonly available. It has the advantage that its Φ properties are stable even when used for a long period of time. Therefore, as long as the type of capillary column and the analysis conditions are matched, the relative retention time of the components eluted from the column can always be kept constant.

そこで、ケミカルボンド型キャピラリカラムの特長を利
用し、ある所定の分析条件、例えば温度、カラムのfl
lm等で測定された各種成分の相対保持時間のデータを
ライブラリとして保存し、実測された測定対象成分の相
対保持時間を、このライブラリで検索し、この測定対象
成分を同定するように構成したガスクロマトグラフ用デ
ータ処理装置が知られている。
Therefore, by taking advantage of the features of chemical bond capillary columns, certain predetermined analysis conditions, such as temperature and column fl.
A gas chroma configured to save data on the relative retention times of various components measured by lm etc. as a library, search this library for the actually measured relative retention times of the components to be measured, and identify the components to be measured. A tograph data processing device is known.

このガスクロマトグラフ用データ処理装置では、試料に
メタン等の基準成分を添加して測定されたクロマトグラ
フ信号より、測定対象成分のピークと基準成分のピーク
とを抽出し、測定対象成分の保持時間より基準成分の保
持時間を減じたものを、測定対象成分の相対保持時間と
してライブラリの検索を行っている。なお、周知のこと
であるが、試料中には、測定対象成分の前後でピークを
生じるようなパラフィンがさらに添加されており、これ
らパラフィンの保持時間により測定対象成分の相対保持
時間が補正されてから、ライブラリの検索が行われる。
This data processing device for gas chromatography extracts the peak of the target component and the peak of the reference component from the chromatographic signal measured by adding a reference component such as methane to the sample, and extracts the peak of the target component and the peak of the reference component from the retention time of the target component. The library is searched by subtracting the retention time of the reference component and using it as the relative retention time of the component to be measured. It is well known that paraffins that produce peaks before and after the target component are added to the sample, and the relative retention time of the target component is corrected by the retention time of these paraffins. From there, the library is searched.

(ハ)発明が解決しようとする課題 ガスクロマトグラフを用いた分析では、試料によっては
、ライブラリ作成時の固定された分析条件では、測定対
象成分を他の成分より分離できない場合がある。この場
合には、例えばλ髪λ度を上げるなど異なる分析条件で
分析を行う必要があるが、こうして得られた測定対象成
分の相対保持時間では、前記ライブラリで検索が行えな
い問題点があった。
(c) Problems to be Solved by the Invention In analysis using a gas chromatograph, depending on the sample, it may not be possible to separate the component to be measured from other components under the fixed analysis conditions when creating the library. In this case, it is necessary to perform the analysis under different analysis conditions, such as increasing the λ degree, but there is a problem that the library cannot be searched using the relative retention time of the target component obtained in this way. .

この発明は、上記に鑑みなされたものであり、ライブラ
リ作成時と異なる温度で分析を行った場合でも、このラ
イブラリを使用して測定対象成分の同定を行えるガスク
ロマトグラフ用データ処理装置の提供を目的としている
The present invention was made in view of the above, and an object of the present invention is to provide a data processing device for a gas chromatograph that can use this library to identify components to be measured even when analysis is performed at a temperature different from that at the time of library creation. It is said that

