JPH0291401A - Moving blade of oil free type air engine - Google Patents

Moving blade of oil free type air engine

Info

Publication number
JPH0291401A
JPH0291401A JP24304588A JP24304588A JPH0291401A JP H0291401 A JPH0291401 A JP H0291401A JP 24304588 A JP24304588 A JP 24304588A JP 24304588 A JP24304588 A JP 24304588A JP H0291401 A JPH0291401 A JP H0291401A
Authority
JP
Japan
Prior art keywords
air engine
polyester resin
aromatic polyester
movable blade
type air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24304588A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakajima
和彦 中島
Naoki Kikuchi
直樹 菊池
Koro Takatsuka
公郎 高塚
Tomiharu Matsushita
富春 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24304588A priority Critical patent/JPH0291401A/en
Publication of JPH0291401A publication Critical patent/JPH0291401A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Specific Conveyance Elements (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To improving slidability and heat-resistance of an air engine while improving ability thereof by forming moving blades from aromatic polyester resin having specified value of thermal expansion coefficient. CONSTITUTION:Moving blades 1 of a rotor 5 are made from aromatic polyester resin having thermal. expansion coefficients of 2X10<-5> or lower. Slidability and heat-resistance are improved accordingly by adopting aromatic polyester resin. Since the thermal expansion coefficient is set to not more than 2X10<-5>, gaps between grooves 6 of a disc 7 and the moving blades 1 are minimized, so that ability of an air engine is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えばセメント粉粒体送給設備に用いる無潤
滑式空気機関の可動翼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a movable blade for a non-lubricated air engine used, for example, in cement powder feeding equipment.

(従来の技術) 従来、第1図に示す可動翼lを用いた空気機関が公知で
ある。
(Prior Art) Conventionally, an air engine using movable blades l shown in FIG. 1 is known.

この空気機関は、吸気口1 a、 l b、および排気
口2に連通ずる断面円形のロータ室3内に、このロータ
室3の中心に対して偏心させて設けた回転軸4に回転可
能にロータ5を取付けて形成されている。また、このロ
ータ5は、円周面に開口した径方向の溝6を多数、例え
ば図示するように6本、一定の角度間隔で穿設した円盤
7と、このWIIB内に常時外方に向けて付勢しつつ、
摺動可能に嵌入させた可動翼量とからなっている。そし
て、ロータ室3の壁面と摺接する吸気口1a、lb付近
では、可動翼!全体を溝6内に嵌入させる一方、ロータ
室3の壁面と最も離れる排気口2の部分に近付くにつれ
て可動翼lを円盤7の外方へ突出させて、可動it同志
の間に密閉空間を形成し、かつそれを徐々に拡大させる
ようになりでいる。
This air engine is rotatable about a rotary shaft 4 provided eccentrically with respect to the center of the rotor chamber 3 in a rotor chamber 3 having a circular cross section and communicating with intake ports 1a, lb and exhaust port 2. It is formed by attaching the rotor 5. The rotor 5 also includes a disk 7 in which a large number of radial grooves 6, for example, six as shown in the figure, are drilled at regular angular intervals in the circumferential surface, and a disk 7 that is always directed outward in the WIIB. While encouraging
It consists of a movable blade that is slidably fitted. In the vicinity of the intake ports 1a and lb that make sliding contact with the wall surface of the rotor chamber 3, movable blades! While the whole is fitted into the groove 6, the movable blade l is made to protrude outward from the disk 7 as it approaches the part of the exhaust port 2 that is farthest from the wall surface of the rotor chamber 3, thereby forming a sealed space between the movable IT members. And it is gradually expanding.

また、可動翼1の材料としては、この空気機関が油等を
使う潤滑方式のものではアルミ合金等の金属材料が衝撃
および曲げ特性等の材料特性が十分満足出来るため使用
されているが、油等を使わない無潤滑方式のものでは上
記金属材料を使うとロータ室の壁面を傷付けるという問
題がある。このため、無潤滑方式のものでは、可動翼1
の材料としては摺接する相手側を傷付けないグラファイ
ト材が主に使われている。
In addition, as for the material of the movable blade 1, metal materials such as aluminum alloy are used when the air engine is lubricated using oil, etc., because the material properties such as impact and bending characteristics are sufficiently satisfied. In the non-lubricated rotor, there is a problem that if the metal material mentioned above is used, it will damage the wall surface of the rotor chamber. For this reason, in the non-lubricated type, the movable blade 1
The main material used is graphite, which does not damage the other side with which it slides.