(ニ)課題を解決するための手段 上記課題を解決するため、この発明のガスクロマトグラ
フ用データ処理装置は、ガスクロマトグラフからのクロ
マトグラム信号より、基準成分と測定対象成分の保持時
間を検出する保持時間検出手段と、 所定の温度で実測された各成分の相対保持時間を記憶す
る記憶手段と、 前記保持時間検出手段で検出された保持時間より測定対
象成分の相対保持時間を算出し、これにより前記記憶手
段に記憶されている各成分の相対保持時間を検索し、こ
の測定対象成分を同定する検索手段とを備えてなるもの
において、前記保持時間検出手段で検出された、異なる
2つの温度での測定対象成分の保持時間を、前記所定の
温度での測定対象成分の保持時間に換算する保持時間換
算手段を備えたことを特徴とするものである。
(d) Means for Solving the Problems In order to solve the above problems, the data processing device for a gas chromatograph of the present invention detects the retention times of a reference component and a measurement target component from a chromatogram signal from a gas chromatograph. time detection means; storage means for storing the relative retention time of each component actually measured at a predetermined temperature; and calculating the relative retention time of the component to be measured from the retention time detected by the retention time detection means; and a search means for searching the relative retention time of each component stored in the storage means and identifying the component to be measured, at two different temperatures detected by the retention time detection means. The present invention is characterized by comprising a retention time conversion means for converting the retention time of the component to be measured into the retention time of the component to be measured at the predetermined temperature.

(ホ)作用 一般的に、温度Tでの測定対象成分の保持時間tRは、
基準成分保持時間をtoとすると以下の(1)(2)式
で示される関係がある。
(E) Effect Generally, the retention time tR of the component to be measured at the temperature T is:
If the reference component retention time is to, then there is a relationship expressed by the following equations (1) and (2).

tえ=to  ・ (1+に/β)    ・・・(1
)K−C,−exp(−ΔH,/RT)−(2)ここで
、Kは分配係数、βは気相と液相との相比Csは定数、
ΔH3は溶解熱、Rは気体定数である。上記(2)式よ
り j!ogK−1ogcs−ΔH,/RT   ・(3)
また、(1)及び(3)式より j1!og(t*/ to  1)=ffiogK−1
ogβ=fogCs−1ogβ−ΔH,/RT・・・(
4) 1ogc、−j2ogβ=B、−ΔI(、/R=Aとす
ると、log (t*/ to  1 ) =B  A
/T   −(5)なる関係が得られることとなる(な
お、基準成分の保持時間t、は理論的には温度に依存し
ない)。
te=to ・(1+to/β) ...(1
)K−C,−exp(−ΔH,/RT)−(2) where K is the partition coefficient, β is the phase ratio Cs between the gas phase and the liquid phase, and is a constant.
ΔH3 is the heat of solution, and R is the gas constant. From equation (2) above, j! ogK-1ogcs-ΔH,/RT ・(3)
Also, from equations (1) and (3), j1! og(t*/to 1)=ffiogK-1
ogβ=fogCs-1ogβ-ΔH,/RT...(
4) 1ogc, -j2ogβ=B, -ΔI(,/R=A, log (t*/to 1) =B A
/T - (5) (Note that the retention time t of the reference component is theoretically independent of temperature).

従って、2つの異なる温度で得られた測定対象成分の保
持時間より、定数A、Bの値を決定することができ、(
5)式に基づいて、ライブラリ作成時の温度での測定対
象成分の相対保持時間を得ることができて、ライブラリ
をそのまま用いて測定対象成分を同定することが可能と
なる。
Therefore, the values of constants A and B can be determined from the retention times of the component to be measured obtained at two different temperatures, and (
5) Based on the equation, the relative retention time of the component to be measured at the temperature at the time of library creation can be obtained, and the component to be measured can be identified using the library as is.

(へ)実施例 この発明の一実施例を図面に基づいて以下に説明する。(f) Example An embodiment of the present invention will be described below based on the drawings.

第2図は、この発明の一実施例に係るガスクロマトグラ
フ用データ処理装置の構成を説明するブロック図である
。2は、CPUであり、波形処理を行う機能、ライブラ
リを検索する機能、相対保待時間を換算する機能、入出
力を制御する機能等を有している。
FIG. 2 is a block diagram illustrating the configuration of a data processing device for a gas chromatograph according to an embodiment of the present invention. 2 is a CPU, which has a function of performing waveform processing, a function of searching a library, a function of converting relative waiting time, a function of controlling input/output, and the like.

ガスクロマトグラフ10よりの信号は、アナログ/デジ
タル(A/D)変換器3でデジタル信号化され、所定の
サンプリング周期でCPU2に取り込まれ基準成分、測
定対象成分の等の保持時間がそれぞれ検出される。また
、CPU2が取り込んだクロマトグラムはCRTデイス
プレィ6に表示されると共に、ブロック7でプロットさ
れる。
The signal from the gas chromatograph 10 is converted into a digital signal by an analog/digital (A/D) converter 3, and is taken into the CPU 2 at a predetermined sampling period to detect the retention time of the reference component, the component to be measured, etc. . Further, the chromatogram taken in by the CPU 2 is displayed on the CRT display 6 and plotted in block 7.

ROM4は、前記CPU2のプログラムを記憶しており
、RAM5は、このCPU2の作業領域とされる。キー
ボード8は、動作指令や各種設定値入力のために設けら
れている。
The ROM 4 stores programs for the CPU 2, and the RAM 5 serves as a work area for the CPU 2. A keyboard 8 is provided for inputting operation commands and various setting values.

FDD9は、フロッピディスクに記憶されているライブ
ラリにアクセスするためのもの、及び分析結果等をフロ
ッピディスクに記憶させるためのものである。このライ
ブラリは、所定の分析条件で実測された各種成分の相対
保持時間により構成される。所定の分析条件には、例え
ばカラムの種類、分析温度(以下標準温度という)が含
まれている。
The FDD 9 is for accessing a library stored on a floppy disk and for storing analysis results and the like on the floppy disk. This library is composed of relative retention times of various components actually measured under predetermined analysis conditions. The predetermined analysis conditions include, for example, the type of column and the analysis temperature (hereinafter referred to as standard temperature).

次に、この実施例クロマトグラフ用データ処理装置の動
作を第1図及び第3図を参照しながら、説明する。
Next, the operation of the chromatographic data processing apparatus of this embodiment will be explained with reference to FIGS. 1 and 3.

まず、分析が標準温度T0で測定が行われるか否かを判
定する(ステップ(以下STという)1、第1図参照)
。この判定がNOの場合には、Sr1へ分岐し、YES
の場合、すなわち標準温度T0と同じ温度で分析を行う
場合には、後述のSr1へ分岐する。
First, it is determined whether the analysis is performed at the standard temperature T0 (step (hereinafter referred to as ST) 1, see Figure 1).
. If this determination is NO, branch to Sr1 and YES
In this case, that is, when the analysis is performed at the same temperature as the standard temperature T0, the process branches to Sr1, which will be described later.

Sr1では、温度T+で試料の分析が行われた時のガス
クロマトグラフ10の信号が、CPU2に取込まれ、基
準成分の保持時間tel、測定対象成分の保持時間tl
l+がそれぞれ検出される。また、Sr3では、同様に
温度T2で試料の分析が行われた時の、基準成分の保持
時間tow、測定対象成分の保持時間も。がそれぞれ検
出される。
In Sr1, the signal of the gas chromatograph 10 when the sample is analyzed at the temperature T+ is taken into the CPU2, and the retention time tel of the reference component and the retention time tl of the component to be measured are obtained.
l+ are respectively detected. In addition, for Sr3, the retention time tow of the reference component and the retention time of the component to be measured are also determined when the sample is analyzed at temperature T2. are detected respectively.