さらに、吸気口1 a、 1 bは適宜切換え可能に吸
気流路8に達しており、この吸気流路8に導かれた圧縮
空気をロータ室3内に供給している。
Further, the intake ports 1 a and 1 b reach the intake passage 8 in a manner that can be switched as appropriate, and the compressed air guided to the intake passage 8 is supplied into the rotor chamber 3 .

そして、吸気口1aから供給した圧縮空気の圧力により
ロータ5を矢印入方向に回転させ、或いは吸気口1bか
ら供給した圧縮空気により逆方向に回転させ、膨張した
空気を排気口2より排気させている。
Then, the rotor 5 is rotated in the direction of the arrow by the pressure of the compressed air supplied from the intake port 1a, or rotated in the opposite direction by the compressed air supplied from the intake port 1b, and the expanded air is exhausted from the exhaust port 2. There is.

(発明が解決しようとする課題) 上記可動翼1の材料としてのグラファイト材は摺動性に
優れ、摩擦による発熱も低く抑えられ、可動翼1に要求
される特性を有する反面、衝撃特性が悪く、割れ欠けが
発生し易く、寿命が短いのに加えてその予測が出来ない
等の問題がある。
(Problems to be Solved by the Invention) Although the graphite material used as the material for the movable blade 1 has excellent sliding properties and low heat generation due to friction, and has the characteristics required for the movable blade 1, it has poor impact characteristics. There are problems such as cracking and chipping are likely to occur, and the service life is short and cannot be predicted.

本発明は、上記従来の問題点を課題としてなされたもの
で、摺動性、耐熱性の他に衝撃特性に優れた無潤滑式空
気機関の可動翼を提供しようとするものである。
The present invention has been made to address the above-mentioned conventional problems, and aims to provide a movable blade for a non-lubricated air engine that has excellent sliding properties, heat resistance, and impact characteristics.

(課題を解決するための手段) 上記課題を解決するために、第1発明は、熱膨張係数が
2XIO−″5以下の芳香族ポリエステル系樹脂により
形成した。
(Means for Solving the Problems) In order to solve the above problems, the first invention is made of an aromatic polyester resin having a coefficient of thermal expansion of 2XIO-''5 or less.

また、第2発明は、上記芳香族ポリエステル系樹脂と、
これに充填した重力比で全体の50%以下の強化材とか
ら形成した。
Further, a second invention provides the above-mentioned aromatic polyester resin;
It was formed from a reinforcing material that was filled into this and had a weight ratio of 50% or less of the total weight.

(実施例) 次に、本発明について説明する。(Example) Next, the present invention will be explained.

本発明は、図面上第1図に示すものと変わらず、以下こ
の第1図を本発明を示すものとして用い装置の説明につ
いては上述の通りゆえ説明を省略する。即ち、第1図は
本発明に係る可動翼lを適用した空気機関を示している
The present invention is the same as shown in FIG. 1 in the drawings, and hereinafter, FIG. 1 will be used to illustrate the present invention, and the description of the apparatus will be omitted because it is as described above. That is, FIG. 1 shows an air engine to which the movable blade l according to the present invention is applied.

そして、第1発明に係る可動翼1は、熱膨張係数が2X
10−5以下、好ましくは1.5×10−5以下の芳香
族ポリエステル系樹脂、例えばVectra(商標名、
セラニーズ社(米国)製造)、Uポリマー(商標名、ユ
ニチカ(株)製造)により形成されている。
The movable blade 1 according to the first invention has a thermal expansion coefficient of 2X.
10-5 or less, preferably 1.5 x 10-5 or less, such as Vectra (trade name,
Celanese Co., Ltd. (USA)) and U Polymer (trade name, manufactured by Unitika Co., Ltd.).