Sr1では、温度T、での保持時間t。1% LR1%
温度Ttでの保持時間t。2、tRZをそれぞれ前記の
(5)式に代入して得られる連立方程式(5a) (5
b)を解き、定数A、Bを算出する。
For Sr1, the holding time at temperature T is t. 1% LR1%
Holding time t at temperature Tt. 2. Simultaneous equations (5a) obtained by substituting tRZ into equation (5) above (5
Solve b) and calculate constants A and B.

log (t+u/ to+  1 ) =B  A/
T+  −(5a)1ag(t、*z/’Lot  1
)=B−A/Tz  ”(5b)よって、 S T 5では、Sr1で算出されたA、Bにより標準
温度Toにおける測定対象成分の保持時間L5が計算さ
れる。すなわち、(5)式より、ti =to  (1
+e xp(B−A/To)) ・(8)なお、基準成
分の保持時間は、理論的には、温度に依存しない筈であ
るが、実際の測定では温度によって変化している。しか
し、標準温度T0での基準成分の保持時間t0は、異な
る2つの温度TI、T2での保持時間to+、t、、2
が得られれば、容易に算出することができるから問題は
ない。
log (t+u/to+1) =B A/
T+ -(5a)1ag(t, *z/'Lot 1
)=B-A/Tz'' (5b) Therefore, in ST5, the retention time L5 of the component to be measured at the standard temperature To is calculated from A and B calculated by Sr1. That is, from equation (5) , ti = to (1
+e xp(B-A/To)) (8) The retention time of the reference component should theoretically not depend on temperature, but in actual measurements it changes depending on temperature. However, the retention time t0 of the reference component at the standard temperature T0 is different from the retention time to+, t, , 2 at two different temperatures TI and T2.
If it is obtained, there is no problem because it can be easily calculated.

S T 5では、さらに得られた測定対象成分の保持時
間t、Iより基準成分の保持時間t0を滅じて測定対象
成分の相対保持時間t%を算出する。
In S T 5, the retention time t0 of the reference component is further subtracted from the obtained retention times t and I of the component to be measured to calculate the relative retention time t% of the component to be measured.

第1図には示していなか、この相対保持時間り、lは、
周知の方法により補正が施される。
Although not shown in Figure 1, this relative retention time, l, is
Correction is performed using well-known methods.

一方、Sr1では、標準温度T0で検出された測定対象
成分の保持時間tRより基準成分の保持時間t0を滅じ
て、測定対象成分の相対保持時間を(、%を算出し、や
はり周知の方法で補正する。
On the other hand, in Sr1, the retention time t0 of the reference component is subtracted from the retention time tR of the component to be measured detected at the standard temperature T0, and the relative retention time of the component to be measured is calculated as (,%), which is also a well-known method. Correct with.

Sr5又はSr1で得られた測定対象成分の保持時間(
、%に基づき、CPU2がライブラリの検索を行い、測
定対象成分を同定する(Sr7)。
Retention time of the component to be measured obtained with Sr5 or Sr1 (
, %, the CPU 2 searches the library and identifies the component to be measured (Sr7).

この結果は、CRTデイスプレィ6に表示され、あるい
はプロッタ7により印字される(Sr1)。
This result is displayed on the CRT display 6 or printed by the plotter 7 (Sr1).

なお、上記説明では、恒温分析の場合について説明して
いるが、昇温分析は以下のようにして行われる。まず、
昇温分析の基本式を列挙すると、v、  = L / 
t R、”QO)T = r t + T t    
           = (II)ここでLカラム長
、V、(T)は温度Tにおける測定対象成分の移動速度
、rは昇温速度、tは昇温時間、T、は初期温度である
。測定対象成分の保持時間tllは、前記(8)弐で与
えられる。よって、定数A、Bが定まっておれば、一定
時間周期Δ乞ごとに、(II)式により温度Tを算出し
、この温度Tを(8)式に代入して保持時間1+1を求
め、さらにこの保持時間tl+を00式に代入して、移
動速度■。
In addition, although the above explanation describes the case of constant temperature analysis, temperature raising analysis is performed as follows. first,
Listing the basic formula for temperature increase analysis, v, = L /
t R, "QO) T = r t + T t
= (II) where L column length, V, (T) is the movement rate of the component to be measured at the temperature T, r is the heating rate, t is the heating time, and T is the initial temperature. The retention time tll of the component to be measured is given by (8) 2 above. Therefore, if the constants A and B are fixed, the temperature T is calculated by equation (II) at every fixed time period Δ, and the holding time 1+1 is obtained by substituting this temperature T into equation (8). Substituting this holding time tl+ into formula 00, we get the moving speed ■.

を得る。この移動速度v1にΔtをかけたもの(vmΔ
t)を順次加えて行き、その総和かカラム長しとなった
時の時間が、昇温分析の場合の測定対象成分の保持時間
t、1′ となる。
get. This moving speed v1 is multiplied by Δt (vmΔ
t) are added one after another, and the time when the sum total reaches the column length becomes the retention time t,1' of the component to be measured in the case of temperature programmed analysis.

(ト)発明の詳細 な説明したように、この発明のガスクロマトグラフ用デ
ータ処理装置は、保持時間検出手段で検出されたセつの
異なる温度での測定対象成分の保持時間を所定温度での
測定対象成分の保持時間に換算する保持時間換算手段を
備えたごとを特徴とするものであるから、ライブラリ作
成時の分析温度とは異なる温度で分析が行われた場合で
も、そのままライブラリを適用して測定対象成分を同定
することができる利点を有している。
(G) As described in detail of the invention, the data processing device for a gas chromatograph of the present invention is capable of detecting the retention time of the component to be measured at a predetermined temperature, which is detected by the retention time detection means. The feature is that it is equipped with a retention time conversion means that converts the retention time of the component, so even if the analysis is performed at a temperature different from the analysis temperature at the time of library creation, the library can be applied as is for measurement. It has the advantage of being able to identify target components.

【図面の簡単な説明】[Brief explanation of drawings]

図面は何れもこの発明の一実施例を示し、第1図は、同
実施例に係るガスクロマトグラフ用データ処理装置の動
作を説明するフロー図、第2図は、同ガスクロマトグラ
フ用データ処理装置の構成を説明スるブロック図、第3
図は、同ガスクロマトグラフ用データ処理装置で処理さ
れるクロマトグラムの一例を示す図である。 2:cPU。 9:フロッピディスクドラブ、 10:ガスクロマトグラフ。 特許出願人     株式会社島津製作所代理人  弁
理士  中 村 茂 信 第1図 第2図
Each of the drawings shows an embodiment of the present invention; FIG. 1 is a flowchart illustrating the operation of a data processing device for gas chromatograph according to the same embodiment, and FIG. Block diagram explaining the configuration, Part 3
The figure is a diagram showing an example of a chromatogram processed by the gas chromatograph data processing device. 2: cPU. 9: Floppy disk drive, 10: Gas chromatograph. Patent applicant Shimadzu Corporation Representative Patent attorney Shigeru Nakamura Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)ガスクロマトグラフからのクロマトグラム信号よ
り、基準成分と測定対象成分の保持時間を検出する保持
時間検出手段と、 所定の温度で実測された各成分の相対保持時間を記憶す
る記憶手段と、 前記保持時間検出手段で検出された保持時間より測定対
象成分の相対保持時間を算出し、これにより前記記憶手
段に記憶されている各成分の相対保持時間を検索し、こ
の測定対象成分を同定する検索手段とを備えてなるガス
クロマトグラフ用データ処理装置において、前記保持時
間検出手段で検出された、異なる2つの温度での測定対
象成分の保持時間を、前記所定の温度での測定対象成分
の保持時間に換算する保持時間換算手段を備えたことを
特徴とするガスクロマトグラフ用データ処理装置。
(1) a retention time detection means for detecting the retention time of a reference component and a component to be measured from a chromatogram signal from a gas chromatograph; a storage means for storing the relative retention time of each component actually measured at a predetermined temperature; Calculating the relative retention time of the component to be measured from the retention time detected by the retention time detection means, searching for the relative retention time of each component stored in the storage means, and identifying the component to be measured. In a data processing device for a gas chromatograph, the retention time of the component to be measured at two different temperatures detected by the retention time detection means is determined by the retention time of the component to be measured at the predetermined temperature. A data processing device for a gas chromatograph, comprising a retention time conversion means for converting into time.
JP24512788A 1988-09-29 1988-09-29 Data processor for gas chromatograph Pending JPH0291565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24512788A JPH0291565A (en) 1988-09-29 1988-09-29 Data processor for gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24512788A JPH0291565A (en) 1988-09-29 1988-09-29 Data processor for gas chromatograph