具体的には、以下のように形成される。Specifically, it is formed as follows.

芳香族ポリエステル系樹脂であるVectraを用い、
射出成形により、可動翼を作成する。この可動翼の作成
にあたり、その寸法、形状を合わせた射出成形用の金型
を予め準備する。この金型の寸法は各材料固有の性質に
基づく熱的収縮、結晶化1弾性回復等による成形収縮等
を考慮して決定する。ただし成形収縮率は、樹脂の流動
方向と直角方向により異なるため、それぞれの方向をも
考慮して検討する。
Using Vectra, an aromatic polyester resin,
Create movable wings by injection molding. To create this movable wing, an injection mold having the same dimensions and shape as the movable wing is prepared in advance. The dimensions of this mold are determined in consideration of thermal shrinkage based on the unique properties of each material, molding shrinkage due to crystallization, elastic recovery, etc. However, since the molding shrinkage rate differs depending on the flow direction of the resin and the direction perpendicular to it, each direction should also be taken into account when studying.

次に、成形条件は、樹脂温度が290〜300℃程度に
なるようシリンダ及びノズル温度を調整し、金型温度は
、80−100℃の温度範囲に設定する。また、射出圧
力は、150〜450 kgr/cm”の範囲とする。
Next, as for the molding conditions, the cylinder and nozzle temperatures are adjusted so that the resin temperature is about 290-300°C, and the mold temperature is set in the temperature range of 80-100°C. Further, the injection pressure is in the range of 150 to 450 kgr/cm''.

このように、芳香族ポリエステル系樹脂を使用したのは
摺動性、および、耐熱温度が150℃以上と耐熱性に優
れているからで、また熱膨張係数を2×10−5以下と
したのは、実験の結果、この値より大きい場合には可動
翼lの摺動部に要求される隙間が大きくなり、空気機関
の性能が低下するのに対し、この値以下では上記隙間に
より空気機関の性能低下は無視出来るからである。
In this way, aromatic polyester resin was used because it has excellent sliding properties and heat resistance, with a heat resistance temperature of 150°C or higher, and it also has a thermal expansion coefficient of 2 x 10-5 or less. As a result of experiments, when is larger than this value, the clearance required for the sliding part of the movable blade l increases and the performance of the air engine decreases, whereas below this value, the above clearance reduces the performance of the air engine. This is because the performance degradation can be ignored.

ついで、表1にこの第1発明に係る可動翼(表中Aで示
す)と従来のグラファイト材により形成した可動翼(表
中Bで示す)とを比較するために行った実験およびンユ
ミレーション結果を示す。
Next, Table 1 shows the experiments and simulations conducted to compare the movable blade according to the first invention (indicated by A in the table) and the movable blade made of conventional graphite material (indicated by B in the table). Show the results.

(以下余白) 表1 上記結果に示されるように、各試験項目において第1発
明の方がグラファイト材により形成したしのに比べて優
れた特性を示している。
(The following is a blank space) Table 1 As shown in the above results, the first invention exhibits superior characteristics in each test item compared to the insulator made of graphite material.

また、空気機関をグラファイト材により形成した可動翼
を用いた場合は、使用後2力月〜3年以内に殆どの可動
翼が割れて使用不可能になったのに対して、第1発明を
用いたものでは3年間割れ欠けを全く生じることなく起
動、負荷運転を繰り返すことが出来た。
In addition, when an air engine uses movable blades made of graphite material, most of the movable blades break and become unusable within 2 months to 3 years after use. The one we used was able to start up and operate under load repeatedly for three years without any cracking or chipping.

次に、第2発明に係る可動翼lは、上記芳香族ポリエス
テル系樹脂と、これに充填した重量比で全体の50%以
下の強化材、例えばグラスファイバとから形成されてい
る。
Next, the movable blade 1 according to the second invention is formed from the above-mentioned aromatic polyester resin and a reinforcing material, for example, glass fiber, which is filled into the aromatic polyester resin in a weight ratio of 50% or less of the whole.