Publications (1)

Publication Number Publication Date
JPH0291565A true JPH0291565A (en) 1990-03-30

Family

ID=17129027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24512788A Pending JPH0291565A (en) 1988-09-29 1988-09-29 Data processor for gas chromatograph

Country Status (1)

Country Link
JP (1) JPH0291565A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118209A1 (en) 2011-03-02 2012-09-07 株式会社堀場エステック Data processing device for gas chromatograph and data processing program used in same
US8964361B2 (en) 2010-07-21 2015-02-24 Teradyne, Inc. Bulk transfer of storage devices using manual loading
US9001456B2 (en) 2010-08-31 2015-04-07 Teradyne, Inc. Engaging test slots
JP2016133486A (en) * 2015-01-22 2016-07-25 東ソー株式会社 Chromatographic data processing system and method for searching chromatogram
US9459312B2 (en) 2013-04-10 2016-10-04 Teradyne, Inc. Electronic assembly test system
US9779780B2 (en) 2010-06-17 2017-10-03 Teradyne, Inc. Damping vibrations within storage device testing systems
US10725091B2 (en) 2017-08-28 2020-07-28 Teradyne, Inc. Automated test system having multiple stages
US10775408B2 (en) 2018-08-20 2020-09-15 Teradyne, Inc. System for testing devices inside of carriers
US10845410B2 (en) 2017-08-28 2020-11-24 Teradyne, Inc. Automated test system having orthogonal robots
US10948534B2 (en) 2017-08-28 2021-03-16 Teradyne, Inc. Automated test system employing robotics
US10983145B2 (en) 2018-04-24 2021-04-20 Teradyne, Inc. System for testing devices inside of carriers
US11226390B2 (en) 2017-08-28 2022-01-18 Teradyne, Inc. Calibration process for an automated test system
US11754622B2 (en) 2020-10-22 2023-09-12 Teradyne, Inc. Thermal control system for an automated test system
US11754596B2 (en) 2020-10-22 2023-09-12 Teradyne, Inc. Test site configuration in an automated test system
US11867749B2 (en) 2020-10-22 2024-01-09 Teradyne, Inc. Vision system for an automated test system
US11899042B2 (en) 2020-10-22 2024-02-13 Teradyne, Inc. Automated test system
US11953519B2 (en) 2020-10-22 2024-04-09 Teradyne, Inc. Modular automated test system
US12007411B2 (en) 2021-06-22 2024-06-11 Teradyne, Inc. Test socket having an automated lid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129763A (en) * 1984-07-20 1986-02-10 Shimadzu Corp Gas chromatograph with function for correcting holding time
JPS63204146A (en) * 1987-02-19 1988-08-23 Shimadzu Corp Qualitative analysis for gas chromatography mass spectrometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129763A (en) * 1984-07-20 1986-02-10 Shimadzu Corp Gas chromatograph with function for correcting holding time
JPS63204146A (en) * 1987-02-19 1988-08-23 Shimadzu Corp Qualitative analysis for gas chromatography mass spectrometer

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9779780B2 (en) 2010-06-17 2017-10-03 Teradyne, Inc. Damping vibrations within storage device testing systems
US8964361B2 (en) 2010-07-21 2015-02-24 Teradyne, Inc. Bulk transfer of storage devices using manual loading
US9001456B2 (en) 2010-08-31 2015-04-07 Teradyne, Inc. Engaging test slots
WO2012118209A1 (en) 2011-03-02 2012-09-07 株式会社堀場エステック Data processing device for gas chromatograph and data processing program used in same
CN103403542A (en) * 2011-03-02 2013-11-20 株式会社堀场Stec Data processing device for gas chromatograph and data processing program used in same
US9222923B2 (en) 2011-03-02 2015-12-29 Horiba Stec, Co., Ltd. Data processing device for gas chromatograph and data processing program used in same
US9459312B2 (en) 2013-04-10 2016-10-04 Teradyne, Inc. Electronic assembly test system
JP2016133486A (en) * 2015-01-22 2016-07-25 東ソー株式会社 Chromatographic data processing system and method for searching chromatogram
US10845410B2 (en) 2017-08-28 2020-11-24 Teradyne, Inc. Automated test system having orthogonal robots
US10725091B2 (en) 2017-08-28 2020-07-28 Teradyne, Inc. Automated test system having multiple stages
US10948534B2 (en) 2017-08-28 2021-03-16 Teradyne, Inc. Automated test system employing robotics
US11226390B2 (en) 2017-08-28 2022-01-18 Teradyne, Inc. Calibration process for an automated test system
US10983145B2 (en) 2018-04-24 2021-04-20 Teradyne, Inc. System for testing devices inside of carriers
US10775408B2 (en) 2018-08-20 2020-09-15 Teradyne, Inc. System for testing devices inside of carriers
US11754622B2 (en) 2020-10-22 2023-09-12 Teradyne, Inc. Thermal control system for an automated test system
US11754596B2 (en) 2020-10-22 2023-09-12 Teradyne, Inc. Test site configuration in an automated test system
US11867749B2 (en) 2020-10-22 2024-01-09 Teradyne, Inc. Vision system for an automated test system
US11899042B2 (en) 2020-10-22 2024-02-13 Teradyne, Inc. Automated test system
US11953519B2 (en) 2020-10-22 2024-04-09 Teradyne, Inc. Modular automated test system
US12007411B2 (en) 2021-06-22 2024-06-11 Teradyne, Inc. Test socket having an automated lid

Similar Documents

Publication Publication Date Title
JPH0291565A (en) Data processor for gas chromatograph
US5549387A (en) Apparatus and method for differential analysis using real and imaginary signal components
EP0161672B1 (en) Data processing system for chromatography
WO1995033199A1 (en) Apparatus and method for differential analysis using real and imaginary signal components
JPH02196959A (en) Data processor for chromatograph
JP2924267B2 (en) Chromatographic data processor
Johnson Storage and Complete Automatic Computation of Gas Chromatographic Data.
JP2791476B2 (en) Gas detector
JP3178133B2 (en) Thermal analyzer
JP2828211B2 (en) Thermal change measurement method
JP2002286704A (en) Data processing device for chromatograph
Cerimele et al. Computerized automation in acquisition and processing of patterns from high-pressure ion-exchange chromatography
JPS6011172A (en) Peak detecting circuit of measured output
Divis et al. Deconvoluted band representation for infrared spectrum compression
JPH0339591B2 (en)
Wilson Exchange of Comments: Analysis of Complex Volatile Mixtures by a Combined Gas Chromatography-Mass Spectrometry-Computer System
JPH10274647A (en) Liquid chromatograph
JP3227764B2 (en) Liquid chromatograph
Gough Quantitative detection in gas chromatography
JPS6129763A (en) Gas chromatograph with function for correcting holding time
Karasek et al. A Total Analysis Digital System for Chromatographs
Hinshaw Data handling for fast chromatography--peak integration.(GC Connections)
JPH10123115A (en) Chromatography data processing method
Barrall et al. Thermal Expansion Apparatus for Use with Differential Thermal Analysis Equipment.
JPH0797082B2 (en) Infrared emission spectroscopy measurement method and device