具体的には、以下にようにして形成される。Specifically, it is formed as follows.

グラスファイバーを30%充填したPEEK樹脂を使用
し、射出成形により成形する。
It is molded by injection molding using PEEK resin filled with 30% glass fiber.

成形条件 樹脂温度 370〜380℃ 金型温度 160〜190°C 射出圧力 700〜1400 kgf/c+a”の範囲
で成形することができる。
Molding conditions Resin temperature: 370 to 380°C Mold temperature: 160 to 190°C Injection pressure: 700 to 1400 kgf/c+a''.

このように、グラスファイバの充填量を重量比で50%
以下としたのは、この値を超えると可動翼lと摺接する
相手のロータ室3の壁面の摩耗量が大きいのに対して、
この値以下であれば摩耗量は無視出来るからである。
In this way, the filling amount of glass fiber is 50% by weight.
The reason for setting the value below is that if this value is exceeded, the amount of wear on the wall surface of the rotor chamber 3 that comes into sliding contact with the movable blade l will be large;
This is because the amount of wear can be ignored if it is less than this value.

また、このように形成するごとにより、熱膨張率は1.
l6xlo−’となり、衝撃強度が50kg・cm、曲
げ強度が1300kg−cm、耐熱温度が200℃とな
り、実機試験において3年間使用することが出来た。
Moreover, due to each formation in this way, the coefficient of thermal expansion is 1.
16xlo-', the impact strength was 50 kg-cm, the bending strength was 1300 kg-cm, the heat resistance temperature was 200°C, and it could be used for 3 years in actual machine tests.

なお、強化材としては、上記の他に例えばカーボンファ
イバー、SiCファイバーがあり、ホイスカであるか粉
末であるかは問わない。
In addition to the above, examples of the reinforcing material include carbon fiber and SiC fiber, and it does not matter whether it is a whisker or a powder.

また、本発明は射出成形によるものに限らず、この他例
えば樹脂のグレードによっては、圧縮成形によってもよ
い。
Furthermore, the present invention is not limited to injection molding, but may also be compression molding, depending on the grade of the resin.

この他、第1発明、第2発明における材料に加えて、重
量比で全体の30%以下のグラファイトを充填すること
により可動翼の強度低下を無視出来る程度に抑えて、そ
の摺動特性を向」ニさせることが出来るが、30%を超
えると、衝撃1曲げに対する強度が問題となる。
In addition to the materials in the first and second inventions, by filling graphite in an amount of 30% or less of the total weight ratio, the decrease in strength of the movable blade can be suppressed to a negligible level and the sliding characteristics can be improved. However, if it exceeds 30%, the strength against one impact bending becomes a problem.

(発明の効果) 以上の説明より明らかなように、第1発明によれば、熱
膨張係数が2xlO−5以下の芳香族ポリエステル系樹
脂により形成しである。
(Effects of the Invention) As is clear from the above description, according to the first invention, it is formed from an aromatic polyester resin having a coefficient of thermal expansion of 2xlO-5 or less.

このため、無潤滑であっても摺動性、耐熱性に優れ、可
動翼摺動部の隙間を小さくして空気機関の性能を向上さ
せることが出来る。
Therefore, even without lubrication, it has excellent sliding properties and heat resistance, and it is possible to reduce the gap between the movable blade sliding parts and improve the performance of the air engine.

また、第2発明によれば、上記芳香族ポリエステル系樹
脂と、これに充填した重力比で全体の50%以下の強化
材とから形成しである。
Further, according to the second aspect of the invention, it is formed from the above-mentioned aromatic polyester resin and a reinforcing material filled therein with a weight ratio of 50% or less of the total weight.

このため、上記第1発明における効果に加えて熱膨張率
を小さくし、衝撃、曲げ強度を向上させ、耐熱温度を上
げ、耐久性を向上させることが可能になる等の効果を奏
する。
Therefore, in addition to the effects of the first invention, it is possible to reduce the coefficient of thermal expansion, improve impact and bending strength, increase the allowable temperature limit, and improve durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は可動翼を用いた空気機関の断面図、第2図はシ
ュミレーションの基にした手段を示す概略正面図である
。 l・・・可動翼。 特許出願人 株式会社神戸製鋼所 代理人 弁理士 青 山 葆ほか1名
FIG. 1 is a sectional view of an air engine using movable wings, and FIG. 2 is a schematic front view showing the means on which the simulation was based. l...Movable wings. Patent applicant: Kobe Steel, Ltd. Representative Patent attorney: Aoyama Aoyama and one other person

Claims (2)

【特許請求の範囲】[Claims] (1)熱膨張係数が2×10^−^5以下の芳香族ポリ
エステル系樹脂により形成したことを特徴とする無潤滑
式空気機関の可動翼。
(1) A movable blade for a non-lubricated air engine, characterized in that it is formed of an aromatic polyester resin having a coefficient of thermal expansion of 2×10^-^5 or less.
(2)上記芳香族ポリエステル系樹脂と、これに充填し
た重量比で全体の50%以下の強化材とから形成したこ
とを特徴とする無潤滑式空気機関の可動翼。
(2) A movable blade for a non-lubricated air engine, characterized in that it is formed from the above-mentioned aromatic polyester resin and a reinforcing material filled therein in a weight ratio of 50% or less of the total weight.
JP24304588A 1988-09-28 1988-09-28 Moving blade of oil free type air engine Pending JPH0291401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24304588A JPH0291401A (en) 1988-09-28 1988-09-28 Moving blade of oil free type air engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24304588A JPH0291401A (en) 1988-09-28 1988-09-28 Moving blade of oil free type air engine

Publications (1)

Publication Number Publication Date
JPH0291401A true JPH0291401A (en) 1990-03-30

Family

ID=17098004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24304588A Pending JPH0291401A (en) 1988-09-28 1988-09-28 Moving blade of oil free type air engine

Country Status (1)

Country Link
JP (1) JPH0291401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947712A (en) * 1997-04-11 1999-09-07 Thermo King Corporation High efficiency rotary vane motor
WO2009022611A1 (en) * 2007-08-16 2009-02-19 Mitaka Kohki Co., Ltd. Vapor driven motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947712A (en) * 1997-04-11 1999-09-07 Thermo King Corporation High efficiency rotary vane motor
WO2009022611A1 (en) * 2007-08-16 2009-02-19 Mitaka Kohki Co., Ltd. Vapor driven motor

Similar Documents

Publication Publication Date Title
US6334617B1 (en) Composite abradable material
US5024884A (en) Abradable seal having particulate erosion resistance
EP0416954B1 (en) Abradable material for a turbo machine
US7178808B2 (en) Layer system for the rotor/stator seal of a turbomachine
EP1244605B1 (en) High temperature erosion resistant coating and material containing compacted hollow geometric shapes
US10036402B2 (en) Max phase reinforced polymer matrix composite abradables with enhanced thermal conductivity
US8020875B2 (en) Turbine friendly abradable material
EP1298178B1 (en) Seal ring
EP1821011B1 (en) Turbine friendly abradable material
EP0497345B1 (en) Composite ceramic sintered material, process for producing the same, and slider member using the same
JP4223935B2 (en) Abrasive seal powder material
JPH0291401A (en) Moving blade of oil free type air engine
EP1440955A2 (en) Sliding element for seals and their process of manufacturing
EP1111194B1 (en) Composite abradable material
CA2496667A1 (en) Wear-resistant slide member and slide device using the same
JP3216956B2 (en) Gas turbine blade fixing device
EP3360985B1 (en) Multilayer abradable coating
JPH0319421B2 (en)
Prasse et al. A critical analysis of the rotary engine sealing problem
JP2543093B2 (en) Sliding parts for seals
JP3367165B2 (en) Ceramic sliding member
JPH0710965B2 (en) Coating material for gap adjusting film layer
JPH04327068A (en) Mechanical seal
JP2723629B2 (en) Rotary compressor
JPH02500610A (en) Cylinder inner vagina for piston engine and its manufacturing method